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Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential 
for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain 
signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can 
interfere among brain regions, so the relationship among different areas can be a key factor in 
the anesthetic process. 

Methods: In this paper, by combining the Wiener causality concept and the conditional 
mutual information, a nonlinear effective connectivity measure called Transfer Entropy (TE) 
is presented to describe the relationship between EEG signals at frontal and temporal regions 
from eight volunteers in three anesthetic states (awake, unconscious and recovery). This index 
is also compared with Granger causality and partial directional coherence methods as common 
effective connectivity indexes. 

Results: Based on a statistical analysis of the probability predictive value and Kruskal-Wallis 
statistical method, TE can effectively fallow the effect-site concentration of propofol and 
distinguish the anesthetic states well, and perform better than the other effective connectivity 
indexes. This index is also better than Bispectral Index (BIS) as commercial DOA monitor 
because of the faster response and higher correlation with the drug concentration effect-
site, less irregularity in the unconscious state and better ability to distinguish three states of 
anesthestesia.

Conclusion: TE index is a confident indicator for designing a new monitoring system of the 
two EEG channels for DOA estimation.
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1. Introduction 

epth of Anesthesia (DOA) is the main 
issue for anesthesiologists to reduce 
the use of anesthetics, maintain the ap-
propriate level of anesthesia during sur-
gery, prevent unwanted consciousness 
(Gugino et al., 2001; Sebel et al., 2004), 
and avoid long-term recovery (Monk, 

Saini, Weldon, & Sigl, 2005). Since the main target of 
anesthetic drugs is the synaptic activity of the central 
nervous system, monitoring brain signals such as Elec-
troencephalogram (EEG) can be helpful to predict the 
patient’s state of consciousness during anesthesia.

In recent years, several nonlinear methods based on sin-
gle-channel EEG signals such as fractal dimension (Li et 
al., 2017; Nguyen, Wen, & Li, 2010), Bayesian analysis 
(Nguyen-Ky, Wen, & Li, 2013, Nguyen-Ky, Wen, & Li, 
2014), phase-rectified signal averaging (Liu, Chen, Fan, 
Abbod, & Shieh, 2016; Liu, Chen, Fan, Abbod, & Shieh, 
2017) and entropy (Li & Wen, 2016; Liang et al., 2015; 
Shalbaf, Saffar, Sleigh, & Shalbaf, 2017; Shalbaf, Saffar, 
& Sleigh, 2020) have been proposed for DOA assessment. 
Today, Bispectral index (BIS) monitoring is the most com-
monly used single-channel EEG to measure DOA during 
general anesthesia and has been widely accepted for its 
accuracy. But this monitor is sensitive to artifacts (Nguy-
en-Ky et al., 2013), does not respond to some anesthetics 
(Johansen, Sebel, & Fisher, 2000), and has a long delay 
in responding to EEG changes (Hagihira,Takashina, Mori, 
Mashimo, & Yoshiya, 2001; Pilge et al., 2006). 

It is essential to study how the communications of dif-
ferent brain regions in general anesthesia are changed. 
Anesthesia disrupts the interaction between cortical 
brain regions (Alkire, Hudetz, & Tononi, 2008; Lee et 
al., 2009; Lee, Kim, Noh, Choi, & Mashour, 2008; Nal-
lasamy & Tsao, 2011; Schrouff et al., 2011), and as a 
result, it damages the proper functioning of the brain, 
especially the perception of consciousness (Alkire et al., 
2008; Schrouff et al., 2011). Therefore, disconnecting or 
altering the communication between brain regions, espe-
cially frontal to temporal regions (Lee et al., 2009), can 
be a key factor in the anesthesia process. 

Nowadays, there is a new and advanced concept in brain 
integration that focuses on brain connectivity (Lang, 
Tomé, Keck, Górriz-Sáez, & Puntonet, 2012). This field 
of neuroscience allows researchers to obtain more com-
prehensive information about brain function. The broad 
field of brain connectivity has two general subdivisions: 
(1) functional connectivity, which deals with the func-
tionally integrated relationship between spatially sepa-
rated brain regions, and (2) effective connectivity, which 
characterizes the transient causal interactions among 
brain regions. Numerous functional connectivity meth-
ods such as cross-correlation, phase-locking value, and 
mutual information have been proposed to evaluate the 
relationship between simultaneous signals during gener-
al anesthesia (Afshani, Shalbaf, Shalba, & Sleigh, 2019; 
Akeju et al., 2014; Hayashi, Mukai, & Sawa, 2014; Li 
et al., 2017; Liang et al., 2016; Nicolaou & Georgiou, 
2014). But, these techniques are only based on changes 
in statistical correlations between indirect observations 

Highlights 

● Propose transfer entropy to describe the relationship between EEG signals at frontal and temporal.

● Transfer entropy can effectively fallow the effect-site concentration of propofol.

● Our index is better than the Bispectral index as a commercial DOA monitor.

Plain Language Summary 

Depth of anesthesia (DOA) estimation is the main problem for anesthesiologists to maintain the appropriate level of 
anesthesia during surgery so that it prevents the possibility of unwanted consciousness and long-term recovery. This 
study shows that the nonlinear effective connectivity index, called transfer entropy (TE) between pair signals of EEG 
at frontal and temporal regions can trace effectively the changes in propofol drug effect. TE index is also better than 
BIS as a single channel commercial index in the clinical setting due to a faster response and a higher correlation with 
the drug concentration effect-site, less irregularity in the unconscious state, and ultimately has a better ability to dis-
criminate between the three states of anesthesia. Thus, the TE index is a confident effective connectivity indicator for 
designing a new monitoring system of two EEG channels for the depth of anesthesia estimation.
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of neuronal activities. So, nonlinear effective connectiv-
ity methods which characterize the transient causal in-
teractions among brain regions might be more helpful in 
studying the mechanisms of anesthetics. By combining 
the Wiener causality concept and the conditional mutual 
information in the context of information theory, we 
present a nonparametric and nonlinear criterion for esti-
mating causal connections, i.e. Transfer Entropy (TE), 
which can measure all linear and nonlinear causal con-
nections in a system (Vicente, Wibral, Lindner, & Pipa, 
2011). This method does not need a priori assumptions 
on connectivity patterns and recently, has become popu-
lar and widely applied for analyzing multi-channel EEG 
signals (Gao, Ren, Li, & Zhang, 2018; Huang, Pal, Ch-
uang, & Lin, 2015; Lee et al., 2012; Wibral, Vicente, & 
Lindner, 2014; Yang, Jeannès, Bellanger, & Shu, 2012).

The main novelty of this study is to use an effective 
connectivity method, i.e. the TE index, to investigate the 
nonlinear relationships of 2-channel EEG in the frontal 
and temporal regions during anesthesia. We have used 
this new index for following the anesthetic drug concen-
tration and monitoring DOA during surgery. We finally 
compare it with the BIS index as a commercial monitor 
based on single-channel EEG.

2. Methods 

2.1. Subjects and data acquisition

EEG data of 8 volunteers (5 men and 3 women, aged 
18-42 years) under propofol anesthesia were recorded 
with the approval of the Waikato Hospital Ethics Com-
mittee (Williams & Sleigh, 1999). Two dipolar EEG sig-
nals were used at positions of Fp1– F7 and C3– T3 and 
also FpZ as the reference electrode. Using these elec-
trodes, we recorded the action potentials of the left fron-
tal and temporal regions. The EEG signals, as well as the 
BIS index, were recorded using an A-1000 BIS monitor 
(Aspect Medical Systems) at a sampling rate of 256 Hz 
and 0.2 Hz, respectively. The low-pass and high-pass fil-
ters were set at 0.5 and 70 Hz, respectively. The BIS in-
dex value ranged between 0 and 100, but it is considered 
between 0 and 1 to compare it with other indexes. 

After safe access to the relevant vein, all volunteers re-
ceived propofol anesthetic drug at a constant concentra-
tion of 150 mL/h by a syringe pump continuously. The 
2-channel EEG and BIS index were recorded simulta-
neously with the start of injection. Then a verbal list of 
different objects is read at 30-s intervals. The endpoint 
of the injection is where the filled water syringe dropped 
from the fingers of the sample. This moment is marked 

as the Loss of Consciousness (LOC) time. Then, the vol-
unteer is allowed to go through the process of waking 
up and play a pre-recorded tape containing some simple 
verbal commands such as “right foot movement”. The 
recovery time (command time) is recorded as soon as 
the volunteer can answer correctly to the relevant com-
mand. Sixty seconds after recovery time, the study was 
ended. Finally, the samples were asked to recall the first 
number and the last object they recall when propofol was 
induced, and these two times were recorded as “number 
time”, and “object time”, respectively. So in this study, 
three states named awake (before object time), uncon-
scious (after LOC time and before number time), and 
recovery (after command or recovery time) are assessed. 
Figure 1 shows the position of the electrodes on the head 
and the sequence diagram of the experimental design.

2.2. Effect-site concentration (Ceff)

The concentration of injection anesthetic drugs in the 
blood is acquired approximately. By sampling venous 
blood from the patient’s arm, the anesthetic drug con-
centration in the blood can be assessed by laboratory 
equipment (Williams & Sleigh, 1999). Sampling is per-
formed continuously, and the blood concentration of the 
anesthetic is acquiring continuously with the analyzer. 
The effect-site concentration Ceff of the anesthetic for 
each volunteer is calculated using VA-SIM application 
(Sainsbury, 1993).

2.3. Effective connectivity

Effective or causal connectivity is a new and grow-
ing topic in modern neuroscience to study the mecha-
nisms of brain communication based on its potential to 
describe causal interactions (Astolfi et al., 2007; Lang 
et al., 2012). This branch of neuroscience offers more 
comprehensive information on brain function and better 
diagnostic and therapeutic strategies for brain patients. 
These techniques are proposed to determine directional 
influences between any pair of EEG channels. All ef-
fective connectivity estimation was done in MATLAB 
(The MathWorks, Inc., Natick, MA, USA) via the open-
source HERMES toolbox (Niso et al., 2013).

2.3.1. Granger Causality (GC)

A popular statistical method for estimating the effective 
connectivity is Granger Causality (GC) which is a data-
driven method (Kamiński, Ding, Truccolo, & Bressler 
2001). It is based on the estimation of parameters of the 
Multi-Variable Auto-Regressive (MVAR) model and is 
widely used to explain causality between two time se-
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ries. For N simultaneously observed stationary time se-
ries X(t) (Formula 1), i.e. 

1. X(t)=[x1 (t);x1 (t); …;xN (t)]T

The MVAR model process of order P is an expressive 
description of the X(t) and given by (Formula 2)

2. X(t)=∑Ar x(t-r)+E(t)
P

r=1

In this Model, E(t) is a zero mean white noise process, 
and P represents the order of the model. Ar is the autore-
gressive coefficients matrix and its elements aij (r) de-
scribe the linear relationship between time series, xj (t) 
and xi (t) at different time lags r and indicates the influ-
ence of xj (t) on xi (t). A process xj (t) is said to Granger-
cause another process xi (t) if the elements aij (r) are not 
all zero. 

2.3.2. Partial Directed Coherence (PDC)

One of the quantitative spectral measures of GC in the 
frequency domain is Partial Directed Coherence (PDC) 
(Baccalá & Sameshima, 2001). PDC is a complex mea-
sure that can be interpreted as the conditional GC from 

j to i. This method is to determine the direction of infor-
mation flow between pairs of time series-based frequen-
cy domains. PDC from the ith channel to the jth channel 
jth at frequency f is defined Formulas 3 and 4:

3. πij(f)= 
Āij (f)

√(∑N
m=1Āmj (f)Ā

*
mj (f)

Āij (f), where is frequency domain description of .

4. Āij (f)=∑aij (r)e
-j2πfr

P

r=1

2.3.3. Transfer Entropy (TE) 

By combining the Wiener causality concept and the 
conditional mutual information in the context of infor-
mation theory, we present an essential nonparametric 
criterion, i.e. Transfer Entropy (TE), for estimating caus-
al connections. It can measure all linear and nonlinear 
causal connections in a system (Vicente et al., 2011). 

Shannon entropy H(x) with probability density func-
tion p(x) for a variable x is defined as (Vicente et al., 
2011) (Formula 5): 

5. H(x)=-∑xp(x)log(p(x))

MI(x, y) demonstrates the mutual information between 
x and y, two discrete variables, and is defined by For-
mula 6. 

6. MI(x ,y)=∑x.yp(x.y)log p(x.y)
p(x)p(y)

In Formula 2, p(x) and p(y) are the probability density 
functions, and p(x,y) is also the joint probability density 
function. MI(x, y) measures the amount of information 
obtained by observing each random variable x or y rel-
ative to another and is equal to zero if and only if the 
random variables x and y are independent. As a result, 

Figure 1. The position of the electrodes on the head and the sequence diagram

A: Position of the electrodes on the head; and B: The diagram of the experimental design.

Figure 2. Symbolic depicting the concept of conditional mu-
tual information MI(X.Y|Z)
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MI(x, y) can measure the result of linear and nonlinear 
dependencies between random variables x and y. MI(x, 
y) can be rewritten using the concept of Shannon entropy 
according to Formula 7 (Vicente et al., 2011).

7. MI(x.y)=H(x)+H(y)-H(x.y)=H(x)-H(x│y)=H(y)-
H(y│x)

In Formula 3, H (x, y) is the joint entropy defined as 
Formula 8. Also, the conditional entropies H(x|y) and 
H(y|x) are defined by Formulas 9 and 10, respectively 
(Vicente et al., 2011): 

8. H(x.y)=-∑x.y p(x.y)log(p(x.y))

9. H(x│y)=-∑x.y p(x.y)log(p(x│y))

10. H(y│x)=-∑x.y p(x.y)log(p(y│x))

In Formulas 9 and 10, p(x│y) and p(y│x) are the con-
ditional probability density function x on condition y and 
y on condition x, respectively. 

Conditional mutual information MI (x.y|z) (or partial 
mutual information) is conditional on observing the 
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Figure 3. Effective connectivity indexes (TE, GC, PDC) between two EEG signals for one subject, and simultaneously the cor-
responding BIS and Ceff indexes. Four dashed vertical lines from left to the right showing times of “object time”, “LOC time or 
syringe-drop time”, “number time”, and “command time or recovery time”, respectively. 

Three states of awake (before object time), unconscious (after LOC time and before number time), and recovery (after com-
mand or recovery time) were assessed.

Figure 4. Scatter plot for the TE and BIS for 8 subjects during the entire experiment

The data points are fitted with TE=1.48 × BIS-0.619. The best-fit line is bold, and dotted lines correspond to the 95% confidence 
boundaries.
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random variable z on random variables x and y and is 
calculated by either of Formulas 11 and 12 (Vicente et 
al., 2011). Figure 2 illustrates the concept of conditional 
mutual information symbolically. 

11. MI(x.y|z)=∑x.y.z p(x.y.z)log 
(p(x.y|z)

p(x|z)p(y|z) =∑x.y.z 

p(x.y.z)log p(x.y.z)p(z)
p(x.z)p(y.z)

12. MI(x.y|z)=H(x.z)+H(y.z)-H(z)-H(x.y.z)

By combining the Wiener causality concept and the 
conditional mutual information MI (x.y|z), we present 
a nonparametric criterion for estimating causal connec-
tions with the name of TE (Vicente et al., 2011). Suppose 
two time series of x(t) and y(t) that (t= 1,…, L) are the 

observations of two random variables x and y, respec-
tively.or TE(x→y) shows that by assumption knowing 
the past observation of the random variable x, how much 
is added to the available information about the random 
variable y (Vicente et al., 2011) (Formula 13).

13. TE(x→y)=TExy=MI(y(t+τ)،x̄t
dx،τx |y̠t

dy، τy

x̄t
dx، τx =(x(t).x(t-τx)...x(t-(dX-1) τX ))

y̠t
dy، τy =(y(t).y(t-τy)...y(t-(dy-1) τy))

(x̄t
dx، τx ) and (y̠t

dy، τy ) are the past status vectors and the 
τX and τY , the present random variable. and are embed-
ding delay x and y and also and are embedding dimen-
sions x and y, respectively. Embedding dimension (d) is 
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Figure 5. The relationship between the effect site propofol concentration and (a) BIS (=0.8516) (b) TE (R2 =0.9318) values for the 
same above patient

Figure 6. Box plots of effective connectivity indexes (GC, PDC, TE) and BIS in awake, unconscious, and recovery states

 The 75th and 25th percentiles of the data in each state are denoted by the upper and lower lines of the box; the median of the data 
can be found as a line in the box. If any value is 1.5 times greater than the interquartile range, it is depicted with the (+) sign.
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the memory of the Markov process in each signal and is 
estimated by the false nearest neighbors’ method. Also, 
the embedding delay (τ) is the autocorrelation time of 
the signal.

2.4. Statistical analysis

Prediction probability statistical method (Pk) (Smith, 
Dutton, & Smith, 1996) is used to evaluate the ability 
of the measured index to predict the effective propo-
fol concentration (Ceff) (derived from pharmacokinetic/
pharmacodynamic [PK/PD] modeling) (McKay, Voss, 
Sleigh, Barnard, & Johannsen, 2006) with 2003 Excel 
software. Given the (Ceff) value S(k) and the effective 
connectivity index I(k), we choose two data points S(i) 
and S(j) (S(i) = S(j), (i = j), randomly. Then, we compare 
the monotony of I(i) and I(j) with the monotony of S(i) 
and S(j). We repeat the above steps for 500 times, then 
the is Pk defined as (Formula 14)

14. Pk= 
Pc+Pd+Ptx

Pc+Ptx

2

, where , Pc+Pd+Ptx , are the proportions that I(i) and 
I(j) are concordance, discordance, and an x-only tie, 
respectively. PK value of 1 indicates that the index can 
predict (Ceff) correctly 100% of the time, and there is a 
complete correlation between the index and the depth of 
anesthesia. Because of abnormal data distribution of the 
index values, we used the Kruskal-Wallis nonparametric 
test to determine the statistically significant difference of 
the index in the awake-unconscious and unconscious-re-
covery states of all subjects. This test is a series of analy-

sis variance tests used to compare two groups (or more) 
of the statistical society. The value of the P is a criterion 
of a significance test.

3. Results

We computed the effective connectivity between two 
dipolar EEG signals at positions of Fp1– F7 and C3– T3 
using TE index in 10-s windows for the entire period. For 
comparison, we have calculated two other methods of 
effective connectivity methods, i.e. GC and PDC meth-
ods, which have been used to study multi-channel EEG 
signals. The calculated values of the indexes for a subject 
and simultaneously the corresponding BIS and Ceff are 
demonstrated in Figure 3. TE index follows the changes 
in the propofol drug effect effectively. While GC and 
PDC indexes fail to track the changes due to their linear 
analysis methods. Figure 4 shows the scatter plot of TE 
and BIS in eight volunteers (1072 data points). Data are 
fitted by a linear line as TE =1.48×BIS-0.61. Also, TE 
and BIS in all subjects during the whole procedure have 
the Pearson correlation coefficient of 0.88 that shows the 
high relationship between these two indexes.

The results show that the propofol significantly de-
creases both TE and BIS index in a concentration-de-
pendent manner. But, the TE index tracks faster than BIS 
during the change from awake to unconscious status in 8 
subjects (average of 68 s) and has a shorter delay. Also, 
the BIS index shows some irregular upward trends about 
290-340th s and 360-400th s, while this deviation is less 
seen in the TE index. So, the TE index is more robust 
than BIS to artifacts.

Table 1. Pk values of GC, PDC, BIS, and TE indices with Ceff in all subjects

No. 
Mean±SD

BIS TE GC PDC

1 0.686±0.020 0.826±0.023 0.722±0.017 0.431±0.026

2 0.782±0.021 0.877±0.007 0.680±0.023 0.681±0.021

3 0.782±0.015 0.844±0.015 0.685±0.014 0.708±0.021

4 0.710±0.024 0.754±0.020 0.501±0.028 0.519±0.023

5 0.756±0.034 0.880±0.019 0.545±0.030 0.522±0.032

6 0.694±0.027 0.864±0.009 0.610±0.025 0.554±0.028

7 0.784±0.029 0.861±0.010 0.704±0.032 0.664±0.034

8 0.822±0.017 0.865±0.014 0.731±0.011 0.657±0.022

Mean 0.752±0.023 0.846±0.014 0.024±0.646 0.025±0.592
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To evaluate the ability of Ceff prediction of using the 
proposed method, is computed for all subjects. Accord-
ing to Table 1, the Pk values of GC, PDC, BIS, and TE 
indexes with Ceff are 0.46, 0.59, 0.75, and 0.84, respec-
tively. TE has the highest value of Pk among effective 
connectivity indexes. Also, Pk value between the TE in-
dex and the Ceff (0.84) is higher than BIS and Ceff (0.75) 
which represents the ability of this index to predict Ceff 
flawlessly. The significance of differences between Pk s is 
tested statistically using the paired t-test. This difference 
between TE with other indices is statistically significant 
(P<0.001) and implies that TE has a convincing ability to 
follow the propofol effect-site concentrations. Moreover, 
the relationship between BIS and TE values with effect-
site drug concentration Ceff is demonstrated for the same 
subject in Figure 5. A sigmoid curve is fitted to the data 
that describes the relationship between the index and 
drug concentration effect. As shown in this Figure, with 
increasing drug concentration, both indexes (BIS, TE) 
decrease uniformly. The goodness-of-fit between the TE 
and the Ceff (R

2=0.931) is significantly higher than that 
between BIS and Ceff (R

2=0.851).

The ability of the presented index to differentiate awake, 
unconscious, and recovery states is very important for 
DOA monitoring. GC, PDC, BIS, and TE index over 
10-s windows at these three states are computed. Figure 
6 shows the box plots of these computed indexes. As seen 
in Figure 6, the variability in TE compared to the BIS 
index is significantly smaller at the unconscious and re-
covery states. It demonstrates that the TE index had more 
robustness to noise during the anesthesia. Moreover, as 
you can see in Table 1, the TE index performed better in 
following the Ceff than BIS and the variability in Pk value 
of TE index compared to BIS index is significantly small-
er. It demonstrates that the sensitivity of the TE index to 
noise is lower than BIS. To evaluate the significant differ-
ence, we used the Kruskal-Wallis test, and the P value of 
each index was determined in different anesthesia states 
(Table 2). As you see in Figure 6 and Table 2, TE could 

differentiate awake-unconscious and unconscious-recov-
ery states very well. However, other connectivity indexes 
cannot make a difference appropriately, particularly be-
tween unconscious and recovery states. Finally, TE rather 
than BIS index has a lower P value at awake-unconscious 
states and also in unconscious-recovery states that indi-
cate its superiority over BIS.

4. Discussion

We presented a new nonparametric and nonlinear effec-
tive connectivity approach called TE index between two 
dipolar EEG signals at positions of Fp1–F7 and C3–T3 as 
a significant index for describing the neurophysiological 
mechanisms of anesthetic drugs during anesthesia. This 
index can significantly trace the changes of propofol drug 
effect-site and recognize well the awake-unconscious 
states, as well as unconscious-recovery states of the 
patient while other effective connectivity indexes (GC, 
PDC) fails to trace changes during anesthesia (Figures 3, 
6; Tables 1, 2). So, the TE indicator is a suitable measure 
to evaluate the dynamic signal EEG during anesthesia.

Different statistical methods have been presented for 
estimating the causal or brain effective connectivity. GC 
methods limit the causal connections pattern to specific 
templates based on the estimation of linear parameters 
of the MVAR model for individual signal data. While 
the dynamics of brain connections are unclear and it is 
difficult to simply isolate the nature of brain connections 
with a predetermined limiting model. Consequently, us-
ing these methods leads to an incorrect estimating of 
brain connection, and nonlinear methods of effective 
connectivity must be used. By combining the Wiener 
causality concept and the conditional mutual informa-
tion in the context of information theory, we present an 
important nonparametric and nonlinear criterion for esti-
mating causal connections, i.e. TE. This index does not 
assume any particular model and can define linear and 
nonlinear connections existing in a system quantitative-

Table 2. P-values of effective connectivity indexes (GC, PDC, TE) and BIS in awake- unconscious and also unconscious-recovery states

Indexes Awake-Unconscious Unconscious- Recovery

BIS 0.0004 0.003

TE 0.000009 0.0004

PDC 0.988 0.812

GC 0.025 0.210
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ly. TE needs much less computational time (0.21 s) than 
GC (0.47 s) and PDC (0.53 s) and, due to its nonlinear 
nature, can appropriately identify directional connectiv-
ity (Vicente et al., 2011). So, TE as a nonlinear effective 
connectivity method is a powerful tool for understanding 
the neurophysiological mechanisms of anesthetics.

Nonlinear effective connectivity in neuronal networks 
is an essential feature for finding the interaction between 
separate cortical signals in different brain regions. Propofol 
changes the information flow in the brain and the process 
of losing consciousness and awareness during the anesthe-
sia period to decrease intravenous. So, the results show that 
the TE index has a good ability to trace the changes of pro-
pofol drug effect-site during the entire experiments.

The result shows that TE index compared to BIS (as an 
anesthesia depth commercial monitor based on the sin-
gle channel of EEG) has several advantages. First, BIS 
calculation is very complex and takes more time than our 
method. Second, unlike BIS, the TE index is much more 
resistant to noise without complex calculations. Third, 
the TE index responds faster reaction (about 68 s) on the 
change from awake to unconscious state. Fourth, the TE 
index has less irregularity than BIS in the unconscious 
state during the anesthesia (Figure 3). Fifth, the TE in-
dex can discriminate different states of unconsciousness 
better than BIS (Figure 6, Table 2). Finally, based on the 
statistical method of and goodness-of-fit R2, TE index 
has a higher correlation coefficient with the Ceff than BIS 
index (Table 1, Figure 5). All advantages mentioned in 
this section represent that the TE index estimates the 
drug concentration dynamic better than the BIS index. 
Also, there is some information in the connection be-
tween EEG channels that cannot be extracted from only 
one EEG channel in BIS calculation.

The following two points should be considered in the 
future. In this study, EEG signals were evaluated in only 
8 subjects with propofol anesthesia. It is better to record 
more subjects. Although, noteworthy results demon-
strate that the differences are comparatively substantial. 
Second, due to the recorded limitations of EEG in the 
operation room, only two channels of EEG from the 
frontal and temporal parts of the brain were recorded. It 
is better to use several EEG channels and select the best 
choice to evaluate the anesthesia depth better. 

This study shows that the nonlinear effective connec-
tivity index, called TE between pair signals of EEG at 
frontal and temporal regions, can effectively trace the 
changes in propofol drug effect and estimates the pa-
tient’s unconscious states. TE index is also better than 

BIS as a single channel commercial index in the clinical 
setting due to its faster response and higher correlation 
with the drug concentration effect-site, less irregularity 
in the unconscious state, and a better ability to discrimi-
nate between the three states of anesthesia. Thus, the TE 
index is a confident and effective connectivity indica-
tor for designing a new monitoring system of two EEG 
channels for the depth of anesthesia estimation.
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