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Highlights 

• Investigated the effect of media multitasking on cognitive performance during 

learning tasks. 

• A questionnaire survey and EEG analysis have been adopted for evaluating cognitive 

performance in a phone-use group and control group. 

• Various EEG features such as band ratios, attention index, and sample entropy have 

been used in this work 

• A significant decline in cognitive performance indices was found in phone-use group. 

 

 

Plain Language Summary 

The current study examined the impact of smartphone use on cognitive task performance and 

mental health in adolescents using a questionnaire survey and EEG spectral analysis. It has 

been observed that smartphone use in between studies/work affects cognitive performance of 

individuals. EEGs of twenty-two subjects were recorded during a reading task before and 

after smartphone use. Recent studies have detected variations in EEG rhythms due to 

electromagnetic fields generated by phone calls, while the present study focuses on EEG 

variations during cognitive task due to frequent use of mobile applications such as social 

media, etc. The analysis revealed a significant decline in cognitive performance due to 

uncontrolled use of smartphone or media multitasking during learning/working hours. 

 

 

 

 

 

 

 

 



4 
 

Abstract 

Introduction: The dependence on smartphones has become widespread among all age groups 

in every realm of daily life. There has been increased concern about the adverse effects of 

problematic smartphone use and media multitasking among adolescents. Recent studies used 

various performance measures like questionnaire surveys to examine the association between 

smartphone addiction and learning performance, and such studies have yielded mixed findings. 

The current study investigates the effects of media multitasking on cognitive performance 

using Electroencephalography (EEG) features and a self-report questionnaire survey.  

Methods: The patterns of smartphone use among adolescents in South India were investigated 

in this study, using a questionnaire survey. Further, the impact of smartphone usage on 

cognitive task performance was examined using EEG features. For this, EEGs of twenty-two 

healthy subjects were recorded during learning tasks before and after using a social networking 

site on smartphones. Subsequently, various EEG features were extracted, including ratios of 

wavelet decomposed EEG bands, attention index, and Sample entropy. Finally, these cognitive 

performance indices were evaluated and compared with a control group.  

Results: A total of 600 healthy individuals (341 males, 259 females) participated in the survey 

among whom, 310 (50.91%) belonged to the high-user group. Performance degradation 

(p=0.005), sleep problems (p=0.040) and mental stress (p=0.049) were more prevalent among 

the high-user group. A significant decline in EEG-based cognitive performance indices was 

also observed in the phone-use group compared to the control group.  

Conclusion: The findings of this study highlight the importance of controlling phone use when 

engaged in cognitive tasks. The study also offers an insight to develop neurofeedback 

techniques that enhance cognitive skills. 

Keywords: Smartphone Addiction, EEG, Cognitive Skill, Spectral Analysis, Attention, Mental 

Health 
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1. Introduction 

Cognitive skills play a vital role in learning capacity and task performance. Attention, 

memory, perception, and logical reasoning represent various levels of cognitive functions. 

Studies on human cognition have revealed several biological, behavioral, and environmental 

factors that contribute to the augmentation or deterioration of cognitive skills. One such factor 

is the indiscriminate use of smartphones that adversely affects cognitive capacities, impacting 

physical and mental health (Shaffer, 1996). In recent years, smartphones have become 

embedded in almost every domain of human life, such as social networking, education, 

business, entertainment, etc. However, excessive use of smartphones can sometimes lead to 

addiction, which has emerged as a prevalent social problem that disrupts daily life. Smartphone 

addiction indicates the inability to control smartphone use despite negative effects on users 

(Shaffer, 1996). Recent studies have shown that the prevalence of smartphone addiction among 

children and adolescents is rapidly increasing (Soni et al., 2017). The younger population is 

more addicted to social media platforms, and they tend to use social networking sites during 

their study or work hours (Chiang et al., 2019). Such kind of heavy media multitasking or 

switching between tasks may result in cognitive decline and poor academic outcomes (Abi-

Jaoudeet al., 2020; van der Schuur, 2015; Uncapher et al. 2017). Furthermore, it has been 

implicated in anxiety, impatience, withdrawal, mood changes, and lack of concentration in 

tasks, in addition to physical health problems such as pain in the wrist, neck and joints, nervous 

disturbances, and fatigue (Hou et al., 2019; Thomée et al., 2011; Van Deursen, 2015). Hence, 

the current study attempts to investigate the effects of smartphone use or media multitasking 

on adolescents' cognitive performance. 

Researchers have used several techniques for estimating the cognitive performance of 

individuals, including behavioral, subjective, and neurophysiological measures (Tattersall et 

al., 1996; Hart et al., 1988; Borghini et al., 2016). Behavioral measures rely on the performance 

of the subjects in experimental tasks while subjective measures rely on self-reports and 

questionnaires (Tattersall et al., 1996; Hart et al., 1988). Neurophysiological techniques 

measure cognitive performance using variations of physiological signals such as brain activity, 

cardiac activity, skin conductance, etc. (Borghini et al., 2016; Mühl et al., 2014; Gevins and 

Smith, 2003). Neurophysiological measures have been demonstrated as effective tools for real-

time monitoring and thereby enhancing the cognitive performance of individuals. 

Electroencephalography (EEG), a very convenient and low-cost technique that records the 

electrical activity of the brain, is being widely used to measure various cognitive assessment 
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factors such as attention (Peng et al., 2020), mental workload (Gevins and Smith, 2003), 

working memory (Missonnier et al., 2006), etc. EEG reflects the neuronal changes occurring 

due to cognitive engagement or fatigue, and hence EEG is widely used for assessing the 

cognitive performance of individuals. EEG is composed of several rhythms based on the 

frequency- delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (31-

50 Hz) (Britton et al., 2016; Noachtar et al., 1999). Several neurocognitive experiments have 

showed that the cognitive state of attention is linked with theta, alpha, beta, and gamma bands 

of EEG (Freeman et al., 1999; Liu et al., 2013; Peng et al., 2020). Attention is a complex neural 

phenomenon comprising different brain regions (Rosenberg et al., 2016; Posner and Petersen, 

1990) coupled with several frequencies (Clayton et al., 2015). Researchers have used various EEG features 

based on temporal, power spectral density (Liu et al., 2013), wavelet transform (Djamal et al., 2016), and Hilbert- Huang 

Transform (Peng et al., 2020) for deriving neuro markers that detect attention from neural signals. Gruzelier (2009) 

showed that the ratio of the alpha band to theta band reflects the performance enhancement 

index of individuals during cognitive tasks. Freeman et al. (1999) demonstrated that the ratio 

of the beta band to theta band indicates neural activity and is a potential biomarker for 

attentional assessment. Rabbi et al. (2009) reported that the ratio of the beta to (alpha + theta) 

is indicative of cognitive performance and attentional resource index. Ming et al. (2009) used 

sample entropy of EEG samples to discriminate mental states of attention and inattention. This 

study reported a higher sample entropy during attentive tasks compared to the mental state of 

inattention. Cognitive workload (CWL) is another term used for measuring task complexity 

while performing a task. It indicates a measure of the human ability to maintain focus and 

rational reasoning while processing multiple activities and facing various distractions (Recarte 

and Nunes, 2003). Several recent studies have shown that cognitive workload or task 

complexity is positively correlated with theta activity over the frontal region of the brain 

(Gevins and Smith, 2003) and inversely correlated with the alpha band over the parietal region 

(Borghini et al., 2014; Gevins et al., 1997). 

With the advent of the internet and smartphone technologies, social networking sites (SNS) 

have become very popular among people of different ages and professions. The investigation 

of the impact of problematic smartphone use on learning performance and work efficacy has 

gained more attention in recent years (Abi-Jaoudeet al., 2020; Darcin et al., 2015). Several 

studies have revealed the regions of brain activation during the use of social networking sites. 

Neuroimaging studies based on functional Magnetic Resonance Imaging (fMRI) demonstrated 

that the task of social networking activates a network of brain regions such as the dorsomedial 

prefrontal cortex, bilateral temporoparietal junction, anterior temporal lobes, inferior frontal 
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gyri, and posterior cingulate cortex/precuneus (Schurz et al., 2014; Saxe et al., 2003; Wolf et 

al., 2010). 

Numerous studies have investigated the effects of phone use or media multitasking on 

cognitive performance in adolescents. However, most of them were based on self-report 

questionnaire surveys while a few utilized changes in physiological signals like brain activity, 

heart rate, etc. Moreover, neuroimaging studies using fMRI revealed the adverse effects of 

media multitasking on cognitive functioning (Moisala et al., 2016). Some EEG-based studies 

have examined the variations in EEG frequency bands induced by electromagnetic fields due 

to mobile phone radiation (Arns et al., 2007; Croft et al., 2008; Krause et al., 2006; Parmar et 

al., 2019). Out of these studies, only a few (Krause et al., 2006; Parmar et al., 2019) investigated 

the impact of phone usage on cognitive tasks. Moreover, such works used a limited number of 

EEG features such as average amplitudes, frequencies, etc. The changes in brain activity 

patterns during cognitive tasks induced due to media multitasking (or switching between 

learning and social media use) have not been investigated in detail. The main objective of the 

current study was to investigate the effects of smartphone distractions or media multitasking 

on adolescents' cognitive performance using a large set of EEG indices. To achieve this, the 

study examined the patterns of smartphone use among adolescents using a questionnaire 

survey. Following this, the impact of smartphone distractions on cognitive performance was 

assessed using a diverse set of EEG-based cognitive performance indices such as band ratios, 

attention index, cognitive workload, and Sample entropy. It is hypothesized that uncontrolled 

use of smartphones could negatively be associated with mental health and task performance. 

2. Methods 

Ethical clearance: The study was approved by the Institutional Ethics Committee duly 

constituted according to the guidelines of the Indian Council of Medical Research (ICMR). 

The procedure was explained in detail, and written informed consent was obtained from all the 

participants. 

Survey on smartphone use: A self-report questionnaire was used to conduct a survey on the 

pattern of smartphone use among adolescents in South India. The questionnaire included data 

on demography, duration of phone use, frequency of phone use during study/work, the most-

used feature on phone, and performance outcome in academics or job. Data on stress and sleep 

pattern among phone users were also collected. The respondents were divided into the low-

user group and the high-user group based on the duration of phone use. The participants who 
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indulged in the use of their smartphones for more than three hours per day were grouped into 

the high-user group and others into the low-user group. 

Data Used 

The current study used EEG data of healthy subjects recorded using EBNeuro Galileo BE 

Plus LTM 128 channel EEG acquisition system during various mental tasks such as resting, 

reading before and after smartphone usage, etc. Twenty-two healthy subjects (fourteen males 

and eight females) aged 18-32 years (21.73 ± 2.78; mean ± SD) participated in the EEG 

experiment. The subjects included undergraduate students and research staff from the institute. 

The subjects were ruled out of any medical or psychiatric conditions, and they were divided 

into two groups: phone-use group (experimental group) and control group. There were 11 

subjects in each group with mean age and standard deviation 21.0 ± 1.48 (phone-use group) 

and 22.45 ± 3.58 (control group) with four females in each group. 

EEG recording: In this work, EEG signals were recorded using BE Plus LTM 128 channel 

EEG acquisition system. All the EEG channels were recorded with an averaged reference, and 

electrode impedance was kept lower than 5 Kohm. The subjects were comfortably seated in an 

electrically shielded room. For the experimental group, the recording consisted of four 

sessions-resting or relaxation phase, the reading task phase (named pre-use task phase), the 

smartphone use phase, and the reading task phase following the smartphone use (named post-

use task phase). EEG was continuously recorded from each subject during rest state (3 minutes 

duration) and each of the remaining three states (5 minutes duration). During the resting state, 

the participants were instructed to remain in an idle state for three minutes without making any 

movements. During the reading stage, they had to read a scientific article related to the basics 

of brain functions (Farnsworth, 2018) for five minutes. During the phase of smartphone use, 

they were instructed to use the social media platform “Facebook” for five minutes during which 

they viewed their profile photos and posts, including comments received. After five minutes of 

smartphone use, the subjects were asked to read the remaining part of the article. After five 

minutes of smartphone use, the subjects were asked to read the remaining part of the article. 

For the control group, the experiment was conducted in a similar manner but without 

smartphone use. Instead, the subjects were instructed to sit in an idle state between the two 

reading phases. The participants were asked to answer the questions related to the reading 

content and also to express their mental state whether they had felt any state of inattentive or 

fatigue during each task. Accordingly, the subject’s mental state was verified based on the 

subject’s feedback in the form of answering questions and self-expression of the emotional 
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state they felt during the task. Figure. 1 illustrates the sequence of operations performed for the 

assessment of cognitive performance using EEG-based indices. 

Figure 1. Block diagram of the proposed work for cognitive performance 

assessment using EEG features 

64 channels from different brain regions including Frontal (F), Parietal (P), Temporal (T), 

and Occipital (O) were selected for EEG analysis. EEG data were online digitized with a 

sampling frequency of 128 Hz and exported to MATLAB-compatible format for further 

processing. Then, EEG was segmented into several epochs of one-second duration, which had 

been reported as an optimal epoch duration to detect changes in neuronal activity during 

different mental states (Wang et al., 2014; Fraschini et al., 2016). The first five seconds in each 

trial were considered as task preparation time for each subject and excluded those epochs from 

the analysis. EEG data were bandpass filtered between 1 Hz and 60 Hz, and an additional notch 

filtering was performed for eliminating 50 Hz power line noise interference. Amplitude 

thresholding was also performed to minimize movement artifacts, in which EEG samples with 

amplitudes greater than ±80 µV were excluded (Gotlib et al., 1998; Poppy and Speckens, 

2015). 

EEG Feature Extraction: EEG features were extracted from the pre-processed EEG in the 

frequency domain for interpreting brain activity. Wavelet transform was used for decomposing 

EEG into various rhythms such as delta, theta, alpha, beta, and gamma.  Wavelet transform is 

a very effective technique for the time-frequency analysis of non-stationary signals like EEG 

(Mallat, 1998; Polikar, 1999).  It can detect any transient events occurring in the signal, and it 

decomposes the given signal using a set of oscillating functions known as wavelets. Different 

families of wavelet functions ′𝝍𝒂,𝒃(𝒕)′  are formed as scaled and shifted versions of a unique 

mother wavelet ‘𝝍(𝒕)’ according to (1). 

𝜓𝑎,𝑏(𝑡) =  
1

√|𝑎|
𝜓(

𝑡−𝑏

𝑎
) (1) 

where, a, b ∈ 𝑅, 𝑎 ≠ 0, ‘a’ is the scaling parameter, ‘b’ is the shifting parameter and ‘t’ is the 

time variable. Discrete wavelet transform (DWT) is a discrete version of continuous wavelet 

transform, defined by assigning discrete values to wavelet parameters ‘a’ and ‘b’ (𝑎 =

2−𝑗  𝑎𝑛𝑑 𝑏 = 𝑘 2−𝑗,  where j and k are integers representing the scale and translation). The 

current work performed four-level DWT decomposition for decomposing the digitized EEG 

samples into different frequency components. The wavelet family chosen was Daubechies-4 
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(db4) wavelet owing to its resemblance to the EEG waveform (Indiradevi, et al., 2008). DWT 

decomposes the EEG signal to detail (high frequency) and approximation (low frequency) 

coefficients from which various EEG bands- delta, theta, alpha, beta, and gamma were selected 

as indicated in Figure 2. 

Figure 2. Four-level Wavelet decomposition of EEG signal into five bands. D 

indicates detail (high frequency) component and A represents approximation 

(low frequency) component. 

Based on the neuroscientific literature, various kinds of EEG features were extracted in 

this experiment. They included band ratios, attention index, and sample entropy of EEG 

samples. EEG band ratios have been reported as effective neuro markers for recognizing the 

mental state of attentive tasks (Freeman et al., 1999; Gruzelier, 2009; Rabbi et al., 2009).  The 

current experiment used different band ratios such as alpha to theta ratio (ATR), alpha to beta 

ratio (ABR), beta to theta ratio (BTR), and theta to gamma ratio (TGR). These were computed 

as the ratio of the absolute power of respective bands according to Equations (2)-(5). Another 

ratio beta to (alpha + theta) ratio (BATR) was estimated as the ratio of theta absolute power to 

the sum of alpha absolute power and beta absolute power (6).  

𝐴𝑇𝑅 =
𝐴𝑃𝛼

𝐴𝑃𝜃
     (2) 

𝐴𝐵𝑅 =
𝐴𝑃𝛼

𝐴𝑃𝛽
     (3) 

𝐵𝑇𝑅 =
𝐴𝑃𝛽

𝐴𝑃𝜃
     (4) 

𝑇𝐺𝑅 =
𝐴𝑃𝜃

𝐴𝑃𝛾
     (5) 

where  𝐴𝑃𝜃 , 𝐴𝑃𝛼 , 𝐴𝑃𝛽 𝑎𝑛𝑑 𝐴𝑃𝛾  represent absolute power of theta (θ), alpha (α), beta (β), and 

gamma (γ) bands respectively. 

𝐵𝐴𝑇𝑅 =
𝐴𝑃𝛽

𝐴𝑃𝛼+ 𝐴𝑃𝜃 
    (6) 

Attention index defined by a combination of band ratios (Suhail et al., 2021) was computed as 

𝐴𝐼𝑇𝐴𝐵 =
𝐴𝑃𝜃

𝐴𝑃𝛼
+

𝐴𝑃𝛼

𝐴𝑃𝛽
    (7) 

As EEG is a complex non-linear phenomenon, different kinds of entropies have been 

utilized in this work for assessing the mental states of cognitive tasks. Sample entropy is a 

powerful tool that measures the amount of regularity in the signal. It was computed based on 
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the algorithm proposed by Richman and Moorman (2000) with parameters, m = 2 and r = 

0.2×σ, where m is subseries length, r is similarity tolerance, σ standard deviation of EEG 

samples. 

Cognitive workload (CWL), which is a measure of task complexity, was estimated by the 

ratio of theta power across the frontal region to alpha power across the parietal region (7) (Holm 

et al., 2009). 

𝐶𝑊𝐿 =
𝑇ℎ𝑒𝑡𝑎 𝑃𝑜𝑤𝑒𝑟 𝑎𝑐𝑟𝑜𝑠𝑠 𝐹𝑟𝑜𝑛𝑡𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛

𝐴𝑙𝑝ℎ𝑎 𝑃𝑜𝑤𝑒𝑟 𝑎𝑐𝑟𝑜𝑠𝑠 𝑃𝑎𝑟𝑖𝑒𝑡𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛
 (8) 

EEG features were normalized into a common scale [0 1] using the min-max normalization 

technique (Li et al., 2016). The normalized version of ith sample xi from a feature set X was 

computed using equation (9). 

𝑥𝑖
′=

𝑥𝑖 − 𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛 (𝑋)
    (9) 

All the features were computed across two hemispheres (right and left) of different lobes 

of the brain (frontal, parietal, temporal, and occipital) by averaging feature values over the 

channels in respective lobes. For example, the feature BATR across the left frontal region (FL) 

was computed by averaging the values of BATR over F1, F3, F5, and F7 channels. In this way, 

all features were evaluated lobe-wise for each group. 

Statistical analysis: The Chi-square test was used to examine the impact of smartphone use 

(high-user and low-user groups) on task performance based on responses of the survey. The 

Chi-square test is generally conducted for testing statistical independence or association 

between two or more categorical variables. The Wilcoxon Signed-Rank test was used to 

examine the significant differences in EEG patterns before and after smartphone use. Wilcoxon 

Signed-Rank test is a non-parametric test used to compare related samples or matched pairs 

and is suitable for evaluating two different conditions of the same subjects (Scheff, 2016). The 

significance level was set to P < 0.05 for examining the significant difference in performance 

indices between pre-use and post-use tasks. 

3. Results 

Questionnaire survey on smartphone use: The pattern of smartphone usage among adolescents 

and its impact on task performance and health were examined using the survey. A total of 600 

individuals, which included 341 males and 259 females, participated in this survey.  Among 

the total participants of the survey, 310 (50.91%) belonged to the high-user group. Multiple 
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parameters, including the most using feature in the phone, duration of phone use, phone use 

during studies/work, academic/work performance, sleep, and stress problems, were compared 

between high-user and low-user groups (Table 1). A significant difference (P=0.005) was 

observed in task performance between the high-user group and the low-user group. 

Performance degradation was more in the high-user group (49.03%) than in the low-user group 

(32.55%). Sleep problems (p=0.040) and mental stress (P=0.049) were also more prevalent in 

the high-user group.  

Table 1. Comparison of the impact of smartphone use on task performance and 

health between high- and low-user groups (The results of Chi-Square test are shown 

with  X2 and P values). 

 

EEG experimental results: EEG rhythmic variations during the cognitive task before and after 

smartphone use were investigated in this experiment, following the survey. Firstly, the changes 

in various EEG-based cognitive performance indices during rest and attentive states were 

examined for all subjects. Finally, the variations in these EEG indices occurring due to phone 

use were evaluated by dividing the subjects into experimental (phone-use) and control groups. 

For the experimental group, EEG features were evaluated for the learning task before phone 

use (pre-use task) and the learning task after phone use (post-use task). For the control group, 

EEG features were evaluated for two phases of the learning task (phase-I and phase-II) with an 

idle state (without phone use) between the two phases. The variations in theta, alpha, beta, and 

gamma bands during the two learning tasks for each group are shown in Figure 3. 

Figure 3. Variations in theta, alpha, beta, and gamma rhythms during the two learning tasks for 

a representative subject from each group. EEG bands extracted from EEG samples averaged 

over frontal channels are shown. For the phone use group, Task-I and Task-II are learning tasks 

before and after the smartphone usage. For the control group, Task-I and Task-II represent two 

learning tasks with an idle state between them. 

 

EEG variations during the state of attentiveness 

The variations in different kinds of EEG features during rest and attentive states are shown 

in Figure 4. During the mental state of attention, EEG band ratios BATR increased (59.91%), 

ATR increased (71.35%), BTR increased (59.97%), ABR decreased (42.39%), and TGR 
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decreased (58.21%) across all lobes of the brain. A decrease in the attention index AITAB 

(35.79%) was also noticed during the attentive state. It observed an increase in Sample entropy 

(68.56%) and cognitive workload (35.08%) during the attentive state in comparison with the 

rest state. The results signify that the cognitive state of attention is characterized by the 

increases of BATR, ATR, BTR, and Sample entropy. The decreases of ABR, TGR, and 

attention index are also associated with the attentive state. 

Figure 4. EEG features during resting and attentive states. Mean values (averaged across brain 

lobes over 22 subjects) with standard deviations are shown. 

 

Effects of phone use on cognitive performance 

The cognitive performances of phone-use (experimental) and control groups have been 

evaluated based on various EEG-based indices. The variations in EEG-based indices for the 

phone-use group and control group are shown in Figure 5. The ratio BATR decreased in the 

phone-use group. This ratio decreased in all lobes of the brain during the learning task after 

smartphone use. It has been demonstrated that BATR is associated with attentional resource 

index and the decrease in BATR represents a decline in cognitive performance (Rabbi et al., 

2009). The mean values of BATR during the learning task before and after phone use for the 

experimental group are shown in Figure 5. The decrease was larger in the right frontal 

(60.18%), left frontal (57.96%), and left occipital (56.02%) regions. The mean values of BATR 

during the learning task for the control group are shown in Figure 5. For the control group, the 

ratio BATR increased during the learning task over the left frontal (10.67%) and right occipital 

(50.92%) regions while decreased in all other lobes. As the frontal lobe is responsible for 

various cognitive functions like attention, memory, planning, and problem-solving, etc., the 

changes in BATR across this region indicate variations in the cognitive task performance of 

individuals. 

Figure 5. Beta to (alpha + theta) ratio (BATR) across brain lobes in phone-use 

group and control group. Mean values with standard deviations are shown. 

The variations in EEG-based cognitive performance indices for the phone-use group and 

control group are shown in Figure 6. Alpha to theta ratio (ATR), representing the performance 

enhancement index (Gruzelier, 2009), decreased (39.57%) in the phone-use group while 

increased (64.37%) in the control group. The ratio ABR (alpha to beta ratio) increased in the 
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phone-use group (37.79%) and decreased in the control group (16.37%). As the increase of 

beta band power and the decrease of alpha band power are associated with a higher level of 

certain cognitive skills such as alertness, the decrease in ABR indicates a higher cognitive 

performance (Jap et al., 2009). 

Figure 6. Variations in EEG based cognitive performance indices in phone-use 

group and control group. Mean values with standard deviations are shown. 

The ratio BTR (beta to theta ratio) decreased (36.15%) in the phone-use group while it 

increased (36.34%) in the control group. BTR decreased in all lobes during the learning task 

following phone use. The decrease of the ratio BTR indicates a lower performance in cognitive 

functioning (Freeman et al., 1999). For the control group, the BTR increased across all brain 

regions. Theta to gamma ratio (TGR) increased in the phone-use group (73.04%) while 

decreased in the control group (14.22%). It was shown that an increase in TGR is associated 

with poor cognitive functioning (Moretti et al., 2009). The increase of TGR was high in the 

phone-use group indicating a cognitive decline as shown in Figure 6. 

Cognitive workload, which is a measure of task complexity (Gevins and Smith, 2003), 

increased (58.80%) during the learning task following phone use (Figure 6). It decreased 

(21.33%) in the control group, indicating a lower mental workload. The current study also 

observed an increase (57.55%) in attention index AITAB during the learning task following 

the phone use as shown in Figure 6. For the control group, AITAB decreased (28.04%) in all 

lobes. It has been showed that an increase in attention index AITAB represents a lower attentive 

state (Suhail et al., 2021).  

Figure 7. Sample entropy in phone-use group and control group. Mean values 

with standard deviations are shown. 

 A decrease in Sample entropy was observed during the learning task following phone use. 

The decrease was significantly larger in the right frontal (52.01%) and left occipital (47.83%) 

regions. It has been demonstrated that Sample entropy increases during the attentive state 

(Ming et al., 2009). For the control group, Sample entropy increased in frontal and left occipital 

regions (2.47-4.88%) while decreased in all other lobes (18.51-36.48%) as indicated in Figure 

7.  

The statistical analysis revealed that BATR and cognitive workload exhibited a statistically 

significant difference (P < 0.05) in the phone-use group (between the learning tasks before and 
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after smartphone use). For the control group, the features exhibited no significant differences. 

The evaluation of various cognitive performance indices between the phone-use group and 

control group suggests that smartphone use (or distractions) during cognitive tasks adversely 

affects the cognitive performance of individuals. 

4. Discussion 

The present study examined the patterns of smartphone use among adolescents and the 

impact of smartphone usage on cognitive performance. Several studies have addressed the 

negative effects of heavy media multitasking on the cognitive functioning of the brain.  Most 

of them relied on self-report questionnaire surveys (Abi-Jaoudeet al., 2020; Uncapher et al., 

2017) while a few utilized neuroimaging techniques like fMRI (Moisala et al., 2016). The 

current study adopted two techniques- a questionnaire survey and EEG-based analysis for 

measuring the effects of smartphone use on cognitive performance. Compared to the fMRI 

technique, EEG provides a very high temporal resolution in the order of milliseconds so that 

any minute variation in brain waves can be captured using EEG. In this work, the patterns of 

smartphone usage among different groups of people, such as students and working 

professionals, were investigated using a questionnaire survey. The survey responses indicated 

that 71.87% of total respondents were frequently involved in using their smartphones (other 

than study/work purposes) during their studies or working hours. Among these multitaskers, 

55.01% expressed that their academic/job performance was degraded by smartphone use. 

Excessive use of smartphones has been also implicated in stress and sleep problems. The results 

are consistent with previous studies (Abi-Jaoudeet al., 2020; Hou et al., 2019; Kim et al., 2018) 

that showed the adverse effects of heavy media multitasking or excessive use of smartphones 

on academic performance and mental/physical health. In addition, EEG spectral analysis also 

indicated a significant difference in cognitive performance indices during tasks following 

smartphone use. The study used various EEG-based cognitive performance indices, including 

band ratios, Sample entropy, cognitive workload, and attention index. All these features were 

first evaluated during resting and attentive states. The increases of alpha to theta ratio, beta to 

(alpha + theta) ratio, and beta to theta ratio were observed during the attentive state, consistent 

with the neuroscientific literature (Freeman et al., 1999; Gruzelier, 2009; Rabbi et al., 2009). 

The analysis of EEG-based cognitive performance indices in the phone-use group and 

control group signified that multitasking or switching between learning and phone use 

negatively affects cognitive performance. In a neuroimaging study using fMRI, Moisala et al. 

(2016) demonstrated that media multitasking is associated with behavioral distractibility and 
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poor task performance in adolescents. Various mental and physical ill-effects such as headache, 

mental fatigue, and sleep problems were reported due to cell-phone use in an EEG-based study 

(Parmar et al., 2019).  However, EEG-based performance indices have not been widely 

explored for analyzing the impact of smartphone distractions on cognitive performance. 

Various EEG features representing attentional resource index, performance enhancement 

index, cognitive workload, etc. were utilized in this study. The experimental results of EEG 

analysis revealed a decrease in the beta to (alpha + theta) ratio in the phone-use group, 

indicating a lower cognitive performance and attentional resource index (Rabbi et al., 2009). 

A decrease in alpha to theta ratio (performance enhancement index) and beta to theta ratio 

(attentional control) have also been observed in the phone-use group. The variations in these 

indices occurring due to phone distractions or multitasking indicated a significant decline in 

cognitive performance. 

The findings of the current study indicate that media multitasking during learning or 

working hours can negatively affect the cognitive functioning of the brain. The current study 

considered only one type of cognitive task and one smartphone application like social media, 

which is a limitation of this work. Future work will investigate the impact of various 

smartphone applications like social media, gaming, etc. on various cognitive tasks like working 

memory, attentive tasks, etc. It is also important to focus on developing neurofeedback-based 

recovery methods for maintaining and enhancing the cognitive performance of individuals with 

poor cognitive capabilities. 

 

5. Conclusion 

The present study investigated the acute impacts of smartphone distractions on cognitive 

task performance using a questionnaire survey and a set of EEG-based performance indices. 

Multiple EEG features, such as band ratios, Sample entropy, and attention index, were used in 

this experiment. The survey responses indicated that overuse of smartphones is related to 

declines in learning performance and work efficacy. Furthermore, the experimental results of 

EEG analysis showed that smartphone use (or media multitasking during learning) induces 

significant differences in cognitive performance indices. Taken together, the findings 

emphasize the need for controlling the use of smartphones during study/work hours. The 

current study focused on the impact of a social networking site on a learning task. Future work 

will focus on the effects of various smartphone applications on different cognitive tasks. The 
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relevance of neurofeedback techniques in improving cognitive capabilities deserves a special 

mention in this context.  
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Tables 

 
 

Table 1 

Comparison of the impact of smartphone use on task performance and health between high- 

and low-user groups (The results of Chi-Square test are shown with X2 and P values). 

 

Parameter 
High-user 

Group (n= 310) 

Low-user Group 

(n= 298) 
X2 P Value 

Phone use 

during task 
251 (80.96%) 198 (66.44%) 35.07 0.000 

Performance 

degradation 
152 (49.03%) 95 (32.55%) 12.54 0.005 

Sleep Problems 130 (41.93%) 96 (32.21%) 8.32 0.040 

Stress 

problems 
191 (58.38%) 151 (50.67%) 9.45 0.049 
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Figure 1. Block diagram of the proposed work for 

cognitive performance assessment using EEG 

features 
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Figure 2. Four-level Wavelet decomposition of EEG signal into five bands. D 

indicates detail (high frequency) component and A represents approximation (low 

frequency) component. 
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Figure 3. Variations in theta, alpha, beta, and gamma rhythms during the two learning tasks for 

a representative subject from each group. EEG bands extracted from EEG samples averaged 

over frontal channels are shown. For the phone use group, Task-I and Task-II are learning tasks 

before and after the smartphone usage. For the control group, Task-I and Task-II represent two 

learning tasks with an idle state between them. 
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Figure 4. EEG features during resting and attentive states. Mean values (averaged 

across brain lobes over 22 subjects) with standard deviations are shown. 
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Figure 5. Beta to (alpha + theta) ratio (BATR) across brain lobes in phone-use 

group and control group. Mean values with standard deviations are shown. 

(FL- frontal left, FR- frontal right, PL- parietal left, PR- parietal right, OL- 

occipital left, OR- occipital right, TL- temporal left, and TR- temporal right) 
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Figure 6. Variations in EEG based cognitive performance indices in phone-use 

group and control group. Mean values with standard deviations are shown. 
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Figure 7. Sample entropy in phone-use group and control group. Mean values 

with standard deviations are shown. (FL- frontal left, FR- frontal right, PL- 

parietal left, PR- parietal right, OL- occipital left, OR- occipital right, TL- 

temporal left, and TR- temporal right) 
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