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Introduction: Nowadays, deep learning and convolutional neural networks (CNNs) have 
become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool, 
which makes the processing procedure integrated, but in some situations, this processing tool 
requires to be fused with machine learning methods to be more accurate.

Methods: In this paper, a hybrid approach based on deep features extracted from wavelet 
CNNs (WCNNs) weighted layers and multiclass support vector machine (MSVM) was 
proposed to improve the recognition of emotional states from electroencephalogram (EEG) 
signals. First, EEG signals were preprocessed and converted to Time-Frequency (T-F) color 
representation or scalogram using the continuous wavelet transform (CWT) method. Then, 
scalograms were fed into four popular pre-trained CNNs, AlexNet, ResNet-18, VGG-19, and 
Inception-v3 to fine-tune them. Then, the best feature layer from each one was used as input to 
the MSVM method to classify four quarters of the valence-arousal model. Finally, the subject-
independent leave-one-subject-out criterion was used to evaluate the proposed method on 
DEAP and MAHNOB-HCI databases.

Results: Results showed that extracting deep features from the earlier convolutional layer of 
ResNet-18 (Res2a) and classifying using the MSVM increased the average accuracy, precision, 
and recall by about 20% and 12% for MAHNOB-HCI and DEAP databases, respectively. Also, 
combining scalograms from four regions of pre-frontal, frontal, parietal, and parietal-occipital 
and two regions of frontal and parietal achieved the higher average accuracy of 77.47% and 
87.45% for MAHNOB-HCI and DEAP databases, respectively.

Conclusion: Combining CNN and MSVM increased the recognition of emotion from EEG 
signals and the results were comparable to state-of-the art studies.
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1. Introduction 

motions are brain states evoked in response 
to external and internal stimulations. 
Watching pictures and movies, listening 
to music, and smelling odors are external 
stimuli (Alarcao & Fonseca, 2017). Among 
these stimuli, watching movie clips is an ef-

ficient method to elicit human emotions. Movie clips can 
affect people like situations that occur in real life, as they 
have the two dimensions of sound and moving images 
simultaneously and benefit from these two dimensions 
to evoke people’s emotions. Changes in the body, facial 
expressions, and physiological changes are examples of 
actions, which occur following emotional states. People 
are faced with different emotions in daily life, such as 
happiness, sadness, surprise, excitement, etc. These 
emotions can be represented with the two-dimension-
al model named the valence-arousal model (Russell, 
1980). Valence means pleasantness from the emotion 
and ranges from negative to positive and arousal means 
the excitation of emotion that ranges from low to high. 
This model has four quarters, the first quarter includes 
emotions, such as excitement and happiness with high 
valence and low arousal (quarter 4, Q4) values. The sec-
ond quarter includes emotions, like fear or anger with 
high valence and high arousal (quarter 1, Q1) values. 

Emotions, such as sadness, boredom, and depression are 
in the third quarter, having low valence and low arousal 
(quarter 3, Q3) values. Contentment and calmness are 
the fourth emotions, which have low valence and high 
arousal (quarter 2, Q2) values (García-Martínez et al., 
2019). For emotion recognition, electroencephalogram 
(EEG) is well accepted due to its high correlation with 
emotional states in psychological studies, high temporal 
resolution, simple recording, and, being a noninvasive, 
and portable method (Alarcao & Fonseca, 2017; Rolls, 
2015). EEG devices could be set up easily in real-time 
and are widely used in clinical applications (Afshani et 
al., 2019; Shalbaf et al., 2018).

In recent years, a number of EEG-based approaches 
have been proposed for emotion recognition during 
watching movie clips. Soleymani and Pantic (2013) 
proposed a system based on the Fast Fourier Transform 
(FFT) method and the support vector machine (SVM) 
for classifying three classes of valence and arousal. 
Koelstra and Patras (2013) extracted the power spec-
tral density (PSD) from EEG signals. Then, appropri-
ate electrodes using the recursive feature elimination 
(RFE) method are selected, and used the Gaussian 
Naïve Bayes (GNB) method to classify two classes of 
valence and arousal. Soleymani et al., (2015) detected 
emotions continuously using PSD of EEG sub-bands 

Highlights 

• Electroencephalogram (EEG) is a suitable measure to study emotion due to high temporal resolution, inexpensive-
ness and comfort recording for the user.

• A hybrid approach based on Wavelet convolutional neural networks and multiclass support vector machine is pro-
posed to improve recognition of emotional states from EEG signals.

• Combining scalograms from frontal and parietal regions achieved the higher average accuracy of 77.47% and 
87.45% for MAHNOB-HCI and DEAP databases, respectively.

Plain Language Summary 

Emotions are an important function of the human brain that affects our decision and behavior, for example, when we 
are angry or sad, we can decide to do dangerous acts or, when we are bored we could learn lessons hardly. These emo-
tions can be tracked and monitored by signals called electroencephalogram (EEG) from the scalp surface. In this study, 
EEG signals are represented by a time-frequency method, named wavelet transform. This method transforms EEG 
frequency information into time samples. Then, two machine learning methods are combined to recognize emotions 
from time-frequency images (the scalogram). The first method is based on deep learning techniques (convolutional 
neural networks) and extracts deep features from images and the second method discriminates them among emotions. 
Two public EEG databases, DEAP and MAHNOB-HCI were used to evaluate the proposed method. Results showed 
that scalograms from the combination of the two frontal and parietal regions achieved the highest accuracies compared 
to all regions. 

E
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and four methods of long-short-term-memory recurrent 
neural networks (LSTM-RNN), multi-linear regression 
(MLR), continuous conditional random fields (CCRF), 
and support vector regression (SVR) for arousal and 
valence. Zhu et al. (2014) used a power spectrum of 
standard frequency bands and SVM to classify emotions 
considering binary valence and arousal values. Huang 
et al. (2016) proposed an emotion recognition system 
using spectral power (SP), sequential forward floating 
search, fusion in level and decision, K-Nearest Neighbor 
(KNN), and SVM from EEG signals. Nonlinear features, 
such as fractal dimension (FD), correlation dimension 
(CD), and Poincare plot are another way to investigate 
emotional states from EEG. Soroush et al. extracted 
these nonlinear features from EEG signals and classi-
fied four emotional states (valence and arousal quarters) 
using machine learning classifiers. As observed from 
these studies, traditionally, machine learning methods 
have been used for feature selection and classification. 
But over the past few years, there has been a develop-
ing interest in the utilization of deep learning methods, 
such as the convolutional neural network (CNN). CNN 
is a novel deep-learning method, which extracts low- 
and high-level features, reduces feature size, and finally 
classifies (Craik et al., 2019; Guo et al., 2016; Bengio 
et al., 2017; Roy et al., 2019). It has been widely ap-
plied in computer vision studies, especially in medical 
applications (Suzuki, 2017; Lundervold & Lundervold, 
2019; Sun et al., 2017). Recently, this method has been 
utilized to process EEG signals for non-emotion (Faust 
et al., 2018; Zhang et al., 2019; Craik et al., 2019) and 
emotion studies (Yang et al., 2018). Yang et al. (2018) 
extracted the nonlinear feature of recurrence quantifica-
tion analysis (RQA) from EEG channels and used the 
parallel convolutional neural networks (CNNs) to clas-
sify two emotional classes based on valence and arousal 
concepts, separately. 

The contribution of this paper is divided into three parts: 

1- Finding effective brain regions involved in recog-
nizing emotional states using two-dimensional time-
frequency representations of EEG signal and pre-trained 
CNN models. Two-dimensional time-frequency repre-
sentations of EEG signals in the local or global form are 
fed into various pre-trained CNN models to fine-tune 
procedure and benefit from extracted deep features. 

2- Improving an emotion recognition framework based 
on the fusion of deep features extracted from pre-trained 
CNN models and classification using the multiclass sup-
port vector machine (MSVM) method. 

3- Evaluating the proposed emotion recognition frame-
work through a subject-independent approach. Leave-one-
subject-out cross-validation (LOSO CV) is used to evalu-
ate the proposed framework on two publicly accessible 
datasets of MAHNOB-HCI and DEAP that were recorded 
during watching movie clips and music video clips.

2. Materials and Methods

MAHNOB-HCI database

In this paper, EEG signals of the MAHNOB-HCI data-
base were used (Soleymani et al., 2011). These EEG sig-
nals were recorded during watching 20 different video 
clips from 27 subjects (16 females and 11 males) with an 
age range of 19 to 40 years and with different education 
levels, cultures, and languages. In this study, after watch-
ing, EEG signals from seven subjects were removed due 
to the high levels of artifacts, and finally, 32 channels 
from 20 subjects were used in the processing step. EEG 
signals were recorded using active electrodes with the 
Biosemi device according to the international 10-20 sys-
tem of electrode placement and divided into nine ana-
tomical brain regions according to Table 1. Other details 
about the database are reported in Table 2. After watch-
ing each video clip, subjects filled out a self-assessment 
questionnaire to evaluate the valence and arousal con-
cepts and rated them by the Self Manikin Assessment 
(SAM) values from one to nine (one for low and nine for 
high). The labels were considered based on these values 
and from the used 230 trials, 57 trials belonged to the 
first quarter of the valence-arousal model (Q1), 59, 52, 
and 62 trials to the second (Q2), third (Q3), and fourth 
(Q4) quarters, respectively.

DEAP database

In the DEAP database, 32 EEG channels were record-
ed according to a 10-20 international recording system 
from 32 subjects (16 males and 16 females in the age 
range of 17 to 37 years) while watching a music video 
(Koelstra et al., 2011). The original sampling frequency 
was 512 Hz. Also, 40 music videos with a length of 60 
seconds were used to evoke four emotional states and a 
neutral state. After watching music videos, subjects rated 
the value of valence and arousal based on SAM from one 
to nine scales. The class labels were considered as a pre-
vious explanation in the MAHNOB-HCI database and 
other details about the database are reported in Table 2.

Bagherzadeh et al. (2023). A Hybrid EEG-based Emotion Recognition Approach Using Wavelet Convolutional Neural Networks. BCN, 14(1), 87-102

http://bcn.iums.ac.ir/


Basic and Clinical

90

January & February 2023, Volume 14, Number 1

Preprocessing EEG signal

Preprocessing is a crucial step in pattern recognition 
and especially, EEG signal processing. Usually, EEG 
signals are affected by the subject’s factors, such as 
eye or body movements, or environmental factors, like 

power line noise. Muscle artifacts or eye movement con-
taminated high-frequency components; thus, these arti-
facts were removed by a basic Finite Impulse Response 
(FIR) low pass filter with a 45 Hz cut-off frequency. 
Head or body movements contaminated low frequency 
(below 0.5 Hz); thus, a high pass filter was used to re-

Table 1. EEG signals of the brain regions

Region (Symbol) Electrodes

Pre-frontal (FP) FP1, FP2, AF3, AF4

Frontal (F) F7, F3, FZ, F4, F8

Frontal-Central (F-C) FC5, FC1, FC2, FC6

Central (C) C3, C4, CZ

Central-Parietal (C-P) CP5, CP1, CP2, CP6

Parietal (P) P7, P3, PZ, P4, P8

Temporal (T) T7, T8

Parietal-Occipital (P-O) PO3, PO4

Occipital (O) O1, OZ, O2

Table 2. Detail of MAHNOB-HCI and DEAP databases

MAHNOB-HCI Description

DEAP 

Length of signal 34.9-117 (sec)

Number of channels 32 (10-20 international electrode placements)

Sampling frequency 256 Hz

Number of subjects 27

Stimulation type Short video clips

Number of video clips (emotional states) 20 (4)

Valence and arousal rate 1 (low)-9 (high)

Length of signal 60 (sec)

Number of channels 32 (10-20 international electrode placements)

Sampling frequency 512 (Hz)

Number of subjects 32

Stimulation type Short music clips 

Number of music video clips (emotional states) 40 (4)

Valence and arousal rate 1 (low)-9 (high)
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move these artifacts with a 0.5 Hz cut-off frequency. Be-
cause filters are not really ideal and there was leakage 
in near-frequency components, a Notch filter was used 
to remove the 50 Hz frequency component of power 
line noise. Also, bad channels were removed manually 
in the EEGLAB toolbox. All preprocessing steps were 
done using the EEGLAB toolbox. EEG signals from the 
DEAP database were recorded at 512 Hz sampling fre-
quency, and for simplicity and to reduce samples, they 
were down-sampled to 128 Hz in the EEGLAB toolbox. 
Moreover, EEG signals from the MAHNOB-HCI data-
base were not recorded by the reference electrode, and 
then, signals were re-referenced by the averaging meth-
od before filtering. 

Converting EEG signals to a time-frequency rep-
resentation 

Time-frequency (TF) methods, like continuous wave-
let transform, can convert a 1-D EEG signal to a 2-D 
representation or image and capture the variation of the 
spectral content of a signal over time. One dimension of 
our image is time and the other is the spectral content 
of a signal. This image represents EEG power changes 
in frequency and time. It represents a signal as a linear 
combination of basic functions called wavelets. This 
method convolves the signal x(t) with a set of wavelets 
(Chaudhary et al., 2019) (Equation 1):

1. W(a.b)[x(t)]=|a|1/2
1 ∫

+∞

-∞ x(t) Ø^*(= a
t-b )dt

Where, a is the scale (real and positive integer), b is the 
translational value (real integer), ω is a window, and Ø 
is the mother wavelet, which is in time and frequency 
domains. 

Convolutional neural network and pre-trained 
versions

CNN is one of the most powerful tools of deep learn-
ing methods in the computer vision field. This network 
contains three different layers, convolutional (C), pool-
ing (P), and fully connected (FC) (Guo et al., 2016; Ben-
gio et al., 2017). Feature maps are created in convolu-
tional layers using kernels. Pooling layer-down samples 
feature maps using maximum or average operators 
and fully connected layers to the classification opera-
tion. Drop-out and batch normalization techniques are 
introduced to overcome the overfitting problem in this 
neural network. Pre-trained CNNs are networks that are 
trained previously on very large amounts of images, like 
the ImageNet database consisting of many categories 
(Krizhevsky et al., 2012). ImageNet is a known image 

database for visual object recognition projects that starts 
with 1.2 million images from 1000 different categories 
from animals (dogs, cats, lions, ….) to objects (desks, 
pens, chairs, …). Because the pre-trained CNN was 
trained in a huge database with several categories, it can 
be useful to solve several classification problems even in 
biomedical signal processing studies; for example, it was 
used to diagnose schizophrenia from EEG signal (Shal-
baf et al., 2020). Indeed, the parameters (weights, layers, 
and biases) of a pre-trained CNN will be used to solve 
the new problem. This work reduces the requirement for 
several recorded samples, decreases training time, and 
can be manipulated in low-cost and cheaper hardware. 
AlexNet, VGGNet, Inceptions, and ResNet are the four 
popular pre-trained CNNs that were used in this study 
due to their specific characteristics. 

AlexNet is a simple CNN with a few convolutional lay-
ers, which has won the ImageNet Large Scale Visual Rec-
ognition Challenge 2012 (ILSVRC2012) (Krizhevsky et 
al., 2012). It has five convolutional layers for extraction 
of low- and high-level features using several 11×11, 5×5, 
and 3×3 filters. Also, it has three max pooling layers to 
downsample the extracted features in previous convo-
lutional layers and three fully connected layers for clas-
sification. It uses the rectified linear unit (ReLU) as an 
activation function after each convolutional and fully 
connected layer. AlexNet has 61 million parameters (from 
training on ImageNet) and allows 227×227 color images 
as input. VGGNet is the runner-up of ILSVRC2014 and 
has been introduced by Simonyan and Zisserman (2014). 
This network has two versions with different stacked 
convolutional layers, VGG-16 and VGG-19. VGG-16 
has three stacked three convolutional layers and VGG-19 
has three stacked four convolutional layers. In this paper, 
VGG-19 was used due to better performance. It has 19 
uniform convolutional layers with several 3×3 filters and 
allows color images with the size of 224×224 and has 
144 million parameters, which were from training VGG-
19 in the ImageNet database. After winning of AlexNet 
in OLSVRC2012, the residual network (ResNet) is the 
winner of ILSVRC2015 (He et al., 2016). 

ResNet has many stacked identity shortcut connec-
tions that help to solve the vanishing gradient problem 
of earlier CNNs. Researchers found that deeper CNNs 
face the vanishing gradient problem, i.e. when there 
are so many layers, repeating multiplication makes the 
gradient value to be near zero and it will be vanished 
in updating procedure. Therefore, the performance will 
be degraded following each additional layer, and ResNet 
overcomes this problem through its architecture. ResNet 
has some versions with various numbers of convo-
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lutional layers and filter sizes. ResNet-18 is one of its 
versions that has the lowest convolutional layer among 
other versions. It has 18 convolutional layers with sev-
eral 3×3 filters that are arranged in stacked form side by 
side batch normalization, pooling, and layers. ResNet-18 
requires a 224×224 color image as input and has 11.7 
million parameters trained in the ImageNet database. 
After winning the ResNet-18 in ILSVRC2015, the third 
version of Inception Net (Inception-v3) was first Runner 
Up in ILSVRC 2015 (Szegedy et al. 2016). Inception-
v3 has several stacked inception modules, which are 
parallel convolutional layers. This network reduced the 
number of connections, without degrading the efficiency 
of the network. Inception-v3 is a 48-convolutional layer 
CNN that in each layer has several 3×3 and 5×5 filters 
with different slide and padding characteristics. Finally, 
Inception-v3 has 23.9 million parameters trained in the 
ImageNet database and requires color images with a size 
of 299×299 as input. Table 3 compares these pre-trained 
CNNs in detail. 

Transfer learning approach 

Transfer learning is an approach with two scenarios 
that helps effectively in the deep learning field. The first 
scenario is fine-tuned, that is, transfer learning employs 
a pre-trained reference model trained previously for a 
specific classification task and adapts it using a smaller 
database for a new application. The second scenario is 
deep learning as a feature extractor, that is, using param-
eters of some deep layers from a pre-trained reference 
model trained previously for a specific classification task 
as features and then feeding them into a classifier, like 
SVM. These need shorter time and fewer samples for 
the training procedure. Also, they resolve the problem 
of providing powerful hardware. Here, the two scenarios 
were used to improve the performance of the recognition 
system, i.e. first popular pre-trained CNNs (AlexNet, 
ResNet-18, VGG-19, and Inception-v3) fine-tuned with 
the scalogram of two mentioned databases separately, 
and then best layers are selected as extracted features. 

Because these CNNs were trained in ImageNet to solve 
the classification problem with 1000 classes; therefore, 
the fully connected and classifier layers were replaced 
by new layers to solve the problem with four classes. 
Then, all layers from the beginning of CNNs were tuned 
and classification was done once with the softmax layer 
and once with MSVM. Softmax is a simple function in 
the last layer, which decides the probability of belonging 
the input to one of the classes. The MSVM can solve 
classification problems strongly. SVM is a supervised 
method of classification in the machine learning field. It 
minimizes error iteratively by maximizing marginal hy-
perplane and benefits from linear and non-linear kernels. 
It has binary and multiclass versions that here MSVM 
with the Gaussian kernel was used to classify the four 
emotional states Q1, Q2, Q3, and Q4. This classifier has 
been successfully used in EEG signal-processing stud-
ies (Chaudhary et al., 2019) (Craik & Contreras-Vidal, 
2019). Figure 1 shows the fine-tuning procedure.

Evaluation phase 

Four pre-trained CNNs were evaluated with three mea-
sures of average (overall) accuracy, precision, and recall 
(Sokolova & Lapalme, 2009) through the leave-one-sub-
ject-out cross-validation (LOSO CV) approach. In this 
approach, images from 31 subjects are used to fine-tune 
existing CNNs, and images from another subject are 
used as the test set to calculate the three mentioned mea-
sures this procedure repeats for the other 31 subjects and 
finally, the average value and standard deviation are re-
ported. LOSO CV is subject-independent because there 
are no samples from one subject in both test and train 
sets. Accuracy, precision, and recall are calculated as fol-
lows (Sokolova & Lapalme, 2009) (Equations 2-4):

2. Accuracy= l
+tpi+tni+fpi+fni

∑l
i=1

tpi+tni

3. Precision= l
+tpi+fpi

∑l
i=1

tpi

Table 3. Comparison of detail of the used pre-trained CNNs

Net Convolutional Layers Parameters on ImageNet (Millions) Image Input Size

AlexNet 8 61 227×227×3

VGG-19 19 144 224×224×3

Inception-v3 48 23.9 299×299×3

ResNet-18 18 11.7 224×224×3
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4. Recall= l
+tpi+fni

∑l
i=1

tp

Where, tpi, tni, fpi andfni are true positive, true negative, 
false positive, and false negative elements for th emo-
tional class from the confusion matrix obtained from 
each method. 

Summary

Figure 2 shows the flowchart of our method. MAHN-
OB-HCI and DEAP EEG signals were used; these sig-
nals were recorded during watching 20 and 40 video 
clips and music videos with different emotional states 
(which cover four-quarters of the valence-arousal emo-
tional model), respectively. In preprocessing step, EEGs 
were re-referenced by the averaging method and passed 
through the low pass, high pass, and notch filters, and 
other artifacts were removed manually by the EEGLAB 
toolbox in MATLAB software. Then, scalogram images 
were built using the CWT method from each defined 
brain region fed into each pre-trained CNNs, and the pa-
rameters were tuned. Then, to improve the recognition of 
emotional states, deep extracted features from different 
convolutional layers of fine-tuned CNNs were exam-
ined, and the best feature layers were applied to MSVM 
classifier. Also, for improving recognition performance, 
scalograms from brain regions were combined and re-

sults were reported using three subject-dependent and 
subject-independent evaluation approaches in tables. 

3. Results

Thirty-two channels of EEG signals from 230 trials 
recorded from 20 subjects from the MAHNOB-HCI 
database and 32 channels from the same number of tri-
als from the DEAP database were preprocessed using 
the EEGLAB toolbox in MATLAB software (version 
2019a). Preprocessing steps were described in the sum-
mary section and shown in Figure 2. Then, EEG signals 
were converted to scalogram images by the CWT meth-
od by Morse wavelet. Generally, the Morlet wavelet is 
used to process EEG signals but we examined all avail-
able wavelets (Morse, Morlet, and Bomp), and among 
their scalogram images, Bomp had lower resolution and 
there were no considerable differences between the other 
two. Also, the Morse wavelet can vary two parameters to 
change time and frequency spread, then, Morse was used 
to make a scalogram. Thirty-two scalogram images were 
built from all channels of each subject. Figures. 3 and 
4 show the average scalogram for four quarters of the 
valence-arousal model for MAHNOB-HCI and DEAP 
databases, respectively. Horizontal and vertical axes 
represent time (second) and frequency (Hz) contents, 
respectively.
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Fig. 1. Fine-tuning and optimized feature selection procedures. In the fine-tuning procedure, the scalograms are used as input 

to the CNNs model, and layers are updated while the fully connected layer and softmax layer are replaced by new ones 

(1000 classes replaced by 4 classes). Then, the fine-tuned layers are examined to select the best feature layer and then be 

classified using an MSVM classifier.  
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Figure 1. Fine-tuning and optimized feature selection procedures

 In the fine-tuning procedure, the scalograms are used as input to the CNNs model, and layers are updated while the fully 
connected layer and softmax layer are replaced by new ones (1000 classes replaced by 4 classes). Then, the fine-tuned layers are 
examined to select the best feature layer and then be classified using an MSVM classifier. 
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Four pre-trained CNNs, Inception-v3, VGG-19, 
ResNet-18, and AlexNet were fine-tuned, i.e. the fully 
connected and softmax layers were replaced by new 
ones with four classes. The initial learning rate, squared 
gradient decay factor, max epochs, and mini-batch size 
were 0.0004, 0.99, 20, and 32, respectively. The adap-
tive moment estimation optimizer (ADAM) was used 
for training networks. Fine-tuning was performed on 
90% of scalogram images of each defined brain region 
(Table 1) and then, the average accuracy was computed 
on residual scalograms. All processing steps were done 
with MATLAB software version 2019a. All codes were 
implemented on a laptop with an Intel ® CoreTM i7-
6500U CPU @2.50 GHz.

Figure 5 shows the average accuracies for nine de-
fined brain regions on MAHNOB-HCI (a) and DEAP 
(b) databases using the AlexNet, VGG-19, ResNet-18, 
and Inception-v3 for the LOSO CV evaluation crite-
rion. Comparing MAHNOB-HCI figures, maximum 
accuracies were achieved for ResNet-18 in the range of 
18-31%. Also, the pre-frontal and parietal brain regions 
achieved higher accuracies using all CNNs. Observing 
DEAP figures showed that scalograms from two brain re-
gions frontal and parietal using ResNet-18 had achieved 
higher accuracies of 77% and 74%, respectively. Totally, 
higher accuracies were achieved for each database us-
ing ResNet-18, followed by Inception-v3, VGG-19, and 
AlexNet.

Due to the low accuracy of recognizing the four men-
tioned emotional states, the idea of using deep features 

from these pre-trained CNNs was examined. Also, the 
classification was done using the MSVM to improve 
emotion recognition performance. Therefore, each 
convolutional and pooling layer from the beginning of 
AlexNet, ResNet-18, VGG-19, and Inception-v3 was 
examined as a feature vector and fed into an MSVM, 
and then, each layer, in which had the highest accuracy 
was selected for further analysis. Table 4 reports the 
best selected layer for each fine-tuned CNN. The third 
convolutional layer from AlexNet, named ‘Conv3’, the 
first triplet convolutional layer from VGG-19, named 
‘Conv3_1’, the fourth convolutional layer of Inception-
v3 named ‘Conv2d_4’, and the end part of the first re-
sidual block of the ResNet-18 named ‘Res2a’ achieved 
the highest accuracies for all brain regions in MAHN-
OB-HCI and DEAP databases. Figure 6 shows accuracy 
values for brain regions using different fusions of CNN-
MSVM for MAHNOB-HCI (up) and DEAP (down) da-
tabases for the LOSO CV criterion. As it can be observed, 
the accuracies using the mentioned procedure increased 
by nearly 18~24% and 10~12% in MAHNOB-HCI and 
DEAP databases, respectively. For example, scalograms 
from the pre-frontal region using ResNet-18-MSVM 
achieved 56% and 78.5% for MAHNOB-HCI and 
DEAP databases, respectively, while it was 31.4% and 
67.4% using ResNet-18. Also, among all regions, pre-
frontal, frontal, and parietal regions achieved higher ac-
curacies for MAHNOB-HCI (video clips), while, frontal 
and parietal regions achieved higher accuracies for the 
DEAP database (music videos).
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Fig. 2. The flowchart of the proposed method. 

 

 

 

 

 

 

 

 

MAHNOB-HCI 
and DEAP EEG 

signals 

Represent              
time-frequency 
information of 

EEG using 
continuous 

wavelet 
transform 

method 

Fine-tune 
AlexNet,    

ResNet-18, 
Inception-v3, and 

VGG-19 

Select the best 
features layer  

Preprocessing step 
using EEGLAB 

toolbox:  

1-average                    
re-referencing  

2-low pass filter 

3-high pass filter 

4-band stop notch 
filter  

5-remove blinks 
and other artifacts 

manually 

 

Classify four 
emotional states 

using MSVM 

Compute evaluation 
metrics through LOSO 

CV approach 

Figure 2. The flowchart of the proposed method
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Furthermore, to find effective brain regions involved 
in the recognition of emotional states, scalograms from 
different anatomical regions were combined into two, 
three, or more forms, i.e. in the first stage, scalograms 
from all possible two regions were investigated to rec-
ognize four desired emotional states, and then in stage 
two, scalograms from all possible three regions were 
investigated, and up to the end. Because the highest ac-
curacies were achieved using the extracted features from 
layer ‘Res2a’ of ResNet-18 and MSVM classifier, this 
hybrid method was used for further analysis. Combin-
ing scalograms from two possible regions achieved the 
highest accuracy for the DEAP database and combining 
three, four, and more possible regions caused no higher 

accuracy for the DEAP database; thus, only the best re-
sults are shown. However, combining scalograms from 
four brain regions achieved the highest accuracy for the 
MAHNOB-HCI database. Table 5 reports the six best 
combinations of two brain regions for classifying the 
four mentioned emotional classes using the mentioned 
proposed method and LOSO CV evaluation criterion in 
the DEAP database. Combining scalograms from two 
frontal and parietal regions of the DEAP database ob-
tained the highest average accuracy, precision, and recall 
of 87.76%, 87.31%, and 87.77%, respectively. 

Figure 3. Scalogram images from 4 quarters of valence-arousal model for MAHNOB-HCI database

 A) Scalogram averaged among subjects for Q1; B, Q2; C, Q3; and D, Q4.
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Fig. 3. Scalogram images from 4 quarters of valence-arousal model for MAHNOB-HCI database: (a) Scalogram averaged 

among subjects for Q1, (b) Q2, (c) Q3, and (d) Q4. 
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Table 4. Best selected layer using MSVM for pre-trained CNNs in selected features procedure for two databases

CNN Layer Number Name

AlexNet 10 Conv3

VGG-19 4 Conv3_1

Inception-v3 13 Conv2d_4

ResNet-18 12 Res2a
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Figure 4. Scalogram images from 4 quarters of valence-arousal model for DEAP database

a, Scalogram averaged among subjects for Q1; B, Q2; C, Q3; and D, Q4.
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Fig. 4. Scalogram images from 4 quarters of valence-arousal model for DEAP database: (a) Scalogram averaged among subjects for Q1, (b) 

Q2, (c) Q3, and (d) Q4. 
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Table 5. Features from Res2a’ layer+MSVM classifier 

Combining Scalograms From 2 Regions 
(%) 

Mean±SD

Accuracy Precision Recall 

Frontal, central 87.76±0.81 87.31±1.82 87.77±0.78

Frontal, parietal 87.45±2.49 87.34±2.44 87.46±2.50

Frontal, pre-frontal 84.38±2.65 84.18±2.57 84.39±2.55

Frontal-central, parietal 82.15±2.53 82.10±2.63 82.16±3.49

Parietal-occipital, occipital 80.48±2.72 80.36±2.50 80.49±2.70

Frontal, central-parietal 78.30±2.75 78.19±2.69 78.32±2.57

Frontal, central 77.09±2.89 76.68±2.64 77.15±2.65

Six highest accuracies for the combination of scalograms from four brain regions obtained from the ResNet18-MSVM* in the 
DEAP database.*Features from Res2a’ layer+MSVM classifier=footnote.
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Table 6. Features from Res2a’ layer+MSVM classifier

Combining Scalograms From 4 Regions (%)
Mean±SD

Accuracy Precision Recall

Pre-frontal, frontal, parietal, parietal-occipital 77.47±3.40 77.40±3.62 77.52±2.63

Pre-frontal, frontal, frontal-central, parietal-occipital 75.20±3.35 75.16±3.37 75.27±3.40

Pre-frontal, frontal, frontal-central, central 72.66±3.50 72.59±3.32 72.69±3.41

Pre-frontal, frontal, frontal-central, parietal 69.75±3.45 69.58±3.370 69.81±3.75

Pre-frontal, frontal, frontal-central, temporal 69.30±3.50 69.26±3.52 69.38±3.62

Frontal, frontal-central, central, parietal 66.52±3.37 66.36±3.30 66.61±3.53

Six highest accuracies for the combination of scalograms from four brain regions obtained from the ResNet18-MSVM* in the 
MAHNOB-HCI database. *Features from Res2a’ layer+MSVM classifier=footnote.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Q1 145 5 6 4 Q1 132 8 11 9

Q2 5 148 4 3 Q2 10 127 9 14

Q3 4 1 145 7 Q3 9 13 130 8

Q4 5 5 4 146 Q4 12 7 6 135

Acc 91.25% Acc 81.87%

 (a) (b) 

Table 7. Confusion matrixes of highest results using ResNet-18-MSVM for (a) DEAP and (b) MAHNOB-HCI databases
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Figure 5. Average accuracy of four emotional recognition using the AlexNet, VGG-19, ResNet-18 and inception-v3 on sca-
logram images of brain regions for (a) MAHNOB-HCI and (b) DEAP databases using LOSO CV criterion. These results are 
obtained before selecting optimized features. 

Abbreviations FP: Pre-frontal; F: Frontal; F-C: Frontal-central; C: Central; C-P: Central-parietal; P: Parietal; P-O: Parietal-occip-
ital; O: Occipital; T: Temporal.
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Table 6 shows the six highest results from combin-
ing scalograms of possible four brain regions from the 
MAHNOB-HCI database using ResNet-18-MSVM 
and LOSO CV evaluation criterion. Combination sca-
lograms from four pre-frontal, frontal, parietal, and 
parietal-occipital regions achieved the highest average 
accuracy, precision, and recall for the MAHNOB-HCI 
database and LOSO CV equal to 77.47%, 77.40%, and 
77.52%, respectively. 

Table 7 reports confusion matrixes of the highest re-
sults for ResNet-18-MSVM and LOSO CV evaluation 
criterion and both databases.

4. Discussion

Four emotional states from EEG signals were recog-
nized through scalogram images using the CWT method 
and extracted features from fine-tuned pre-trained CNNs 

Table 8. LOVO CV=Leave-one-video-out cross validation

References Processing Method Database Number of 
Classes Accuracy (%)

Koelstra & Patras, 2013 PSD, RFE, GNB, 10-fold CV MAHNOB-HCI 2 66.7 (arousal), 80 (valence)

Zhu et al., 2014 Power spectrum, SVM, LOVO CV1 MAHNOB-HCI 2 55.72 (valence), 60.23 
(arousal)

Huang et al., 2016 SP, KNN, SVM, LOSO CV MAHNOB-HCI 2 63 (valence), 65.1 (arousal)

Soroush et al., 2018
Nonlinear features (CD, FD, …), ICAs, 
modified Dempster-Shafer theory of 

evidence, 10-fold CV
DEAP 4 90.54 

Soroush et al., 2020 Poincare plane, MSVM, KNN, MLP, 
10-fold CV DEAP 4 89.76

Yang et al., 2018 RQA, Parallel Convolutional Recurrent 
Neural Network, 5-fold CV DEAP 3 92.24 

Shen et al., 2020
Differential entropy, 

4-d-Convolutional recurrent neural 
network, 5-fold CV

DEAP 2 94.22 (valence), 94.58 
(arousal)

Our method CWT method, ResNet-18-MSVM, 
LOSO CV

MAHNOB-HCI, 
DEAP 4 77.47±3.40 (MAHNOB-HCI), 

87.45±2.49 (DEAP)

Comparison of this study and related studies with same database. 1LOVO CV=Leave-one-video-out cross 
validation=Footnote. 
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Fig. 6. Average recognition accuracy of four emotional classes using the AlexNet-MSVM, VGG-19-MSVM, ResNet-18-

MSVM, and Inception-v3-MSVM from scalogram images of various brain regions for (a) MAHNOB-HCI and (b) DEAP 

databases using LOSO CV criterion. These results were obtained after the feature selection method using MSVM and 

Gaussian kernel. FP=pre-frontal, F=frontal, F-C=frontal-central, C=central, C-P=central-parietal, P=parietal, P-O=parietal-

occipital, O=occipital, T=temporal. 

 

 

 

0%

50%

100%

FP F F-C C C-P P P-O O T

LOSO CV

ResNet18-MSVM AlexNet-MSVM

Inception-v3-MSVM VGG19-MSVM

0%

50%

100%

FP F F-C C C-P P P-O O T

LOSO CV

ResNet18-MSVM AlexNet-MSVM

Inception-v3-MSVM VGG19-MSVM

Figure 6. Average accuracy recognition four emotional classes using the AlexNet-MSVM, VGG-19-MSVM, ResNet-18-MSVM 
and Inception-v3-MSVM from scalogram images of various brain regions for (A) MAHNOB-HCI and (B) DEAP databases us-
ing LOSO CV criterion. These results were obtained after feature selection method using MSVM and Gaussian kernel

Abbreviations: FP: Pre-frontal; F: Frontal; F-C: Frontal-central; C: Central; C-P: Central-parietal; P: Parietal; P-O: Parietal-occip-
ital; O: Occipital; T: Temporal.
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and MSVM classifiers. CNNs were trained in a very 
huge image database (ImageNet) with 1000 categories 
but their categories included objects, animals, and other 
things except for biomedical signals. Therefore, fine-
tuning of CNNs parameters based on scalogram images 
of four emotional states from EEG signals help the net-
work parameters to be compatible with the specific emo-
tion recognition problem. Using MSVM as the classifier 
is reasonable, as this was the best method to discriminate 
classes before the improvement of deep learning meth-
ods. Also, as can be observed from Figures 5 and 6, ex-
tracted deep features from fine-tuned CNNs and MSVM 
classifiers improved results by nearly 12% and 20% for 
DEAP and MAHNOB-HCI databases, respectively. Se-
lected features for each CNN were from earlier deep lay-
ers, these layers extract low-level features than deeper 
layers. Also, among different pre-trained CNNs+MSVM 
configurations, the ResNet-18+MSVM achieved the 
highest accuracies for all brain regions. ResNet-18 con-
sisted of multiple residual units that are stacked identity 
maps and shortcuts, while, Inception-v3 has multiple 
parallel convolutional layers in its Inception units, or 
AlexNet and VGG-19 have simple convolutional layers. 
Therefore, according to the results on accuracy for all 
evaluation criteria, it seems that extracted features from 
the residual unit perform better than the Inception mod-
ule or simple form of the convolutional layer to solve 
this emotion recognition task. Then, Inception-v3 and 
VGG-19 had better results compared to the AlexNet. 

One of our goals was to find effective brain regions to 
recognize emotional states using the proposed method; 
thus, we considered all brain regions and possible com-
binations of them at several levels. According to Tables 
5 and 6, the combination of scalograms from pre-frontal, 
frontal, parietal, and parietal-occipital regions achieved 
the highest average accuracy among other combinations 
for the MAHNOB-HCI database that was recorded dur-
ing watching ordinary video clips. This means that these 
regions are the most related regions in recognition of 
the four mentioned emotional classes. Also, frontal and 
parietal regions had higher accuracy for all evaluation 
criteria for the DEAP database that was recorded dur-
ing watching music videos. According to neuroimaging 
studies, the limbic system is responsible for emotions 
(Rolls, 2015). The limbic system is in the amygdaloid 
nuclear complex, ventral nuclei of Gudden, and central 
gray and dorsal raphe nucleus (Morgane et al., 2005). 
In addition, our findings about the best regions are con-
sistent with related studies with other methods (Alarcao 
& Fonseca, 2017; Rolls, 2015). Moreover, these results 
show that the type of stimulation (music videos or ordi-
nary video clips) influences the involved brain regions. 

Among evaluation metrics, subject-dependent criteria, 
such as 10-fold cross-validation (10-fold CV) may use 
samples of one subject for both train and test sets and 
cause higher accuracy, but subject-independent criteria, 
such as LOSO CV, only use samples from one subject at 
the test set as unknown samples and samples from other 
subjects as a train set, this causes you to consider inter-
subject varieties. However, this can cause lower accu-
racy for LOSO CV, but the decrease shows how different 
the emotional states are between subjects. As we know, 
emotions vary somewhat across subjects, genders, years, 
and cultures; however, researchers from MAHNOB-
HCI and DEAP databases tied to consider these factors, 
but aside from these factors, it is difficult to recognize 
human emotions and distinguish them. The highest av-
erage accuracy was 87.45% for DEAP and 77.43% for 
MAHNOB-HCI, while inter-subjects differences were 
2.49% and 3.40%, respectively. Also, LOSO CV proved 
the generalization ability of the proposed method and the 
results were reasonable and acceptable. 

In Table 8, the results of this study are compared with 
related studies that used EEG signals of MAHNOB-HCI 
and DEAP databases. Among these studies, only Zhu et 
al. (2014) and Huang et al. (2016) used the LOSO CV 
criterion and others used the 10-fold CV criterion. As ob-
served, the accuracy of our study was higher than these 
two studies, they used the traditional machine learning 
methods of extraction of features that prove the prefer-
ence of the proposed method. Extracted features from 
deep layers provide appropriate and discriminative fea-
tures than features, such as PSD (or other spectral fea-
tures) (Koelstra & Patras, 2013; Zhu et al., 2014; Huang 
et al., 2016). Also, our values are higher than those of 
Koelstra & Patras (2013), evaluated using the 10-fold 
CV criterion. However, our values are lower than other 
studies mentioned in Table 8 (Soroush et al., 2020; So-
roush et al., 2018; Yang et al., 2018; Shen et al., 2020), 
but the increase is due to their evaluation criteria. As 
mentioned above, in the subject-dependent 10-fold CV 
evaluation criterion, as the model can see each sample 
through folds, the performance is usually higher than 
LOSO CV. Another cause of the difference in the re-
sults is the number of discriminated classes, all of these 
studies, except Soroush et al., (2018) and Soroush et al., 
(2020) had two or three emotional classes.
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5. Conclusion

In this paper, four emotional states were recognized 
using a hybrid EEG-based approach: scalogram images 
built by the CWT method, extracted deep features from 
popular pre-trained CNNs, and MSVM classifier. Among 
extracted features from pre-trained CNNs, deep features 
of the early convolutional layer of ResNet-18 were se-
lected, and combining some brain regions and well per-
formance of MSVM caused improvement of the emotion 
recognition system from EEG signal. The results were 
promising and can be used in other fields of neuroscience. 
In the future study, we will consider new methods to build 
images based on brain connectivity measures. 
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