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Introduction: The footprint of Neuregulin 1 (NRG1) / ERbB4 in the pathophysiology of 
some neurological disorders and TRPV1 regulation has been indicated. The alterations 
in NRG1 and ErbB4 as well as the TRPV1 signaling pathway were investigated during 
the development of absence epilepsy in the genetic animal model of absence epilepsy.

Methods: Male WAG/Rij and Wistar rats were divided into four experimental groups 
of two and six months of age. The protein levels of NRG1, ERbB4, and TRPV1 were 
measured in the somatosensory cortex and hippocampus. 

Results: The cortical protein levels of NRG1 and ErbB4 in the 6-month-old WAG/Rij 
rats were lower than in Wistar rats. Protein levels of TRPV1 were lower in two- and six-
month-old WAG/Rij rats compared to age-matched Wistar rats.

Hippocampal protein levels of NRG1 in 6-month-old WAG/Rij rats were lower than 
two-month-old WAG/Rij rats. Low levels of ErbB4 protein in two-month-old and high 
levels in six-month-old WAG/Rij rats were found compared to Wistar rats. Protein levels 
of TRPV1 were lower in the two-month-old and higher in the six-month-old WAG/Rij 
rats compared to age-matched Wistar rats. 

Furthermore, a high correlation between NRG1/ERbB4 and TRPV1 expressions in the 
cortex and hippocampus was indicated. The expression of NRG1/ERbB4 and TRPV1 
followed a similar pattern during the life span of Wistar and WAG/Rij rats.

Conclusion: Our findings indicated the potential role of the NRG1/ErbB4 pathway as well as 
TRPV1 in the pathogenesis of absence epilepsy. The regulatory effect of the ERbB4 receptor 
on the TRPV1 expression has been suggested following the similar pattern of expression.

Article info:
Received: 30 Jan 2021
First Revision: 14 May 2021
Accepted: 05 Jul 2021
Available Online: 01 Nov 2022

Keywords:
Epilepsy, Cerebral Cortex, 
Neuregulins, Transient 
Receptor Potential Channels, 
Receptor, ErbB-4

Citation Talebi F., Ghorbani, S., Alizadeh, L., Akhlaghi, F., Sadat Moeeni, S., and Karimzadeh, F. (2022). Alteration 
in Neuregulin 1/ERbB4 in Absence Epilepsy: Regulatory Effect on TRPV1 Expression. Basic and Clinical Neuroscience, 
13(6), 777-788. http://dx.doi.org/10.32598/bcn.2021.731.2

 : http://dx.doi.org/10.32598/bcn.2021.731.2

Use your device to scan 
and read the article online

A B S T R A C T

http://bcn.iums.ac.ir/
https://orcid.org/0000-0003-2178-5639
https://orcid.org/0000-0003-3268-5369
https://orcid.org/0000-0002-2586-8709
https://orcid.org/0000-0001-8559-6605
https://orcid.org/0000-0003-0724-3040
https://orcid.org/0000-0002-8805-3486
mailto:Karimzade.f@iums.ac.ir
https://bcn.iums.ac.ir/
http://dx.doi.org/10.32598/bcn.2021.731.2
https://crossmark.crossref.org/dialog/?doi=10.32598/bcn.2021.731.2
http://bcn.iums.ac.ir/page/74/Open-Access-Policy
http://bcn.iums.ac.ir/page/74/Open-Access-Policy


Basic and Clinical

778

November & December 2022 Volume 13, Number 6

1. Introduction

euregulin 1 (NRG1) /ErbB4 signaling is 
one of the essential pathways to develop-
ing the central and peripheral nervous sys-
tem. The role of this pathway to regulate 
neuronal migration, myelination, differ-
entiation, cortical lamination, and synap-
tic plasticity has been reported in several 

studies (Mei & Xiong, 2008; Nave & Salzer, 2006). This 
pathway is required for brain development not in the fe-
tal period but in adulthood and its discrepancies are in-
volved in the pathogenesis of some neurodevelopmental 
disorders (Mei & Xiong, 2008). 

In addition, some polymorphisms of NRG1 have con-
tributed to temporal lobe epilepsy and epileptogenesis 
(Tan et al., 2012; Zhu et al., 2016). It is well understood 
that a deficit in the NRG1/ErbB4 pathway has been as-
sociated with schizophrenia in the human population 
and animal models (Mei & Xiong, 2008; Moa & Chen, 
2017). In addition, some polymorphism of NRG1 has 
contributed to temporal lobe epilepsy and epileptogen-
esis (Tan et al., 2012; Zhu et al., 2016). 

Absence seizures appear during childhood with dif-
ferent clinical manifestations (Jafarian, et al. 2013). 
Spontaneous and synchronous spike-wave discharges 
(SWDs) are the main characteristics of the electroen-

cephalogram for the absence epilepsy. WAG/Rij rats 
have been considered the most valid genetic mod-
el of absence epilepsy. Absence seizures appear in 
adult WAG/Rij rats, mostly after three months of age 
(Karimzadeh et al., 2017). To clarify the developmen-
tal alteration of the NRG1/ ErbB4 signaling pathway 
and TRPV1 receptor, two stages of development were 
assessed. Two- and six-month-old of age have been 
considered as the early- and late-stage of development.

In addition, imbalances between excitatory and in-
hibitory receptors have a critical role in developing 
absence epilepsy (Zifkin, et al., 2005). NRG1 and its 
receptor ErbB4 regulated excitatory-inhibitory neuro-
transmission and sensorimotor gating (Agarwal et al., 
2014). NRG1/ERbB4 pathway modulated GABAergic 
and dopaminergic transmission as well as glutamate 
in the synapses (Agarwal et al., 2014; Marenco et al., 
2011). Overexpression of NRG1 disrupted excitatory-
inhibitory connections and reduced synaptic plastic-
ity (Barros et al., 2009; Penzes, et al., 2011). NRG1/
ERbB4 signaling modulated neural excitability as well 
as long-term potentiation (Pitcher, et al., 2008). Care-
ful regulation of the NRG1/ErbB4 pathway preserved 
a critical balance between excitation and inhibition in 
the nervous system. ErbB4 regulated the activity of 
hippocampal and cortical pyramidal neurons (Buon-
anno, 2010; Mei & Xiong, 2008), while dysfunction of 
them perturbed neuronal network activity (Fisahn, et 

Highlights 

● The cortical protein levels of NRG1 and ErbB4 decreased during absence seizure development.

● The hippocampal protein levels of NRG1 and ErbB4 decreased during absence seizure development.

● The cortical TRPV1 down-regulated during absence seizure development.

● The hippocampal TRPV1 down-regulated during absence seizure development.

● High correlation between NRG1/ERbB4 and TRPV1 expressions was indicated.

Plain Language Summary 

Finding the exact mechanisms that play critical role in the development of neurological diseases, including ab-
sence epilepsy, might lead to correct diagnosis and effective treatment of the disease. In this regard, this study has 
investigated the role of Neuregulin 1 (NRG1) / ERbB4 pathway and its effect on TRPV1 channel. The results of 
this study indicated significant reduction in the expression of (NRG1) / ERbB4 proteins as well as TRPV1 recep-
tors in some brain areas, including the cortex and hippocampus, during absence seizures development. Also, the 
findings of this study showed that the expression pattern of ERB receptor is similar to the expression pattern of 
TRPV1 receptor. Therefore, it might be concluded that the NRG1) / ERbB4 pathway plays a notable role in the 
modulation of TRPV1 expression.

N

Talebi et al. (2022). Regulatory Effect on ERbB4 on TRPV1 Receptor in Absence Epilepsy. BCN, 13(6), 777-788

http://bcn.iums.ac.ir/


Basic and Clinical

779

November & December 2022 Volume 13, Number 6

al, 2009; Nason, et al., 2011), functional connectivity, 
and synaptic plasticity (Stefan, 2008). 

Transient receptor potential vanilloid 1 (TRPV1) 
with permeability to Ca+2 ions modulated neurotrans-
mitter release and synaptic transmission (Saffarzadeh 
et al., 2016). Involvement of TRPV1 in the pathogen-
esis of some disorders, such as schizophrenia, hyper-
algesia, and different kinds of epilepsy, including tem-
poral lobe and tonic-clonic seizures has been indicated 
(Chahl, 2007; Chizh et al., 2007; Shamsizadeh, et al., 
2016; Sun et al., 2013).

The regulatory effect of the NRG1/ERbB4 pathway on 
the TRPV1 function has been shown in the sensory neu-
rons (Canetta, Luca, Pertot, Role, & Talmage, 2011). The 
lack of NRG1 level was accompanied by TRPV1 deficit 
(Mei & Nave, 2014). This regulatory effect derived us 
to evaluate the correlation between NRG1/ERbB4 and 
TRPV1 expression during the rat’s life span. According 
to the role of these pathways in neuronal development 
and excitability regulation, this study evaluated alter-
nation in NRG1/ERbB4 and TRPV1 expression during 
absence seizures development in the WAG/Rij rats.

2. Materials and Methods 

Animals

Male WAG/Rij and Wistar rats were maintained in 
the animal lab with free access to food and water and 
12 h light and dark cycle for one week and divided into 
four groups of two- and six-months of age (n=6 in each 
group). The protocol of animal ethics was approved by 
Shefa Neuroscience Research Center.

Detecting epileptic rats

Two silver electrodes were implanted in the parietal 
cortex and the reference electrode was inserted into the 
nasal bone. Electrocortocencephalogram )ECoG( was 
recorded for six hours under sedated state induced by 
intraperitoneally (i.p.) injection of fentanyl (3 μg/kg), 
which was repeated every 20-30 min (Karimzadeh et 
al., 2016). Signals were amplified (EXT-02 F; NPI, 
Germany) and stored in a digital oscilloscope. Signals 
were analyzed by AxoScope 10 software. Six-month-
old WAG/Rij rats were included in the study because 
of SWDs appearance in their ECoG (Karimzadeh et 
al., 2013). Two-month-old WAG/Rij rats as well as 
two- and six-month-old Wistar rats without any SWDs 
appearance in their ECoG were considered non-epi-
leptic rats (Jafarian et al., 2015). 

Western blot analysis 

Tissues of the somatosensory cortex and hippocampus 
were manually dissected and homogenized in lysis buf-
fer containing Tris-HCl (20 mM), EDTA (1 mM), Triton 
100X (1 %), and 1 mM of phenylmethylsulfonylfluoride, 
aprotinin, pepstatin, as well as leupeptin (1 µg/ml). The 
clear supernatant was gathered and the protein concen-
trations were measured by Bradford’s test. 

The same protein concentrations were loaded in 12% 
SDS-polyacrylamide gel electrophoresis and sepa-
rated by electro-blotted onto polyvinylidene difluoride 
(PVDF) membranes. Following blocking, the PVDF 
membranes were incubated for 3 hours at room tem-
perature with primary antibodies against ErbB4, NRG1, 
TRPV1, and β actin (1:500, Santa Cruz). PVDF was 
washed and incubated with a secondary antibody (HRP- 
conjugated goat anti-mouse; 1:1000; Santa Cruz). Im-
munoreactivity was visible by ECL kit and exposed to 
X-ray film. The developed films were scanned by a Bio-
Rad scanner. The images were analyzed by the mono-
meric bands’ data with Image J software.

Statistical analysis

All data are given as Mean±S.E.M and were analyzed 
by one-way analysis of variance (ANOVA) followed by 
Tukey’s post hoc test. The probability values less than 
0.05 were considered significant. The PASW Statistics 
20 was used for statistical analysis.

3. Results

ECoG was monitored for 6 hours in all rats. Six-
month-old WAG/Rij rats indicated SWDs in their 
ECoG were considered epileptic rats. The mean of 
SWDs frequency and amplitude was 5-10 Hz and 0.5-
1.5 mV, respectively. Two-month-old rats (Wistar and 
WAG/Rij) as well as six-month-old Wistar rats with no 
SWDs in their ECoG had criteria to be included in the 
non-epileptic groups (Figure 1). 

Cortical protein level 

The total protein levels of NRG1, ErbB4, and TRPV1 
were measured by immunoblotting in the somatosen-
sory cortex (Figure 2A). The protein levels of NRG1 
were significantly lower in the two- and six-month-old 
WAG/Rij rats compared to the six-month-old Wistar 
rats (P<0.001, Figure 2B). Furthermore, the NRG1 
levels of the six-month-old Wistar rats were signifi-
cantly higher compared to two-month-old Wistar rats 
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(P<0.001, Figure 2B). The levels of NRG1 had no 
significant difference in two-month-old WAG/Rij rats 
compared to age-matched Wistar rats.There was no 
significant difference in the NRG1 levels between two- 
and six-month-old WAG/Rij rats.

The protein levels of ErbB4 were significantly lower in 
the two- and six-month-old WAG/Rij rats compared to 
six-month-old Wistar rats (P<0.01, Figure 2B). Further, 
it showed a significantly lower expression in the six-
month-old WAG/Rij rats compared to two-month-old 
WAG/Rij rats (P<0.01, Figure 2B). The ErbB4 levels did 
not significantly differ between two-month-old Wistar 
and WAG/Rij rats. The levels of TRPV1 in two- and six-
month-old WAG/Rij rats were significantly lower than 
age-matched Wistar rats (P<0.01, Figure 2B). TRPV1 
highly expressed in 6-month-old Wistar rats compared 
to two-month-old Wistar rats (P<0.05, Figure 2B).

Hippocampal protein levels

The total protein levels of NRG1, ErbB4, and TRPV1 
were measured by immunoblotting in the hippocam-
pus (Figure 3A). The protein levels of NRG1 were 
significantly lower in the six-month-old WAG/Rij rats 
compared to two-month-old Wistar and WAG/Rij rats 
(P<0.01 and P<0.05, respectively). There was no sig-
nificant difference in six-month-old WAG/Rij rats com-
pared to age-matched- Wistar rats (Figure 3A).

The protein levels of ErbB4 were significantly lower 
in the two-month-old WAG/Rij rats compared to age-
matched Wistar rats (P<0.01, Figure 3B). The ErbB4 
levels were significantly higher in six-month-old WAG/
Rij rats compared to six-month-old Wistar rats (P<0.001, 
Figure 3B). In addition, the ErbB4 levels were signifi-
cantly lower in the six-month-old Wistar rats compared 
to two-month-old Wistar rats (P<0.01, Figure 3B).

The levels of TRPV1 were lower in two-month-old 
WAG/Rij and six-month-old Wistar rats compared to 
two-month-old Wistar rats (P<0.001 and P<0.01, re-
spectively, Figure 3B). TRPV1 highly expressed in 
six-month-old WAG/Rij rats compared to age-matched 
Wistar rats as well as two-month-old WAG/Rij rats 
(P<0.01, Figure 3B).

Correlation between expression of NRG1/ERbB4 
and TRPV1

The correlation between protein expression of NRG1/
ERbB4 and TRPV1 independently to rats’ strain was 
analyzed in the somatosensory cortex and hippocampus 

(Figure 4). Cortical correlation between protein levels 
of NRG1 and TRPV1 showed that high expression of 
NRG1 (Figure 4A; r=0.6), as well as ERbB4 (Figure 4B; 
r=0.8), was accompanied by a high level of TRPV1.

Hippocampal correlation between gene and protein 
levels of NRG1/ERbB4 and TRPV1 showed high pro-
tein level of ERbB4 was accompanied by an increase 
in the TRPV1 protein expression (Figure 4D; r=0.9). 
There was no significant correlation between NRG1 and 
TRPV1 expression (Figure 4C; r=0.04). 

4. Discussion

Cortical expression

Our findings showed the lack of NRG1/ERbB4 as well 
as TRPV1 expression in the somatosensory cortex of 
both juvenile and adult WAG/Rij rats compared to Wi-
star rats. The critical role of the NRG1/ ErBb4 signal-
ing pathway and TRPV1 receptor in the development of 
the brain and cortical lamination has been shown (Rico 
& Marín, 2011; Storozhuk, et al., 2019). During the de-
velopment of the brain, NRG1 through the activation of 
ErbB2 and ErbB4 helped radial glia survival and normal 
neuronal migration in the cerebellum and cerebral cor-
tex (Anton, Marchionni, Lee, & Rakic, 1997). Further, 
the important role of TRPV1 receptors in the forma-
tion of healthy neuro-glial communication is impres-
sive (Ramírez-Barrantes et al., 2016). TRPV1 promoted 
astrocyte migration in the inflammatory condition and 
its deficits reduced GFAP (as a specific marker for as-
trocytes) expression in the cortical and subcortical areas 
(Wang et al., 2019; Yang et al., 2019). 

Multiple studies have insisted on the importance 
of astrocytes rather than neurons in the pathogenesis 
of several neurological disorders, including epilepsy 
(Kim, Park, & Choi, 2019; Sidoryk-Wegrzynowicz, et 
al., 2011). In addition, we showed the lack of GFAP 
expression in the different cortical layers in the WAG/
Rij rats (Karimzadeh et al., 2017). 

It seems that disturbances in the cortical expression of 
NRG1/ERbB4 as well as TRPV1, especially in the early 
stage of development might be involved in the cortical 
astrocyte attenuation, which has a critical role in absence 
seizure pathogenesis.

In addition, NRG1 is required for the balance of ex-
citatory and inhibitory neurotransmission in the cortex 
(Agarwal et al., 2014). NRG1 regulated cellular proper-
ties associated with GABAergic interneurons and in-
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creased excitatory synaptic transmission of GABAer-
gic interneurons in the hippocampal neurons (Longart, 
et al., 2004; Yau, Wang, Lai, & Liu, 2003). NRG1 was 
also capable to induce the GABAa receptors in the 
cerebellar granular cell culture (Ozaki, Kishigami, & 
Yano, 1998; Rieff et al., 1999).

The erbB4 receptor is the main signaling partner of 
the NRG1 signaling pathway (Birchmeier, 2009). The 
over-expression of the ErbB4 receptor has been shown 
in the cortical inhibitory interneurons of humans and pri-
mates (Neddens & Buonanno, 2011; Rieff et al., 1999; 
Vullhorst et al., 2009). Cortical mRNAs of ErbB4 are 

expressed by dispersed GABAergic neurons (Lai & 
Lemke, 1991; Woo et al., 2007). 

Further, it has been reported TRPV1 modulated GA-
BAergic synapses (Chávez, et al., 2014). It has been 
suggested that TRPV1 could regulate excitatory affer-
ents to GABAergic interneurons (Ferrini, et al., 2007; 
Liao, et al., 2011).

It seems that cortical decrease of NRG1/ ErbB4 sig-
naling and TRPV1 activity in the epileptic WAG/Rij 
rats led to a deficit in the inhibitory inputs of pyrami-
dal cells and a decrease in GABA release from cortical 
interneurons. Deficits in cortical inhibitory transmis-

Figure 1. ECoG recording of experiments. ECoG was monitored for 6 h to identify epileptic rats 

Six-month-old WAG/Rij rats indicated spike-wave discharges (SWDs) in the ECoG and were considered the epileptic rats.

Figure 2. Immunoblotting analyses of NRG1/ErbB4 and TRPV1 of the somatosensory cortex

A: The representative immunoblot of NRG1/ ErbB4 and TRPV1 of two- and six-month-old WAG/Rij and Wistar rats is shown. B: The 
bar graphs indicate the quantitative results (Mean±SEM) of NRG1/ ErbB4 and TRPV1 protein levels in the cortex. The protein levels 
of NRG1/ ErbB4 and TRPV1 in two- and six-month-old WAG/Rij rats were reduced compared to Wistar rats. *, **, and *** indicate 
P<0.05, P<0.01, and P<0.001, respectively.
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sion and synapses probably trigger SWDs firings in 
the epileptic WAG/Rij rats.

Hippocampal expression

We showed high expression of hippocampal NRG1 
/ ErBb4 and TRPV1 at the early stage of Wistar rats’ 
lifespan (two months of age) but not in WAG/Rij rats. 
The role of NRG1 in synaptic differentiation, such as 
dendritic spine size, modulation of long-term potentia-
tion (LTP), and enhancement of entorhinal-hippocampal 
synaptic transmission has been reported (Kwon, et al., 
2005; Li, et al., 2007; Li et al., 2014; Roysommuti, Car-
roll, & Wyss, 2003; Shamir et al., 2012). 

NRG1 improved cognitive impairment induced by iso-
flurane in aged mice (Li et al., 2014). NRG1/ ErbB4 ac-
tivation compensated for the impairment of LTP induced 
by Aβ1-42 in the hippocampal slices (Min et al., 2011).
In addition, TRPV1 has a crucial role in the regulation 
of hippocampal synaptic transmission (Hurtado-Zavala 
et al., 2017). TRPV1 receptors were highly expressed 
in the molecular layer of the hippocampus. These cells 
could process inputs/outputs in the hippocampal layers 
(Anstötz, Lee, & Maccaferri, 2018).

Behavior, emotional, and cognitive deficits have 
been indicated in children who suffer from absence 
epilepsy and epileptic WAG/Rij rats (Caplan et al., 
2008; Jafarian et al., 2015; Masur et al., 2013). It 
seems that deficits of NRG1/ERbB4 as well as TRPV1 

expression in the early stage of the life span of WAG/
Rij rats disrupted the development of the hippocampus 
and might impair memory and cognition in the adult 
WAG/Rij rats. In addition, hippocampal TRPV1 ex-
pression increased in adult (epileptic) WAG/Rij rats 
but not in adult Wistar rats. TRPV1 receptor increased 
seizure susceptibility in the chemical induction of sei-
zures (Kong et al., 2014). Hippocampal expression of 
TRPV1 increased in the patients and animal models 
with mesial temporal lobe epilepsy (Gonzalez-Reyes, 
Ladas, Chiang, & Durand, 2013; Sun et al., 2013).

Hippocampal glutamate release is enhanced follow-
ing endogenous cannabinoid administration (Gonzalez-
Reyes et al., 2013). Activation of TRPV1 increased 
toxicity and cell death in dorsal root ganglions and neo-
cortex (Olah et al., 2001; Shirakawa et al., 2008). Fur-
thermore, we showed that ERbB4 expression increased 
in adult epileptic WAG/Rij rats. 

Down-regulation of ErbB4 in the hippocampal in-
terneurons improved learning and memory in the 
animals with genetically manipulated ErbB4 recep-
tors (Tian et al., 2017). Enhancement of LTP in the 
genetically hippocampal ErbB4 deficient has been 
indicated (Pitcher et al., 2008). In addition, ErbB4 is se-
lectively expressed in the hippocampal interneurons and 
has a regulatory effect on glutamatergic synapses in the 
inhibitory interneurons (Vullhorst et al., 2009). These 
observations showed the reciprocal role of the ERbB4 
receptor in neuronal excitability as well as memory en-

Figure 3. Immunoblotting analyses of NRG1/ErbB4 and TRPV1 of the hippocampus

A: The representative immunoblot of NRG1/ ErbB4 and TRPV1 of two- and six-month-old WAG/Rij and Wistar rats is shown. B: 
The bar graphs indicate the quantitative results (Mean±SEM) of NRG1/ ErbB4 and TRPV1 protein levels in the hippocampus. The 
protein levels of NRG1 in six-month-old WAG/Rij rats decreased but the protein levels of ERbB4 and TRPV1 increased compared 
to age-matched Wistar rats. *, **, and *** indicate P<0.05, P<0.01, and P<0.001, respectively.
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coding in the hippocampus. It seems that a decrease in 
ERbB4 expression is required for adult hippocampal 
function. High levels of hippocampal ERbB4, as well 
as TRPV1 receptor in the adult WAG/Rij rats, probably 
developed absence seizures in the WAG/Rij rats. 

Signaling correlation between NRG1/ERbB4 and 
TRPV1

We showed a significant correlation between NRG1 
or ERbB4 and TRPV1 expression levels in the neo-
cortex and hippocampus. The expression of NRG1 or 
ERbB4 and TRPV1 follows a similar pattern during 
the life span of Wistar and WAG/Rij rats. An increase 
in NRG1 or ERbB4 expression is accompanied by high 
levels of TRPV1 in Wistar rats. A deficit in the NRG1 
or ERbB4 expression is accompanied by a diminution 
of TRPV1 in WAG/Rij rats.

It is well understood that the interaction between 
NRG1 and ERbB receptors can facilitate cell-cell 

communication during the development of the brain 
to form healthy functional synapses (Bao, et al., 2003; 
Leimeroth et al., 2002).

Activation of the tyrosine kinase domain of the ERbB4 
receptor leads to phosphorylation of the intracellu-
lar domain and results in the main signaling cascades 
downstream of NRG1/ERbB4 pathway. The mitogen-
activated protein kinase (MAPK) and phosphoinositide 
3-kinase (PI3K) pathways are the main downstream 
cascades of this signaling (Liu, et al., 2007). 

NRG1 modulated the functional TRPV1 in the senso-
ry neurons (Bao et al., 2004). Back signaling of ERbB4 
enhanced TRPV1 receptors through the activation of 
phosphatidylinositol-3-kinase (Bao et al., 2004; Ca-
netta et al., 2011).

It has been suggested that the activation of PI3K by 
NRG1 back-signaling up-regulated TRPV1 receptors. 
The intracellular domain of NRG1 is required to acti-

Figure 4. Correlation between protein expression of NRG1/ERbB4 and TRPV1

A and B: The scatter plots indicate a correlation between the expression of NRG1/ERbB4 and TRPV1 in the somatosensory cortex. 
A strong correlation between protein levels of NRG1 and TRPV1 as well as ERbB4 and TRPV1 was indicated in the cortex. C and 
D: The scatter plots indicate the correlation between the expression of NRG1/ERbB4 and TRPV1 in the hippocampus. There was 
a significant correlation between protein levels of ERbB4 and TRPV1.
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vate PI3K and affect the TRPV1 regulation (Canetta 
et al., 2011). Furthermore, activation of MAPK in the 
injured neurons of dorsal root ganglions hyper synthe-
sized TRPV1 receptors (Chen et al., 2016). In addition, 
the role of TRPV1 receptors in epileptogenesis has 
been reported. Cortical as well as hippocampal TRPV1 
receptors are highly expressed in epileptic people suf-
fering from temporal lobe epilepsy (Sun et al., 2013). 
Functional discrepancies of TRPV1 receptors altered 
the seizure susceptibility in the animal model of ton-
ic-clonic epilepsy (Jia et al., 2015). In contrast, epi-
leptogenesis was postponed by the administration of 
TRPV1 agonist in the kainic acid model of epilepsy 
(Lee et al., 2011). According to our findings, alteration 
in NRG1/ ERbB4 signaling pathway disturbed TRPV1 
expression and possibly triggered SWDs appearance 
during the development of WAG/Rij rats. 

5. Conclusion 

It seems that the disturbance in the expression of 
Neuregulin 1 protein has a notable effect on the down-
regulation of ERBB4 and TRPV1 receptors. It might 
also be concluded that the reduction of the mentioned 
receptors would play an important role in the patho-
physiology of absence epilepsy.
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