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Introduction: Parkinson disease is a neurodegenerative disease that disrupts functional 
brain networks. Many neurodegenerative disorders are associated with changes in brain 
communication patterns. Resting-state functional connectivity studies can distinguish the 
topological structure of Parkinson patients from healthy individuals by analyzing patterns 
between different regions of the brain. Accordingly, the present study aimed to determine the 
brain topological features and functional connectivity in patients with Parkinson disease, using 
a Bayesian approach. 

Methods: The data of this study were downloaded from the open neuro site. These data include 
resting-state functional magnetic resonance imaging (rs-fMRI) of 11 healthy individuals 
and 11 Parkinson patients with mean ages of 64.36 and 63.73, respectively. An advanced 
nonparametric Bayesian model was used to evaluate topological characteristics, including 
clustering of brain regions and correlation coefficient of the clusters. The significance of 
functional relationships based on each edge between the two groups was examined through 
false discovery rate (FDR) and network-based statistics (NBS) methods. 

Results: Brain connectivity results showed a major difference in terms of the number of 
regions in each cluster and the correlation coefficient between the patient and healthy groups. 
The largest clusters in the patient and control groups were 26 and 53 regions, respectively, with 
clustering correlation values of 0.36 and 0.26. Although there are 15 common areas across the 
two clusters, the intensity of the functional relationship between these areas was different in the 
two groups. Moreover, using NBS and FDR methods, no significant difference was observed 
for each edge between the patient and healthy groups (P>0.05). 

Conclusion: The results of this study show a different topological configuration of the 
brain network between the patient and healthy groups, indicating changes in the functional 
relationship between a set of areas of the brain. 
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1. Introduction 

arkinson is a chronic neurological system 
disorder that affects the dopaminergic, nor-
adrenergic, cholinergic, and serotoninergic 
systems. It is the most common age-related 
neurological disease next to Alzheimer, 
with a prevalence of about 0.5% to 1% in 
the age range of 69-65 and 1% to 3% in 

people over 80 (Ahmadou et al., 2019; Nussbaum & El-
lis, 2003). The risk factors for Parkinson disease (PD) are 
generally unknown, and old age, environmental factors, 
and genetic factors increase the risk of developing the 
disease (Kouli et al., 2018; Reeve et al., 2014). The clini-
cal signs of Parkinson are characterized by motor and 
non-motor symptoms. Motor symptoms include rigid-
ity, bradykinesia, akinesia, abnormal posture, and rest-
ing tremors. Non-motor symptoms such as autonomic, 
sleep, olfactory, psychiatric (depression, psychosis, hal-
lucination, anxiety, and impulse control), and cognitive 
disorders are essential factors in patients’ disabilities that 
are referred to as the mechanisms of the initial stages of 
Parkinson diagnosis. Since cognitive and psychiatric dis-
orders can reduce the daily function and quality of life of 
patients with PD, non-motor symptoms are of high clini-
cal importance (Błaszczyk, 2016; Martinez‐Martin et al., 
2011; Pellicano et al., 2007; Han et al., 2018; Painous & 
Marti, 2020). Among the psychiatric disorders, depres-
sion and anxiety have been particularly determined as 
risk factors for PD. The literature has also displayed that 
the underlying effects of depression and anxiety can ap-
pear many years before the incidence of motor symp-

toms (Behari et al., 2001; Bower et al., 2010; Lin et al., 
2014; Shiba et al., 2000).

Resting-state functional connectivity (rsFC) studies are 
used to examine the pathophysiology of neurodegenera-
tive disorders, including Parkinson’s. These studies use 
non-invasive functional magnetic resonance imaging 
(fMRI) to distinguish distinct patterns of brain connec-
tivity between healthy and diseased individuals. Since 
many neurological disorders are associated with altered 
topological patterns of brain connectivity, rsFC studies 
can detect connections between different brain areas 
by recognizing this topological structure. Topology is 
defined as the study of features that describe how brain 
areas are arranged based on their interconnections. The 
use of these studies in Parkinson patients is important 
as it provides helpful information about functional and 
morphological changes, including motor and non-motor 
functions (Chen et al., 2020; Markošová et al., 2008; 
Stoessl, 2009; Tuovinen et al., 2018). In this regard, 
several studies have indicated alterations in brain con-
nectivity in PD patients with cognitive disorders. For 
example, Gorges et al. assessed the brain connectivity 
networks using seed-based analyses. Compared with the 
control subjects, PD patients decreased functional com-
munication within some regions of the default mode 
network (DMN). Baggio et al. reported decreased FC 
in PD patients between the dorsal attention network and 
right fronto insular areas using independent component 
analysis (Amboni et al., 2015; Baggio et al., 2015; Chen 
et al., 2017; Gorges et al., 2015).

Highlights 

• Using network-based statistics (NBS) and false discovery rate (FDR) methods, no significant difference was 
observed for each edge in the brain network between the patients with Parkinson’s disease and healthy people.

• There are different topological configuration of the brain network between patients with Parkinson’s disease and 
healthy people.

• Although there are common brain regions between patients Parkinson’s disease and healthy people in each cluster, 
the intensity of functional connectivity between these regions differed in the two groups.

Plain Language Summary 

This study examined changes in brain communication patterns in Parkinson's disease patients compared to healthy in-
dividuals. It used advanced statistical methods to analyze brain imaging data. The data include resting-state functional 
magnetic resonance imaging (rs-fMRI) of 11 healthy individuals and 11 Parkinson patients with mean ages of 64.36 
and 63.73, respectively. This study shows that people with Parkinson's disease have a different characteristic of brain 
connectivity compared to healthy individuals. 

P

Pourmotahari., et al. (2024). Brain Connectivity Network of Parkinson's Patients. BCN, 15(1), 61-72.

http://bcn.iums.ac.ir/


Basic and Clinical

63

January & February 2024, Vol 15, No. 1

Functional connectivity (FC) is determined based on 
the correlation patterns, using statistical methods such as 
Pearson correlation coefficient, mutual information, and 
partial correlation coefficient (Kim & Pan, 2015; Smith 
et al., 2011; Xiong et al., 1999). Moreover, there are other 
statistical methods for inferring functional relationships, 
including clustering models, multivariate models, graph-
ical lasso models, and Bayesian models (Baumgartner et 
al., 2000; Cribben et al., 2012; Hyvärinen & Oja, 2000; 
Patel et al., 2006a; Patel et al., 2006b; Varoquaux et al., 
2010).

Functional communication data at rest faces significant 
challenges: 1) The existence of correlations between the 
connectivity edges that are related to the features of the 
topological network and 2) The high number of param-
eters in the covariance matrix, specifically if the num-
ber of regions of interest (ROIs) is high. Although many 
functional studies have been performed on PD data, the 
analysis of functional correlation data without consider-
ing these characteristics does not seem appropriate. Ac-
cordingly, in this study, considering the characteristics of 
functional relationship data, the advanced nonparametric 
Bayesian model introduced by Chen et al. was used to 
evaluate the topological network structure in Parkinson 
patients (Chen et al., 2018).

2. Materials and Methods

Data acquisition

The resting-state fMRI data were obtained from the 
OpenfMRI dataset with the document ID ds000245. 
The scans acquisition protocol was obtained as follows: 
Repetition time  (TR)=2500 ms, echo time (TE)=30 ms, 
39 transverse slices with inter-slice interval=0.5 mm and 
thickness=3 mm, FOV=192 mm, matrix size=64×64, 
flip angle=80°. Resting-state fMRI scans were obtained 
for 8 minutes with eyes closed. T1-weighted images had 
a total time of 349 seconds.

Data processing

Pre-processing of resting-state fMRI scans was per-
formed using FSL software, version 6.0.1. The first five 
volumes of each time course were removed due to the 
correction of the initial image heterogeneity and the ad-
aptation of individuals to the surrounding conditions; 
hence, a total of 193 volumes per person was consid-
ered. Images were normalized with a voxel resolution of 
2×2×2 mm3, and for smoothing, a gaussian filter with 6 
mm FWHM was used. Then, the pre-processed images 
were divided into 90 desired areas, according to atlas 

AAl, using the WFU pickatlas toolbox in MATLAB 
R2019b software (Tzourio-Mazoyer et al., 2002). Fisher 
Z-transformed correlations were considered as the mea-
surement index of the edges. 

Statistical analysis 

Statistical inference of brain FC was performed in two 
stages:

Step 1: A nonparametric Bayesian model was used to 
evaluate the topological structure of the brain network. 
To assess the network properties, including determining 
the number of clusters of brain regions and the correla-
tion coefficient of clusters, first, the residual matrix Ro

N×E  
was calculated as Equation 1:

1.

 

𝑅𝑅���� � 𝑌𝑌��� � 𝑋𝑋��𝛽𝛽����  

𝑌𝑌��� is the E-th sample Fisher’s Z transformed correlation for the N-th of the subject �1, . . ,𝑁𝑁). 

Each subject has V = 90 areas and � � ���� � � 4005 edges. 𝑋𝑋�� is the design matrix of                  

p-covariates and 𝛽𝛽���� is the parameters estimation linking the covariates to the response. 

Suppose 𝑌𝑌����~��𝑁𝑁�𝑋𝑋��𝛽𝛽��� ,𝛬𝛬���� ،𝛬𝛬��� represent the correlation matrix between regions 

of the brain. This matrix is a function of network structure and correlation parameters                             

� � �𝜌𝜌�,𝜌𝜌�, … ,𝜌𝜌��. 
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𝜌𝜌� ,            𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜                                        

𝛬𝛬��,�����,��  is an entry of the matrix  𝛬𝛬��� which is based on the correlation between the edges 

𝑜𝑜�,� (correlation between regions 𝑖𝑖 and 𝑗𝑗  ،𝑖𝑖 � 𝑗𝑗 )  and 𝑜𝑜��,��. 𝜔𝜔� � 𝐶𝐶� is considered as an indicator 

variable, to determine whether region 𝑖𝑖 belongs to the cluster 𝑘𝑘 or not. If a pair of edges are in 
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Finally, the posterior distributions 𝜌𝜌 and 𝜔𝜔 are obtained using the Markov Monte Carlo chain 

(MCMC) with 5000 iterations. 

Step 2: To compare the pairwise association of 90 regions, the number of univariate tests is as 

high as ���� � � 4005. Considering multiple comparisons, the network-based statistics (NBS) 

and false discovery rate (FDR) were performed to assess any significant pairwise connections 

between the patient and healthy groups. The NBS method uses a permutation test to examine 

YN×E is the E-th sample Fisher’s Z transformed correla-
tion for the N-th of the subject (1, ..., N). Each subject 
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Finally, the posterior distributions ρ and ω are obtained 
using the markov monte carlo chain (MCMC) with 5000 
iterations.
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were performed to assess any significant pairwise con-
nections between the patient and healthy groups. The 
NBS method uses a permutation test to examine the 
cluster difference of edges with a predefined thresh-
old across the two groups. The FDR method examines 
the significant individual level of each edge in the two 
groups. P<0.05 was considered as a significant level. 
The analysis was performed through the NBS Connec-
tome package in MATLAB software, version R2021b.

3. Results

Resting-state fMRI data included 11 Parkinson pa-
tients (six male) and 11 healthy individuals (six male), 
matched on sex ratio. The mean age was 64.36 years for 
the PD group and 63.73 years for the healthy group, in 
which, in terms of age distribution (P=0.83), there was 
no significant difference between the two groups.

(a)

(b)

Figure 1. Mean brain connectivity matrix of individuals

a) Control group, b) Parkinson patients group
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Estimation of the number of clusters and their corre-
lation coefficient was performed using a nonparametric 
Bayesian model to consider the specific characteristics 
of functional relationship data. According to what was 
previously explained in the theory of this model: 1) The 
regions within each cluster have a considerable func-
tional relationship with each other and 2) The correla-
tion coefficient of each cluster expresses the degree of 
pairwise correlation of regions within the cluster. Figure 

1 shows the mean Fisher Z-transformed correlations of 
brain regions in both diseased and healthy groups. 

The areas in the diagram are arranged according to their 
placement in the clusters. The more correlated edges had 
a higher mean value in each cluster, indicating the cor-
rect detection of clustering by the nonparametric Bayes-
ian model. Figure 2 shows a clustering of areas of the 

Figure 2. Clustering of brain regions in each group 

a) Control group, b) Parkinson patients group
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brain. The brain network regions of the two groups were 
divided into six clusters and identified by the same color.

Table 1 shows the names of the areas in each cluster 
and the estimation of the correlation between the clusters 
by groups (further details on the full names of the re-
gions are available in the Appendix). The largest cluster 
in the patient and the healthy group has 26 and 53 areas, 
respectively. Common areas of these clusters include 
right superior frontal gyrus (orbital part), left inferior 
frontal gyrus (orbital part), left olfactory cortex, right 
olfactory cortex, left middle frontal gyrus (orbital part), 
right middle frontal gyrus (orbital part), left gyrus rectus, 
right gyrus rectus, left anterior cingulate and paracingu-
late gyri, right amygdala, left pallidum, right pallidum, 
left temporal pole (superior), left temporal pole (middle), 
and right inferior temporal gyrus.

Although the clusters have common areas, the correla-
tion between these areas is different in the two groups of 
sick and healthy. The correlation of this cluster was 0.36 
in the patient group and 0.26 in the control group, which 
indicates that the relationship between the regions of this 
cluster in the patient group is stronger than that of the 
control group. The correlation coefficient results in clus-

ters five and six also show stronger regional connectivity 
in the patient group. The correlation coefficients of the 
second, third, and fourth clusters in the patient group are 
0.35, 0.30, and 0.47, respectively, which shows weaker 
regional connectivity of these clusters than their respec-
tive clusters in the control group.

To evaluate the cluster performance of the edges, the 
NBS method was used with the following settings: t=3.1, 
permutations=5000, and component size=extent. The re-
sults of this method did not show a statistically signifi-
cant difference between the edges in the two groups of 
patients and healthy, which was similar to the results of 
the FDR method, with the P>0.05.

4. Discussion

This study used a nonparametric Bayesian method to 
evaluate brain connectivity between Parkinson patients 
and healthy groups. Different areas were assigned to 
clusters based on the similarity between these areas and 
variation from conventional clustering methods. Previ-
ous models often consider the structure of the depen-
dence between the edges based on the spatial closeness, 

Table 1. Brain regions in each cluster by group

Parkinson Disease SubjectsControl Subjects
Cluster

CorrelationLabelCorrelationLabel

0.36

ORBsup.L, ORBsup.R, ORBmid.L, 
ORBmid.R, ORBinf.L, ORBinf.R, 

OLF.L, OLF.R, SFGmed.L, 
SFGmed.R, ORBsupmed.L, 

ORBsupmed.R, REC.L, REC.R, 
ACG.L, PHG.L, PHG.R, PAL.L, PAL.R, 

TPOsup.L, TPOsup.R, TPOmid.L, 
TPOmid.R, ITG.L, ITG.R

0.26

PreCG.L, ORBsup.R, IFGoperc.L, IFGoperc.R, 
ORBinf.L, ROL.L, ROL.R, OLF.L, OLF.R, ORBsupmed.L, 

ORBsupmed.R, REC.L, REC.R, INS.L, INS.R, ACG.L, 
DCG.L, DCG.R, HIP.R, Amygdala_R, LING.R, SOG.L, 

SOG.R, MOG.L, MOG.R, IOG.R, FFG.L, FFG.R,  PoCG.L, 
PoCG.R, SPG.L, SPG.R, IPL.L, IPL.R, SMG.L, SMG.R, 
ANG.R, PCL.L, CAU.L, CAU.R, PUT.L, PUT.R, PAL.L, 

PAL.R, HES.L, HES.R, STG.L, STG.R, TPOsup.L, MTG.L, 
MTG.R, TPOmid.L, ITG.R

1

0.35

IFGoperc.R, ROL.L, ROL.R, INS.L, 
INS.R, DCG.L, DCG.R, PCG.L, 

PCG.R, HIP.L, HIP.R,  LING.L, IOG.L, 
FFG.L, FFG.R, , PUT.L, PUT.R,  

HES.L, HES.R, STG.L, STG.R, MTG.L, 
MTG.R

0.45
PreCG.R, SFGdor.L, SFGdor.R, MFG.L, MFG.R, 

IFGtriang.L, SMA.L, SMA.R, SFGmed.L, SFGmed.R, 
ANG.L, PCL.R

2

0.30

IFGoperc.L, CAL.R, CUN.L, CUN.R, 
LING.R, SOG.L, SOG.R, MOG.L, 

MOG.R, SPG.L, IPL.L, IPL.R, SMG.L, 
SMG.R, ANG.L, ANG.R, PCUN.L, 

PCUN.R, PCL.L, THA.L

0.40ORBsup.L, ORBmid.L, ORBmid.R, ORBinf.R, PHG.L
PHG.R, TPOsup.R, TPOmid.R, ITG.L3

0.47
PreCG.L, PreCG.R, SFGdor.L, 

SFGdor.R, MFG.L, MFG.R, SMA.L, 
SMA.R, PoCG.L, PoCG.R

0.62CAL.L, CAL.R, CUN.L, CUN.R, LING.L, PCUN.L, PCUN.R4

0.43IFGtriang.R, ACG.R, CAU.L, CAU.R, 
THA.R0.31PCG.L, PCG.R, HIP.L, IOG.L, THA.L, THA.R5

0.30IFGtriang.L, CAL.L, SPG.R, PCL.R0.13IFGtriang.R, ACG.R, AMYG.L6

Label: Abbreviations of the names of the desired areas ROIs. 
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which depends on the characteristics of the topological 
network. Still, biologically, the correct structures of the 
topological network are not limited to being spatially ad-
jacent, so it does not seem appropriate to use them. The 
nonparametric Bayesian model does the clustering of 
the brain regions based on the correlation between edges 
based on topological features. 

According to the nonparametric Bayesian model, brain 
regions in both groups were divided into six clusters. 
Although there were common regions between the two 
groups of patients and healthy in each cluster, the inten-
sity of the functional relationship between these regions 
differed in the two groups. In addition, the connectivity 
of some clusters in the control group was higher, while 
several clusters showed stronger FC in the patient group. 
In this regard, Chen et al. used a new statistical method 
to study the network topology of brain connectivity in 
Parkinson patients. In this study, the control group in the 
occipital and inferior temporal lobes had more substan-
tial connections with the superior temporal lobes and in-
sular than the patient group. However, the control group 
showed a weaker functional relationship than the patient 
group in several areas, including the insular right or su-
perior frontal gyrus orbital (Chen et al., 2020).

Another study on brain connectivity in people with 
PD showed a decrease in functional communication be-
tween the amygdala and the inferior parietal lobule, lin-
gual gyrus, and fusiform gyrus associated with the sever-
ity of hyposmia and cognitive performance. In this study, 
Parkinson patients in canonical networks such as high 
visual, primarily visual, executive control, visuospatial, 
salience, and DMN had a more functional relationship 
with areas outside these canonical networks than the 
control group (Yoneyama et al., 2018). Also, a study on 
whole-brain analysis of PDs with visual hallucinations 
showed that the disease-related effects influence the rest-
ing-state FC of posterior and paracentral brain regions 
(Hepp et al., 2017).

In the present study, decreased FC was identified in the 
medial superior frontal gyrus and the precuneus gyrus 
(both as critical parts of DMN) in some brain regions 
in PD patients. These alterations can affect cognitive 
processes such as visuospatial attention and episodic 
memory retrieval. The findings seem to be consistent 
with other research, which found different aspects of 
reduction connectivity in the DMN across PD patients 
(Shin et al., 2016).

In general, the results of the present study show funda-
mental differences between the two groups of patients 
and healthy in terms of areas in each cluster and their 
correlation coefficients. These results could provide a 
better understanding of the topological mechanism of 
PD. The findings of this study are in line with the results 
of several studies that show changes in the topological 
characteristics of Parkinson patients (Engels et al., 2018; 
Huang et al., 2019; Prajapati & Emerson, 2020; Shine 
et al., 2019). Sang et al. examined the brain topology 
network of Parkinson patients receiving anti-Parkinson 
therapy. This study reported changes in the topologi-
cal organization of these patients and showed that anti-
Parkinson therapy could affect the effectiveness of the 
brain network, ineffectively relieving Parkinson clinical 
symptoms (Sang et al., 2015).

A total of 4005 univariate tests are needed to compare 
the pairwise connectivity of 90 brain regions. In evalu-
ating the significance of the connections between these 
areas, multiple comparison methods of FDR and NBS 
were used, but no significant relationship was found be-
tween the two groups. However, as previously report-
ed, there were different topological features in the two 
groups. In this regard, Heidari et al. also examined the 
functional communication characteristics of Parkinson 
patients using variance components linear modeling. 
In this study, a decrease in the functional association of 
10 pairs of ROIs was observed in Parkinson patients. 
However, considering the multiple comparison tests, the 
functional relationship of each couple of regions was not 
significantly different between the two groups (Heidari 
et al., 2019).

5. Conclusion 

Given that rsFC studies identify communication pat-
terns associated with phenotypes of neurological diseas-
es, appropriate statistical tests to estimate the correlation 
patterns of FC data are of utmost importance. This study 
investigated the brain connectivity of Parkinson patients 
using an advanced nonparametric Bayesian model. The 
results of this model indicate that the characteristics of 
the brain functional network topology in Parkinson pa-
tients are different from the control group.

Limitations

A limitation of this study is the relatively small number 
of subjects in the patient and control groups. Although the 
Bayesian nonparametric model addressed shortcomings 
in FC data, the power of analysis could be improved in a 
larger sample size. Therefore, considering future studies 
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with an increased sample size will help better understand 
the underlying brain connectivity network in PD. The 
other factor is hardware limitations which required high 
computational time to analyze multi-subject fMRI data.
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Appendix

Table 1. Target Anatomical Areas (ROIs) according to the AAL Atlas

Index Regions Abbreviations Index Regions Abbreviations

1 Precentral_L PreCG.L 46 Cuneus_R CUN.R

2 Precentral_R PreCG.R 47 Lingual_L LING.L

3 Frontal_Sup_L SFGdor.L 48 Lingual_R LING.R

4 Frontal_Sup_R SFGdor.R 49 Occipital_Sup_L SOG.L

5 Frontal_Sup_Orb_L ORBsup.L 50 Occipital_Sup_R SOG.R

6 Frontal_Sup_Orb_R ORBsup.R 51 Occipital_Mid_L MOG.L

7 Frontal_Mid_L MFG.L 52 Occipital_Mid_R MOG.R

8 Frontal_Mid_R MFG.R 53 Occipital_Inf_L IOG.L

9 Frontal_Mid_Orb_L ORBmid.L 54 Occipital_Inf_R IOG.R

10 Frontal_Mid_Orb_R ORBmid.R 55 Fusiform_L FFG.L

11 Frontal_Inf_Oper_L IFGoperc.L 56 Fusiform_R FFG.R

12 Frontal_Inf_Oper_R IFGoperc.R 57 Postcentral_L PoCG.L

13 Frontal_Inf_Tri_L IFGtriang.L 58 Postcentral_R PoCG.R

14 Frontal_Inf_Tri_R IFGtriang.R 59 Parietal_Sup_L SPG.L

15 Frontal_Inf_Orb_L ORBinf.L 60 Parietal_Sup_R SPG.R

16 Frontal_Inf_Orb_R ORBinf.R 61 Parietal_Inf_L IPL.L

17 Rolandic_Oper_L ROL.L 62 Parietal_Inf_R IPL.R

18 Rolandic_Oper_R ROL.R 63 SupraMarginal_L SMG.L

19 Supp_Motor_Area_L SMA.L 64 SupraMarginal_R SMG.R

20 Supp_Motor_Area_R SMA.R 65 Angular_L ANG.L

21 Olfactory_L OLF.L 66 Angular_R ANG.R

22 Olfactory_R OLF.R 67 Precuneus_L PCUN.L

23 Frontal_Sup_Medial_L SFGmed.L 68 Precuneus_R PCUN.R

24 Frontal_Sup_Medial_R SFGmed.R 69 Paracentral_Lobule_L PCL.L

25 Frontal_Mid_Orb_L ORBsupmed.L 70 Paracentral_Lobule_R PCL.R

26 Frontal_Mid_Orb_R ORBsupmed.R 71 Caudate_L CAU.L

27 Rectus_L REC.L 72 Caudate_R CAU.R

28 Rectus_R REC.R 73 Putamen_L PUT.L

29 Insula_L INS.L 74 Putamen_R PUT.R

30 Insula_R INS.R 75 Pallidum_L PAL.L
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Index Regions Abbreviations Index Regions Abbreviations

31 Cingulum_Ant_L ACG.L 76 Pallidum_R PAL.R

32 Cingulum_Ant_R ACG.R 77 Thalamus_L THA.L

33 Cingulum_Mid_L DCG.L 78 Thalamus_R THA.R

34 Cingulum_Mid_R DCG.R 79 Heschl_L HES.L

35 Cingulum_Post_L PCG.L 80 Heschl_R HES.R

36 Cingulum_Post_R PCG.R 81 Temporal_Sup_L STG.L

37 Hippocampus_L HIP.L 82 Temporal_Sup_R STG.R

38 Hippocampus_R HIP.R 83 Temporal_Pole_Sup_L TPOsup.L

39 ParaHippocampal_L PHG.L 84 Temporal_Pole_Sup_R TPOsup.R

40 ParaHippocampal_R PHG.R 85 Temporal_Mid_L MTG.L

41 Amygdala_L AMYG.L 86 Temporal_Mid_R MTG.R

42 Amygdala_R AMYG.R 87 Temporal_Pole_Mid_L TPOmid.L

43 Calcarine_L CAL.L 88 Temporal_Pole_Mid_R TPOmid.R

44 Calcarine_R CAL.R 89 Temporal_Inf_L ITG.L

45 Cuneus_L CUN.L 90 Temporal_Inf_R ITG.R
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