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Introduction: Retinal Pigment Epithelium (RPE) layer deterioration is a leading cause of Age-
Related Macular Degeneration (AMD), i.e., the most significant reason for irreversible blindness. 
The present study aimed to track the Neurosphere-Derived (NS) from Bone Marrow Stromal Stem 
Cells (BMSCs) grafted into the sub-retinal space (destruction of the RPE layer by sodium iodate).

Methods: RPE degeneration model was performed using the injection of 5% sodium 
iodate performed in the retro-orbital sinus of Wistar rats. BMSCs were extracted from the 
examined rat femur and induced into NS, using EGF, bFGF, and B27. BrdU-NS labeled 
cells were transplanted into the sub-retinal space. For detecting BMSCs and NS markers, 
immunocytochemistry was performed. Moreover, immunohistochemical was conducted for 
tracking the transplanted cells in the RPE and sensory retina.

Results: The immunocytochemistry of BMSCs cells displayed the expression of mesenchymal 
stem cells markers (CD90; 99%±1), CD166 (98%±2), CD44 (99%±1). Additionally, the 
expression of neural lineage markers in NS, such as SOX2, OCT4, Nanog, Nestin, and 
Neurofilaments (68, 160, 200) revealed the differentiation from BMSCs. Tracking BrdU-NS 
labeled suggested these aggregations in most layers of the retina.

Conclusion: Our study data indicated that BMSCs derived neurosphere had the potential to 
migrate in injured retinal and integrate into the neurosensory retina. These data can be useful in 
finding safe cells for replacement therapy in AMD.
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1. Introduction

ge-Related Macular Degeneration (AMD) 
is the most prominent reason for visual dis-
orders among the elderly in advanced com-
munities; it occurs in populations over the 
age of 50 years (Paulus & de Jong, 2006; 

Weed & Mills, 2017). Commonly, the risk factors for this 
condition are smoking cigarettes, diet, gender, and fam-
ily history (Ambati, Ambati, Yoo, Ianchulev, & Adamis, 
2003; Chen et al., 2016). The macula is a highly sensitive 
part of the retina and does not exist in rodents (Franco et 
al., 2009; Machalińska et al., 2010). Therefore, animal 
models are diminished for this disorder. There is no ideal 
model for investigating AMD; however, models with a 
pathology like human disease are proper (Enzmann et al., 
2006; Pennesi, Neuringer, & Courtney, 2012). Numer-
ous pathological appearances are similar in human and 
animal models. For example, the formation of drusen, 
thickening of Bruch membrane, the degeneration of the 
retina, choroidal Neo-Vascularization, and the degenera-
tion of PRE layer in different parts. 

There is no pharmacotherapy for patients with AMD. 
Macular translocation and RPE transplantation surgeries 
decrease visual loss and improve vision in some patients 
(Stanga et al., 2002). Studies demonstrated that normal 
RPE can ease the survival of photoreceptors; it supports 
the potential for use of stem cells and RPE derivatives, 
like resources for AMD treatment (Song et al., 2018). 
Using the ability of stem cells to replace and repair 
damaged tissue in AMD and Retinitis Pigmentosa (RP) 
was suggested. The therapies stem cell-based can either 
replace the Retinal Pigment Epithelium (RPE), or the 

neurosensory retina (Lee & MacLaren, 2011). Several 
studies assessed the potential and effect of stem cells and 
RPE transplantation to therapy of AMD.

Replacing the injured cells of the retina with stem cells, 
i.e., renewables and differentiable is proposed as a strategy 
(Parameswaran & Krishnakumar, 2017; Park et al., 2017; 
Schwartz, Nagiel, & Lanza, 2017). It has done multiple 
considerations to identify the best of the cell for transplan-
tation in the retina. Likewise, the ordering of cells provides 
a convenient space for sub-retinal injection. Different cells 
were manipulated to generate PRE cells and photorecep-
tors (Mead et al., 2015; Park et al., 2017; Trounson & Mc-
Donald, 2015; Weed & Mills, 2017).

Fully-Differentiated cells may be useful for transplants 
to replace RPE or photoreceptors cells in the retina. 
However, fully differentiated cells may be less likely 
to survive and migrate into the host tissue. Neural stem 
cells can differentiate into neural linage cells, such as 
a neuron, astrocytes, and oligodendrocytes. Therefore, 
neurosphere and neural stem cells seem to be more use-
ful than fully differentiated cells for retinal diseases (Yu 
et al., 2008) like AMD. There is a limitation to generate 
the neurosphere from the brain donors; however, mes-
enchymal stem cells (BMSCs, ADSCs, etc.) (Li, Liao, 
Gong, Yuan, & Tan, 2009) can differentiate into the cell 
the express neural and glial markers, advising these cells 
could be used for retinal degenerative diseases, like 
AMD (Ferroni et al., 2012; Fu et al., 2008; Kaka, Tiraihi, 
Arab, & Azizzadeh, 2009; Liu et al., 2013; Wu et al., 
2003; Yang et al., 2010). 

Highlights 

● Differentiation of bone marrow stromal stem cells into Neurosphere.

● Migration of BMSC derived Neurosphere into the neurosensory retina.

● Survival, migration, and integration of BMSC derived Neurosphere in Subretinal space.

Plain Language Summary 

Age-Related Macular Degeneration (AMD) is a common condition leading to blindness. Different types of stem cells 
are used to replace lost cells during this disease. Among them, neural lineages stem cells are the most convenient cells 
because of their origin. These cells turn to retinal pigment epithelium and neurosensory retina as in embryological 
time. It seems that transplantation of neurosphere, a neural linage stem cell, could be a promising procedure to study 
the restoration mechanism in AMD.

A
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Retinal and RPE layers originate from the neural tube 
during the embryonic period; thus, we hypothesized that 
BMSCs-derived neurosphere can migrate and differen-
tiate into RPE/retinal cells. Therefore, this study inves-
tigated survival and migration into the RPE layer and 
neurosensory retinal. 

2. Methods

All of the procedures on the Wistar male rats (Razi 
institute, Iran, Tehran), including euthanasia, were per-
formed per the Association for Vision Research and Oph-
thalmology (ARVO) statement for the use of animals in 
ophthalmic and vision research and with the Helsinki 
Declaration of 1975, as revised in 2013. Twenty rats 
were housed with a 12:12h light⁄dark cycle. The animals 
were randomly divided into the experimental (received 
cells into sub-retinal space, n=10) and control (without 
cell injection, n=10) groups. 

RPE degeneration was performed with some modifi-
cations (Aboutaleb et al., 2017). Briefly, Sodium iodate 
(Sigma, St. Louis, MO, USA) was dissolved in Phos-
phate-Buffered Saline (PBS) to 2.5 μg/mL and stored at 
4°C. The explored animals were anesthetized and pu-
pillary dilation was achieved with 0.5% phenylephrine 
eye drop and 0.5% tropicamide (Santen, Osaka, Japan). 
NaIO3 was injected using an insulin needle at 45° to the 
nose into the retro-orbital venous plexus, after complete 
dilatation of the pupil. 

For performing cell culture, the BMSCs were pre-
pared from the bone marrow of the Wistar male rats 
(6- to 8-week-olds) according to the method previously 
described (Darabi et al., 2013). The bone marrow was 
obtained from the tibias and femurs with a 5 mL sy-
ringe containing Dulbecco’s modified Eagle’s medium 
(DMEM-GIBCO-BRL, Eggenstein, Germany). The 
freshly isolated cells were resuspended in a DMEM 
supplement containing 10% fetal bovine serum (FBS: 
GIBCO-BRL, Eggenstein, Germany), 100 U/mL peni-
cillin G, and 100 mg/mL streptomycin sulfate (penicil-
lin/streptomycin: GIBCO-BRL, Eggenstein, Germany). 
Next, they were added to T25 flasks (Nunc, Wiesbaden, 
Germany). The non-adherent cells were removed after 
24h. The adherent ones were used as the primary culture 
and were used after the third passage. Furthermore, the 
characterization of the BMSC was conducted according 
to a previous study (Darabi et al., 2013). The BMSCs 
were characterized using the primary antibodies (Table 
1). This method was performed as mentioned in the im-
munocytochemistry procedure.

For neurosphere generation and labeling, the genera-
tion of neurospheres from the BMSC was conducted 
as previously explained (Darabi et al., 2013). The har-
vested BMSCs (104 cells/cm2) at the third passage were 
seeded into 6 wells in neurosphere production medium 
consisting of DMEM/F12 supplemented by EGF (20 ng/
mL) (Sigma-Aldrich, Germany), 2% B27 (Invitrogen, 
Karlsruhe, Germany) and 20 ng/mL of basic fibroblast 
growth factor (bFGF; Chemicon, Hofheim, Germany). 
The characterization of the neurospheres was performed 
by the primary antibodies (Table 2). For labeling, add-
ed BrdU to the culture medium for a concentration of 
7.81µL/2.5mL medium and incubated at 37°C for 72h. 
The technique was carried out for the characterization of 
neurosphere cells and BrdU labeling detection as men-
tioned in the immunocytochemistry section.

The transplantation of BMSCs into the subretinal 
space was performed as follows: Sub-retinal space in-
jection was conducted according to a previous study 
(Aboutaleb et al., 2017). Briefly, the examined rats were 
injected with 40 mg/kg of sodium iodate (Sigma) into 
the retro-orbital sinus. Besides, the study animals were 
prepared for cell transplantation 30 days later. Rats were 
anesthetized with topical 1% proparacaine eye drops 
(Santen) and intraperitoneal 2% pentobarbital (40 mg/
kg; Santen, Osaka, Japan). Pupillary dilation was pre-
pared with 0.5% phenylephrine eye drops and 0.5% 
tropicamide (Santen). Then, the anesthetized animals 
were placed in lateral recumbency under Zeiss dissect-
ing microscope and positioned by a holding hand. The 
rat fundus was visualized with the application of a drop 
of 2.5% methylcellulose to the eye. The cornea was care-
fully punctured nasally almost 0.5mm to 1mm medial to 
the dilated pupillary margin by a 28-gauge hypodermic 
needle (Becton Dickinson & Company, Franklin Lakes, 
NJ, USA). The needle with the bevel up was advanced 
through the full thickness of the cornea into the anterior 
chamber parallel to the anterior lens face. The half of the 
bevel was pushed through the cornea, producing a hole 
large enough to insert the 33-gauge blunt needle (Ham-
ilton Company, Reno, NV, USA). The blunt needle tip 
was inserted through the corneal puncture and advanced 
into the anterior chamber, avoiding trauma to the iris and 
lens. Consequently, the needle shaft was aimed slightly 
nasally toward the posterior chamber with the iris lateral 
and lens medial. The lens was displaced medially as the 
needle was advanced toward the appropriate location of 
injection. Slight resistance to the movement of the nee-
dle indicated the penetration of the retina and entrance 
into the subretinal matrix. Subsequently, the syringe was 
held in place, while an assistant pushed the BMSCs sus-
pension (10-μL with a concentration of 107 cells/mL) 
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slowly over almost 30 seconds, injecting the contents 
of the syringe into the subretinal matrix and creating a 
visible retinal detachment. After subretinal delivery, the 
needle was gently withdrawn (Figure 1). 

The immunocytochemical study was performed on 
the cells or neurospheres, i.e., fixed into 4% parafor-
maldehyde for 15min, washed, permeated using triton 
x-100 (0.3%), blocked in goat serum at 37°C for one h, 
labeled with various primary antibodies (Tables 1 & 2) 
at 4°C for 24h (the negative & positive controls were 
simultaneously immunostained); incubated with second-
ary antibodies conjugated with FITC at 37°C for one h, 
and counterstained with propidium iodide (20 µg/mL, 
at room temperature for 5min), respectively. The cells 
were visualized by a fluorescent microscope (Olympus 
1x71, Olympus, Tokyo, Japan). The estimation of the 
immunoreactivity percentages of the induced cells was 
conducted as previously described (Naghdi, Tiraihi, 
Mesbah-Namin, & Arabkheradmand, 2009); several im-
ages were selected randomly and the number of immu-
noreactivity cells for a given antibody was divided by 
the total number of the cells.

Immunohistochemistry investigation was performed as 
follows: At the termination of experimental procedures 
and where histological post-processing was required, 
rats were terminally anesthetized by xylazine (4 mg/kg) 
and ketamine (40 mg/kg) IP injection. The eyes were 
enucleated and placed in a fixative at 4°C for 2h. The 
anterior chamber, lens, and neural retina were removed 
for producing eyecups that the RPE was exposed. To ac-
cess whole-mounts, 4 equidistant cuts were made in the 
eyecups. Auto-Fluorescence micrographs were produced 
using an excitation wavelength of >498nm of the RPE 
sheet before immunohistochemistry. For cross-section, 
enucleated eyes were fixed with PAF 4% overnight and 

hydrated, and then blocked with paraffin. Furthermore, 
the 5-7μm sagittal section was done. For BrdU detection, 
section hydrate in routine process and after antigen re-
trieval with trypsin, sections incubated with primary anti-
BrdU 2h at room temperature (humidity chamber); then, 
they were incubated with secondary anti-BrdU conjugat-
ed with FITC 1h in RT. After the rinse, the sections were 
counterstained with 4’6-diamindino-2-phenylindole di-
hydrochloride (DAPI, Sigma-Aldrich, Pool Dorset, UK) 
and observed under the fluorescent microscope. 

The obtained data were expressed as mean±SE values 
for the experimental rats and controls. The collected data 
were tested for normality using the Kolmogorov‑Smirnov 
test, suggesting no departure from the normal distribution. 
Then, the achieved data were analyzed by Independent 
Samples t-test in SPSS v. 15. P<0.05 was considered sig-
nificant.

3. Results

Bone marrow stem cells were extracted from the bone 
marrow tissue of rats (weight 200-250 gr). These cells were 
cultured to become uniform in shape (four passage). These 
cells had a diverse appearance and fibroblastic shape, dis-
tinct from other cells (Figure 2 A-E). An examination of 
immunocytochemistry revealed that these cells express fi-
bronectin markers and surface markers of CD90, CD166, 
and CD44; however, the surface markers of CD34 (rep-
resenting hematopoietic stem cells), Nestin (representing 
neural cells), and GFAP (representing glial cells) does not 
express. 

To differentiate the bone marrow stem cells into neuro-
sphere cells, the method of Lijuan Fu et al. with a slight 
change was used Kadkhodaeian, Salati, & Lashay (2019). 
BMSCs cells were separated from the flask after passage 4 

Table 1. The list of primary antibodies for the immunocytochemistry of BMSCs 

Primary antibody Host Titer Cell Supplier

Anti- Fibronectin Mouse 1:500 BMSCs Abcam, Cambridge, UK

Anti-CD90 Mouse 1:500 Undifferentiated cell Abcam, Cambridge, UK

Anti-CD166 Rabbit 1:100 Stromal cell Abcam, Cambridge, UK

Anti-CD44 Rabbit 1:100 Stromal cell Abcam, Cambridge, UK

Anti-CD34 Mouse 1:100 Hematopoietic cell Abcam, Cambridge, UK

Anti-Nestin Mouse 1:50 Neural stem cell Abcam, Cambridge, UK

Anti- GFAP Rabbit 1:400 Neural stem cell Abcam, Cambridge, UK
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Table 2. Primary antibodies for the characterization of neurospheres 

Primary Antibody Host Titer Cell Supplier

Anti-SOX2 Rabbit 1:300 Neurosphere Abcam, Cambridge, UK

Anti-OCT4 Mouse 1:300 Neurosphere Abcam, Cambridge, UK

Anti-Nanog Mouse 1:300 Neurosphere Abcam, Cambridge, UK

Anti-NF68 Mouse 1:300 Neurosphere Abcam, Cambridge, UK

Anti-NF160 Mouse 1:300 Neurosphere Abcam, Cambridge, UK

Anti-NF200 Mouse 1:300 Neurosphere Abcam, Cambridge, UK

Anti-nestin Mouse 1:300 Neurosphere Abcam, Cambridge, UK

in a culture medium and centrifuged at 1500 rpm for 3min. 
The cellular pellet with a neurosphere differentiating me-
dium, containing DMEM/F12, plus 20 ng/ml, EGF, bFGF, 
and B27, were suspended and divided into a 6 wells plate. 
After about an hour, the cells began to aggregate and new 
cellular assemblies were created. One day after, the cell ag-
gregate was detected in the medium (Figure 3 A, B). Cell 
aggregates were placed in the same culture medium for 
seven days and their medium changed every two days. Im-
munocytochemistry was used to confirm the neurospheres 
cells. The expression of nuclear markers revealed the stem-
ness of these cells, for example, SOX2, Nanog, and Oct 4 
(Figure 3 C-E). Additionally, the expression of cytoplas-
mic markers, neurofilaments 68, 160, and 200 (Figure 3 
A-C), was observed. 

Seven days after the transplantation of the neurosphere 
cells into sub-retinal space, the rat’s eyes were removed; 

after the preparation of the paraffin mold, sections were 
made in the thickness of 7.5μm. The slides were checked 
for tracking cells labeled with a BrdU nuclear marker in the 
RPE layer as well as the neural retina. The sections were 
stained with DAPI nuclear marker where the transplanted 
cells, as well as the host cells, can be well-characterized. 
At the injection site (Figure 4-D), the accumulation of 
neurosphere cells was observed in binding to the RPE and 
retina layer. A number of these cells were observed in the 
sub-retinal space of the retina; however, most of them were 
moved into the RPE layer and the retina. In some places, 
BrdU positive cells were observed into the choriocapillaris 
layer (Figure 4C and F). The injected neurospheres were 
identified in the clamp and single-cell form in the sections 
(Figure 4B, C). Seven days after cell transplantation, neu-
rosphere BrdU positive cells seem to have survived into the 
sub-retinal space and migrate to the RPE layer. 

Figure 1. The schematic derivation of neurosphere BMSCs and transplantation into subretinal space 
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Figure 4 shows the migration of neurosphere cells 
labeled with a BrdU in the retinal layers. As shown in 
Figure 4-C, and D, neurosphere cells were homed in the 
RPE layer and the retinal layers (Figure 4-B, D, and F). 
In the sensory retina, the obtained data suggested that 
the BrdU positive cells are located in the inner nuclear 
layer and ganglionic layer (Figure 4-B, and F). The num-
ber of cells in the inner nuclear layer was more than the 
outer nuclear layer. As before mentioned, BrdU positive 
neurosphere cells were observed as a single cell and ag-
gregate (Figure 4-B). The relevant results highlighted 
that 7 days after cell transplantation, the neurospheres 
could survive in the location and migrate to the sensory 
retina. In this study, the migration of neurospheres was 
not detected in the vitreous after injection of cells in the 
sub-retinal space of the retina. The results of this sec-
tion indicate that 7 days after transplantation, the BrdU 

positive neurospheres cells survived into the sub-retinal 
space after injection and migrated to the RPE layer and 
the neurosensory retina. The migration occurred in the 
pigmentation layer and the retina layers, including the 
inner nuclear layer and the ganglionic layer. 

4. Discussion

Systematic delivery of sodium iodate (NaIO3), a stable 
oxidizing agent, was proven to be an effective way to in-
duce retinal degeneration associated with the regional 
loss of Retinal Pigment Epithelium (RPE) recapitulating 
some of the morphological features of geographic atro-
phy. NaIO3 retinal toxicity was demonstrated in many dif-
ferent mammalian species, including sheep, rabbits, rats, 
and mice. NaIO3 is thought to directly affect the RPE cells 
with secondary effects on photoreceptors. Moreover, the 

Figure 2. The isolation and culture of stem cells derived from bone marrow tissue in rats in passage 4 

A-H: The immunocytochemistry of bone marrow stem cells with Fibronectin; B: Represents the contrast phase image of the 
bone marrow stem cells. 

The images represent markers CD90, CD166, CD44, CD34, Nestin, GFAP, respectively. The green fluorescence light is related 
to antibodies conjugated to FITC. The nucleus was counterstained with propidium iodide. Magnification: 200 µm for A-H. 
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choriocapillaris induces the production of reactive oxygen 
species contributing to damages in RPE cells. Other effects 
of NaIO3 on RPE cells include the inhibition of enzyme ac-
tivity (e.g., triose phosphate dehydrogenase, lactate dehy-
drogenase) in RPE cells, disruption of the blood-retina bar-
rier, and increased conversion of glycine to potentially toxic 

glyoxylate by melanin (Franco et al., 2009; Jiang, Zhang, 
& Chiou, 2009; Koh et al., 2019; Zieger & Punzo, 2016).

The present study revealed that transplanted of neuro-
sphere derived from BMSCs in AMD model, migrated 
and incorporated into the RPE layer. We demonstrated 

Figure 4. The immunohistochemical imaging sections prepared from the transplantation of neurospheres in sub-retinal space 

A: The control group, the retina layers were stained with a DAPI nuclear marker; B: Cells transplanted in the RPE layer and the 
retinal layers (arrows); C-F: The accumulation of neurospheres in the RPE layer and the retinal layer after transplantation in the 
sub-retinal. The cells were observed both in the RPE layer and in the retinal layers. Magnification: 200 µm for A-F, respectively. 

SC: The sclera; CC: Choriocapillaris layer; RPE: Retinal Pigment Epithelium; ONL: Outer Nuclear Layer, INL: Inner Nuclear 
Layer; GL: Ganglionic Layer, SRS: Subretinal Space, VB: Vitreous Body.

Figure 3. The morphological and immunocytochemistry images of neurospheres derived from bone marrow stromal stem cells 

A, B: Represented the neurosphere morphology in one and three days after differentiation; C-E: Represented the SOX2, OCT4, 
and Nanog nuclear markers immunocytochemistry; F-H: Represented the neurofilaments 68, 160, and 200 immunocytochem-
istry conjugated with FITC and nuclear counterstained with DAPI. Magnification: 100µm for C-E, and 200µm for A, B, F-H. 
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that sub-retinal space is a useful place for replacement 
therapy. There are several methods for the injection of 
cells into sub-retinal space (Qi et al., 2015). However, 
there are two approaches to inject the cell into the eye: 
Sub-retinal space, and Intravitreous injection (Dureau 
et al., 2000). In other words, sub-retinal transplantation 
results in surviving and more migratory cell transplan-
tation. The sub-retinal space does not manifest the im-
mune response to the implanted cells. In comparison, 
Intravitreous injection is less invasive and more general. 
However, studies indicated limitations for injection into 
vitreous space, like the internal limiting layer. There is a 
third way for stem cell injection that in this method tail 
vein is applied (Chung, Park, Ohn, Park, & Hong, 2011; 
Johnson, Bull, & Martin, 2010; Kollar, Cook, Atkinson, 
& Brooke, 2009; Li et al., 2007).

Our evidence demonstrated that BMSCs derived neuro-
sphere 7 days after transplantation conclusively expressed 
nuclear marker BrdU and were alive, might because of the 
secretion of cytokines from the degenerated RPE layer and 
the accumulation of BrdU positive neurosphere, remark-
ably similar study was established after transplantation 
of BMSCs in RPE degenerated applying sodium iodate 
(Klimanskaya et al., 2004). Two major destinations of our 
transplanted cells were the PRE layer and ONL, however, 
the ONL, INL, and the RPE are 3 common targets in cell 
replacement therapy (Tomita et al., 2002). A study indi-
cated that the subretinal space is the final destination of 
transplanted BMSCs (Zhang & Wang, 2010).

Studies reported that human embryonic stem cell trans-
plantation into subretinal space in mice causes transfor-
mation into functional photoreceptors and improve pho-
toreceptors light response also result in differentiation into 
RPE cells (Castro, Navajas, Farah, Maia, & Rodrigues, 
2013; Huang, Enzmann, & Ildstad, 2011; Park et al., 
2011). A study revealed that human embryonic stem cells-
derived RPE transplantation survived for 1-4 weeks after 
transplantation in the sub-retina space and express RPE-
specific markers (Castro et al., 2013). Nervous stem cells, 
like adult stem cells, can be incorporated with the PRE 
layer after transplantation and can be a place among them 
and form a new layer. The intravitreal transplantation of 
transformed nervous progenitor cells into neurosphere 
in mice results in migration, integration, and differentia-
tion after 7 days (Castro et al., 2013). 

5. Conclusion

Mesenchymal Stem Cells (MSCs), due to safety and 
convenience, are among the good choices for cell therapy. 
Neurosphere cells and neural stem cells, due to their em-

bryonic proximity to retinal cells, can be a valuable source 
of cellular therapy for treating retinal diseases. These cells 
will not be rejected and can be applied in autologous trans-
plantation. Here, we demonstrated that the BrdU positive 
BMSCs derived neurosphere transplantation into sub-ret-
inal space could survive, migrate, and be integrated into 
the RPE layer and the ONL and INL layer. However, we 
encountered further limitations for the confirmation of 
neurosphere, determining the transplanted cells in IHC, 
and finally behavioral analysis, like electroretinography to 
suggest their effect on retinal cells activity. 
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