
Summer 2011, Volume 2, Number 4

67

Basic and Clinical

              1. Introduction

unctional magnetic resonance imaging 
(fMRI) is a safe and non-invasive tool to as-
sess the brain functions by using the signal 
changes associated with functional brain ac-
tivities. fMRI is a relatively new procedure 

which  measure tiny metabolic changes which occur in 
an active part of the brain using magnetic resonance im-
aging. fMRI is becoming a diagnostic method for learn-
ing how normal, disease or injured brain performs, in 
addition to, for assessing the potential risk of surgery 
or other invasive treatments on the brain (Poldrack et 
al., 2011). Neuroscientists and physicians carry out 
fMRI experiments to determine precisely which part 
of brain is active for critical functions such as thinking, 
speech, motion, sensation and attention, to assess the ef-
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fects of stroke, trauma or degenerative diseases (such 
as Alzhiemer’s Disease) on brain function, to monitor 
the growth and the activity of the brain tumor regions 
and to plan surgery, radiotherapy or other surgical treat-
ments of the brain.

After designing an fMRI paradigm and running the ex-
periment and the data collection, various analysis steps 
must be applied on resulting data before the neurosci-
entists and physicians can achieve answers to the ques-
tions about activities corresponding to the experiment. 
The goal of computer-based analysis is to determine 
automatically, those parts of the brain which respond to 
stimuli that presented to the subjects. The fMRI analysis 
methods are composed of several basic stages: Pre-pro-
cessing, signal detection and description and extraction 
of the brain connectivity.
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The goal of preprocessing is to eliminate different 
kinds of artifacts such as motion correction. Pre-pro-
cessing consist of spatial or temporal filtering of fMRI 
data and improving the image resolution (Amaro-Jr et 
al., 2006). After preprocessing, signal detection is car-
ried out. The purpose of signal detection is to determine 
which voxels are activated by the stimulation and it is 
commonly achieved by applying a test statistic. The out-
put of this stage is an activation map which indicates 
those parts of brain which have been activated in re-
sponse to the stimulus. The purpose of signal descrip-
tion is modeling the BOLD response shape by several 
parameters and relating these parameters to the descrip-
tion of the stimulation context. Finally, the connectivity 
analysis tries to estimate brain networks.

The aim of this paper is to provide an overview of sta-
tistical analysis methods for fMRI data which have been 
developed to accomplish the above stages. The paper has 
been organized as follows: section 2 provides an over-
view of the kind of fMRI paradigms (block, event related 
and mixed design). Section 3 gives an overview of the 
pre-processing methods that are used in fMRI analysis. 
Section 4 provides an overview of the statistical analysis 
methods (univariate and multivariate methods). We pro-
vide a summary and conclusions in Section 5.

2. fMRI Paradigms

The different types of stimulus designs are used in the 
studies of fMRI. There are mainly three types of para-
digms for the fMRI experiments namely the blocked, 
the event-related or the mixed designs. Depending on 
the type of a study that is performed, one of these stim-
uli designs are selected (Amaro-Jr., 2006).

2-1- Blocked Paradigms

In the fMRI experimental paradigm, the block design 
was the first type that was used. To localize the func-
tional brain areas and to study the brain state processes 
(e.g attention), usually blocked designs are used. The 
blocked design is several distinct epochs of “on-off” 
periods (Fig.1a) in which  “on “ is referred to stimuli 
presentation period and “off” is referred to a state of 
rest or baseline period. The "on-off" periods are alter-
nated to reduce the variations that might occur during 
the experiment (because of subject movements, scan-
ner sensitivity or attention shifts). Blocked designs are 
powerful methods in terms of the signal detection, i.e. to 
determine which voxels are activated during an experi-
ment (Fig1.a).

2-2- Event Related Paradigms

Event-related paradigm is one of the stimulus designs 
that is used to study the human brain activities in re-
sponse to mental tasks (Kao, 2009). It differs from 
blocked paradigm in measuring the individual trial 
events. In Event-related designs each one of the events 
can occur at any point in the scanning session. In other 
words, different trials or stimuli are presented in arbi-
trary sequences (Fig1.b). This paradigm has the advan-
tage of yielding temporal information about the under-
lying neuronal activity.

2-3- Mixed Designs

A combination of block and event-related designs can 
investigate interaction between processes that work at 
different time-scales (Otten et al.,2002). This technique 
is an interesting mixture of the characteristic block de-
sign measurement of repetitive sets of stimuli and the 
transient responses detected by the event-related de-
signs. It allows to extract the brain regions exhibiting 

Figure 1. Different experimental designs reflect different ex-
perimentally defined boundary points. (a) Blocked designs 
measure the total response (black trace) to a series of stimuli 
(red and blue rectangles) presented during task blocks. (b) 
Event-related designs randomly intermix stimuli to allow 
the recovery of trial specific activities.(c) mixed designs com-
bine the features of the blocked and the event-related de-
signs, revealing both trial-related and task-related activities.
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an item-related pattern of information processing (tran-
sient), or a task-related information processing (sus-
tained) ( Donaldson.,  2004) (Fig1.c).

3. Pre-Processing

Before statistical analysis and signal detection, it is 
necessary to improve the signal quality by preprocess-
ing the raw data obtained from the MRI scanner, includ-
ing artifact detection, baseline correction, movement 
correction, and image restoration. The pre-processing 
step applies different image and signal processing tech-
niques to reduce the noise and the artifacts of the raw 
fMRI data. The pre-processing steps are applied indi-
vidually in particular orders to the fMRI data (Fig. 2). 

the first functional image. Second, these parameters are 
calculated and they are applied to the functional images. 
The new voxel values can be obtained by interpolation 
of the data points.

3-2- Slice Timing Correction

Nearly all fMRI data are collected using two-dimen-
sional MRI acquisition, in which the data are acquired 
one slice at a time, with the timing of the slice acqui-
sition evenly spread over the repetition time (TR). In 
some cases, the slices are acquired in ascending or de-
scending order. In another known method as interleaved 
acquisition, every other slice is acquired sequentially 
(fig.3). These differences in the acquisition time of dif-
ferent voxels are problematic for the analysis of fMRI 
data. The goal of slice timing correction is to adjust the 
voxel time series so that common reference timing ex-
ists for all voxels. The time corresponding to the first 
slice is often chosen to be the reference (Henson et al., 
1999).

3-3- Intensity Normalization

The goal of the intensity normalization is the rescale 
of the mean intensity of the fMRI signals in order to 
compensate for variations of global signal both within 
sessions and between sessions (Andersson., 1997). In 
the first case, normalization tries to compensate changes 
of intensities with time, while in the latter case the com-
pensation is for the changes from session to session.

Figure 2. fMRI data preprocessing block diagram.

3.1. Realignment (Motion Correction)

If the subjects move their head during the fMRI exper-
iment, the brain position will vary in all time series of 
functional images. The goal of realignment is to align all 
functional images to a reference image to have the same 
coordinate for all voxels in all time series and have com-
mon orientation for all images. Normally the first image 
is chosen as the reference image and then every image 
in the series will be registered and re-sampled to be in 
the same orientation as the first image (Andersson et al., 
2001). For realignment two steps are considered: First, 
the head movement can be described by three rotation 
parameters (x, y, and z axis) and three translation pa-
rameters (left-right, up-down, and forward-backward). 
These parameters are needed for a rigid-body transfor-
mation (the size of the brain is kept constant) of the im-
ages to a user-selected functional image, that is typically 

Figure 3. A depiction of slice timing in an interleaved MRI 
acquisition. The slices are acquired in the order 1-3-5-7-2-4-6-
8; the times on the right show the relative time at which the 
data in the slice starts being acquired, assuming a repetition 
time of 2 seconds.
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3-4- Temporal Filtering 

The goal of temporal filtering is to remove unwanted 
components of a time series, without damaging the sig-
nal of interest. The temporal filtering deals with each 
voxel’s time series separately, instead of each (spatial) 
volume separately, as in spatial filtering and intensity 
normalization. This step of the pre-processing chain is 
applied after that all steps of  spatial processing is done 
since temporal filtering like high pass filtering (Hu, 
1995) removes the mean signal, which is often critical 
for the previous stages such as motion correction or in-
tensity normalization.

 4. Statistical Analysis Methods

At the pre-processing stages, the quality of the fMR 
images is improved. After that, statistical analysis is at-
tempted to determine which voxels are activated by the 
stimulation. Most fMRI studies are established upon 
the correlation of hemodynamic response function 
with stimulation. Activation defines the local intensity 
changes in the images. These methods can be grouped 
into two broad categories: the univariate methods (hy-
pothesis testing methods), and the multivariate methods 
(exploratory methods). 

The univariate methods attempt to define which vox-
els can be characterized as activated given one signal 
model. This allows the parameterization of the response 
and then the estimation of the model parameters. The 
univariate methods are widely used to analyze brain 
images obtained from fMR imaging. In these methods, 
signal estimation and the presence or the absence of 
activation are defined by the statistical test. One of the 
typical methods is Statistic Parametric Mapping (SPM), 
which is based upon the hypothesis of linear correla-
tion between neuro-activities and the tasks (Friston et 
al., 1994). 

Multivariate methods are also applied to fMRI data 
analysis, which extract information from dataset, often 
with any prior knowledge of the experimental condi-
tions. They use some structural properties, such as 
decorrelation, independence, similarity measures, that 
can discriminate between features of interest present 
in the data. Unlike the univariate methods which carry 
out voxel-wise statistical analysis, multivariate methods 
provide statistical inference about the whole brain so as 
to describe brain responses in terms of spatial patterns 
(Pekar et al., 2001). A wide range of multivariate statis-
tical methods is being increasingly employed to analyze 
the fMRI time series. fMRI data are essentially multi-

variate in nature, since information about thousands of 
measured locations (voxels) are being impacted in each 
scan (Formisano et al., 2008). Those methods aim at 
summarizing the spatial and temporal structures of the 
data. Most of these techniques are based on Singular 
Value Decomposition (SVD) that assumes separability 
between time and space. As the distribution of brain re-
gions are involved in a task, it seems to be desirable to 
use the spatially distributed information from different 
areas to understand a brain function. So the multivariate 
approaches seem to be interesting in this case to con-
sider the spatially distributed information.

4-1- Univariate Analysis

The univariate or voxel based analysis approaches 
have been traditionally used to analyze neuroimaging 
data. Here we briefly describe the most common uni-
variate approach that is widely used for the fMRI data 
analysis namely the generalized linear model (GLM).

4-1-1- Generalized Linear Model (GLM)

The GLM approach for the analysis of neuroimag-
ing data was first proposed by Friston et al. (Friston et 
al., 1995) and the vast majority of fMRI data analysis 
techniques employed by neuroscientists use a GLM of 
one form or another. The GLM is one of the most com-
mon approaches in fMRI statistical analysis which is the 
construction of a model that describes the way in which 
the BOLD response depends on the stimulus. In general 
linear modeling first a model must be set up and then 
this model has to be fit to the data. It consists of two 
parts: the fixed effects and the random error. The fixed 
effects are the part of the model that do not vary if the 
experiment is repeated. The random error is related to 
the part that describes how the observations vary, even 
if the experiment is repeated on the same subject and 
under the same conditions. The mathematical formula 
of GLM is given by the following formula:

Y=Xβ+e

Where Y is a matrix representing the time series of 
all the voxels, X is the deign matrix of the predictor 
functions, β are the unknown coefficients of the predic-
tions (The calculated β-weights then tell us the relative 
heights, or amplitudes, of the different assumed predic-
tor functions), and e is the error, usually supposed to 
be normally distributed with zero mean and variance σ2 
(independent and identically distributed). The error e 
may have a constant or a non-constant variance, as well 
as, a nonzero covariance. Signal changes in active areas 
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(stimuli presented at each time point) are explained by 
the column of the design matrix of X.

The basic GLM is usually applied under the follow-
ing assumptions: voxels are independent, time points 
are independent, the error variance at each time point 
is the same, and for every voxel in the brain the same 
model is allotted (Lazar, 2008). The estimates of β, un-
der these assumptions, can be achieved by the ordinary 
least squares (OLS). Thus, the estimated parameters are 
given by:

                            β = (XT X)-1 XT Y 

  The estimated parameters define how well the model, 
described in the design matrix, fits the time series of 
each voxel. The statistical research in fMRI has focused 
on ways to improving and extending the GLM. 

4-2- Multivariate Analysis

In this subsection we briefly describe the most com-
mon multivariate methods that are applied for the fMRI 
data analysis. These approaches include principal com-
ponent analysis (PCA), independent component analy-
sis (ICA) and multi-voxel pattern analysis (MVPA).

4-2-1- Principle Component Analysis (PCA)

The principal component analysis (PCA) is one of 
the best-known methods for matrix decomposition. 
The PCA is used in two aims: the data reduction and 
the interpretation (Press., 2005). The PCA is a statis-
tical method to determine a set of components for re-
expressing a dataset that are uncorrelated, or orthogonal 
to one another. The first principal component is corre-
sponding to the linear combination of variables in the 
direction through the original data that has the greatest 
amount of variance. The second principal component 
is linear combination of the direction that accounts for 
the next greatest amount of variance and is uncorrelated 
(orthogonal) with the first principal component. Further 
components are the linear combinations that maximize 
the variability and are orthogonal to all previous ones. 
The number of components is the minimum of the num-
ber of dimensions or observations; in fMRI data, there 
are generally many more dimensions (voxels) than ob-
servations (time points or subjects) so the number of 
component is equivalent to the number of observations. 
PCA can also be used as a data reduction technique.

To perform PCA on fMRI data, the data must be rear-
ranged into a two dimensional matrix, with voxels as 

columns and time-points/subjects as rows. When PCA 
applied to fMRI data, it will provide a set of components 
that have a value for each time-point. Each component 
determines the contribution of a voxel in the data. The 
PCA of the fMRI data is often carried out through a 
SVD technique after centering the dataset. SVD simply 
decomposes the dataset into mutually orthogonal spa-
tio-temporal components (Viviani et al., 2005).

4-2-2- Independent Component Analysis (ICA)

When the time course of the hemodynamic response 
can be inferred apriori, it is useful to utilize model-
based approaches. The recent application of indepen-
dent component analysis (ICA) to fMRI data has pro-
vided a useful approach (McKeown., 1998). When ICA 
is applied to the fMRI data, the statistically independent 
components can be derived either in the spatial or in 
the temporal domain but not in both. The ICA uses in-
formation available in higher moments; hence it does 
not assume normality. Application of ICA involves two 
main preprocessing steps, data reduction and whitening. 
Formally, the ICA model is defined as:

X=AS

where X is the signal that we are trying to decompose, 
S is a set of unknown sources (or components), and A is 
the unknown mixing matrix that combines the compo-
nents to obtain the observed signal. Because both A and 
S are unknown we will make assumptions about the re-
lation between the different components in S. If we as-
sume that they are orthogonal and Gaussian, then PCA 
can solve the problem. However, if the signals from the 
different sources are not orthogonal and Gaussian then 
PCA will not be able to find them (Sarty., 2007).

The ICA method has the assumption of statistically in-
dependent components in S. In the case of independent 
neural processes in fMRI signals, the ICA method has 
more ability than the PCA approach in identifying the 
component sources because in this case it is more likely 
that the components are non-Gaussian.

4-2-3- Multi-Voxel Pattern Analysis (MVPA)

Cognitive neuroscience aims to find an answer to the 
following question: "how mental representation relates 
to the pattern neural activity". Recently, researchers 
could find a new approach to address this question, with 
the goal of decoding the information that is represented 
in the subject’s brain at a particular point in time, by 
applying pattern-classification algorithms to distrib-
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uted patterns (Norman et al., 2006) of fMRI data. This 
approach has been named multivoxel pattern analysis 
(MVPA). MVPA method allows us to sensitively detect 
and track cognitive states and characterizes how these 
cognitive states are represented in the brain. In com-
pared to the conventional statistical analysis approach-
es, MVPA method has the advantage of higher sensitiv-
ity in discriminating perceptual and cognitive states.

The basic MVPA method applies the pattern classifi-
cation techniques to classify the voxels, where the pat-
terns to be classified are vectors of voxel activity values. 
There are five basic steps in a MVPA approach (fig4):

Step 1. Feature Extraction: In applying pattern clas-
sification algorithms to the fMRI data, it is necessary to 
obtain a good estimate of “activity” at each voxel that 
forming the feature vector (X), because brain activity 
measured in response to a stimulus or a cognitive state 
is represented as a point in a multidimensional space of 
voxels (MV), so this multidimensional matrix is trans-
formed into a long vector of features (voxels) of the ac-
tivities.

Step 2. Feature Selection: The performance of pattern 
recognition applications typically depends on the num-
ber and quality of the voxels that are given to the classi-
fier. The feature selection approaches choose the voxels 
that have more information about the mental task. There 

are many methods for the feature selection, including 
the T-test, f-score, ANOVA, the recursive feature evalu-
ation methods (RFE), Voxel activation criteria, SVM 
(support vector machines) etc. ( Kuncheva et al., 2010) .

Step 3. Pattern Assembly: The third step involves sort-
ing the data into discrete ‘brain patterns’ corresponding 
to the pattern of activity across the selected voxels at 
a particular time in the experiment. Brain patterns are 
labeled according to which experimental condition gen-
erated the pattern; this labeling procedure needs to ac-
count for the fact that the hemodynamic response mea-
sured by the scanner is delayed and smeared out in time, 
relative to the instigating neural event (Norman., 2006).

Step 4. Classifier Training: The fourth step involves 
feeding a subset of these labeled patterns into a multi-
variate pattern classification algorithm. Based on these 
patterns, the classification algorithm learns a function 
that maps between voxel activity patterns and experi-
mental conditions. There are different kinds of classi-
fiers that can be used for this aim including SVM, NB 
(Naïve Bayesian), k-NN (k-Nearest Neighbor), LDC 
(linear discriminant classifier), decision tree classifiers, 
multilayer perceptron etc. (Kuncheva et al, 2010).

Step 5. Generalization Testing: Given a new pattern of 
brain activity, this step predicts the label of the experi-
mental condition that has generated the activity.

4-3- Connectivity Analysis

Finding the answer to the question 
"whether two or more regions of the 
brain are associated with each other" 
is important. Activation pattern of the 
blood-oxygen-level-dependent (BOLD) 
response to task and the strength of 
the interconnections between function-
ally active regions of the brain can be 
determined by functional connectivity 
analysis. Effective connectivity analysis 
allows investigating of how a neural net-
work changes in its connections between 
sites during an experiment. Changes in 
the connection strength between regions 
in the brain can occur independently of 
changes in response amplitude and ex-
tent in the region. Structural equation 
Modeling (SEM) is the technique that is 
used to estimate the strength of the con-
nection between different brain regions 
(McIntosh et al., 1994). SEM uses a pri-

Fig4. Main steps of a generic pattern recognition algorithm as used in fMRI data 
analysis. In the training phase (left), the raw fMRI data are preprocessed and 
relevant features are selected from the data prior to model training. Prediction 
(right) is performed using the trained model on a new data set, after this latter 
has been preprocessed in the same way and reduced to same features as in the 
training.
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ori model for the regions in the network and their con-
nections based on anatomical information. Buchel and 
Friston improved the SEM method (Buchel et al., 1997) 
to examine modulation of the connectivity between the 
visual cortex and the posterior parietal by the level of 
activity of the prefrontal cortex. 

 Summary and Conclusions

After designing and performing an fMRI experiment, 
various analysis steps must be applied to the resulting 
data before the experimenter can get answers to the 
questions about experimentally related activations at the 
individual or multi-subject level.

 In this paper, we have described the preprocessing 
stages, univariate and multivariate techniques as em-
ployed in functional MRI data analysis. After com-
pleting the data collection using the fMRI, first step of 
analysis is to apply the preprocessing stages to the data 
to prepare them for different analysis methods. Tradi-
tional analysis methods for the fMRI data are univariate 
or voxel based analysis approaches, which rely exclu-
sively on the information contained in the time course 
of individual voxels. These approaches are limited in 
their ability to describe differences between groups 
because they are significantly biased toward detecting 
group differences that are highly localized in space and 
linear in nature. Therefore, they are significantly less 
effective and appropriate in cases for which the group 
differences are spatially distributed and subtle. Since the 
fMRI measures the information about the brain activity 
at thousands of different voxels, the nature of function-
al MRI data is multivariate. As the brain functions are 
considered as activities in a network of different brain 
areas and regions, and the information is processed in a 
distributed manner in the brain, the multivariate pattern 
recognition methods are very proper approaches for a 
better understanding of brain functions.
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