دوره 12، شماره 6 - ( 8-1400 )                   جلد 12 شماره 6 صفحات 826-817 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maghsoudi A, Shalbaf A. Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals. BCN 2021; 12 (6) :817-826
URL: http://bcn.iums.ac.ir/article-1-1610-fa.html
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals. مجله علوم اعصاب پایه و بالینی. 1400; 12 (6) :817-826

URL: http://bcn.iums.ac.ir/article-1-1610-fa.html


چکیده:  
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signals can help understand disorders, such as attention-deficit hyperactivity, dyscalculia, or autism spectrum disorder where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recognition systems rely on features of a single channel of EEG; however, the relationships between EEG channels in the form of effective brain connectivity analysis can contain valuable information. This study aims to find distinctive, effective brain connectivity features and create a hierarchical feature selection for effectively classifying mental arithmetic and baseline tasks.
Methods: We estimated effective connectivity using Directed Transfer Function (DTF), direct DTF (dDTF) and Generalized Partial Directed Coherence (GPDC) methods. These measures determine the causal relationship between different brain areas. A hierarchical feature subset selection method selects the most significant effective connectivity features. Initially, Kruskal–Wallis test was performed. Consequently, five feature selection algorithms, namely, Support Vector Machine (SVM) method based on Recursive Feature Elimination, Fisher score, mutual information, minimum Redundancy Maximum Relevance (RMR), and concave minimization and SVM are used to select the best discriminative features. Finally, the SVM method was used for classification. 
Results: The obtained results indicated that the best EEG classification performance in 29 participants and 60 trials is obtained using GPDC and feature selection via concave minimization method in Beta2 (15-22Hz) frequency band with 89% accuracy. 
Conclusion: This new hierarchical automated system could be helpful in the discrimination of mental arithmetic and baseline tasks from EEG signals effectively.
نوع مطالعه: Original | موضوع مقاله: Computational Neuroscience
دریافت: 1398/7/1 | پذیرش: 1399/2/1 | انتشار: 1400/8/10

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Basic and Clinical Neuroscience می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb