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Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signals 
can help understand disorders, such as attention-deficit hyperactivity, dyscalculia, or autism 
spectrum disorder where the difficulty in learning or understanding the arithmetic exists. Most 
mental arithmetic recognition systems rely on features of a single channel of EEG; however, 
the relationships between EEG channels in the form of effective brain connectivity analysis can 
contain valuable information. This study aims to find distinctive, effective brain connectivity 
features and create a hierarchical feature selection for effectively classifying mental arithmetic 
and baseline tasks.

Methods: We estimated effective connectivity using Directed Transfer Function (DTF), direct 
DTF (dDTF) and Generalized Partial Directed Coherence (GPDC) methods. These measures 
determine the causal relationship between different brain areas. A hierarchical feature subset 
selection method selects the most significant effective connectivity features. Initially, Kruskal–
Wallis test was performed. Consequently, five feature selection algorithms, namely, Support 
Vector Machine (SVM) method based on Recursive Feature Elimination, Fisher score, mutual 
information, minimum Redundancy Maximum Relevance (RMR), and concave minimization 
and SVM are used to select the best discriminative features. Finally, the SVM method was 
used for classification. 

Results: The obtained results indicated that the best EEG classification performance 
in 29 participants and 60 trials is obtained using GPDC and feature selection via concave 
minimization method in Beta2 (15-22Hz) frequency band with 89% accuracy. 

Conclusion: This new hierarchical automated system could be helpful in the discrimination of 
mental arithmetic and baseline tasks from EEG signals effectively.
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1. Introduction

rain analysis methods provide a suitable 
process to monitor human brain activity 
(McFarland & Wolpaw, 2008; Wolpaw, 
Birbaumer, McFarland, Pfurtscheller, & 
Vaughan, 2002). For practical applica-

tions, Electroencephalogram (EEG) is very convenient 
due to having a high temporal resolution being a nonin-
vasive, inexpensive, and portable method. EEG devices 
could be set up within minutes and used efficiently in 
real-time clinical applications (Shalbaf, Shalbaf, Saffar, 
& Sleigh, 2020; Mohseni, Maghsoudi, & Shamsollahi, 
2006; Afshani, Shalbaf, Shalbaf, & Sleigh, 2019; Negha-
bi, Marateb, & Mahnam, 2019; Akbarian, & Erfanian, 
2018). 

Analysis of mental arithmetic-based EEG signal is 
helpful for psychological disorders like dyscalculia 
where they have learning understanding arithmetic 
(Tajar & Sharifi, 2011), attention-deficit hyperactivity 
(Lubar, Swartwood, Swartwood, & O’Donnell, 1995), 
and autism spectrum disorders with the attention-deficit 
problem (Thompson, Thompson, & Reid, 2010). In the 
past, several signal processing techniques from single-
channel EEG were proposed to separate mental arithme-
tic tasks from the baseline state, namely, calculation of 
the autoregressive model coefficients (Liang, Saratchan-
dran, Huang, & Sundararajan, 2006), power spectral 
density using Fourier transform at useful frequency 
bands (Harmony et al., 1999; Rebsamen, Kwok, & Pen-

ney, 2011), and generalized Higuchi fractal dimension 
spectrum (Wang & Sourina, 2013). However, none of 
these methods have been proved to be adequately reli-
able in practical settings because of using the one-chan-
nel EEG features and ignoring valuable information 
inherent between multi-channels of EEG signals. Ana-
lyzing a single channel can hardly achieve reasonable 
accuracy. Mental arithmetic task causes complicated 
neurophysiological changes, and consequently, the re-
lationships among brain regions are essential for solv-
ing the limitation mentioned above and providing more 
valuable features.

Nowadays, a new concept in brain integration focuses 
on brain connectivity. The broad field of brain connectiv-
ity analysis has two general subdivisions (Lang, Tome, 
Keck, Gorriz, & Puntonet, 2012): functional connec-
tivity and effective connectivity. Numerous functional 
connectivity methods such as Pearson correlation and 
coherence have been proposed to evaluate the relation-
ship between simultaneous signals during mental arith-
metic task recognition (Dimitrakopoulos et al., 2017; 
Dimitriadis, Sun, Kwok, Laskaris, & Bezerianos, 2013). 
However, these techniques are only based on changes in 
statistical correlations between indirect observations of 
neuronal activities. Thus, characterizing brain dynamics 
using effective connectivity, which represents the causal 
interactions among brain regions, can be a valuable tool 
and has received much attention in recent years in the 
study of the brain (Seth, 2010). A study employed delay 
symbolic transfer entropy as an effective connectivity 

Highlights 

● Propose effective connectivity to describe EEG signals during mental arithmetic task. 

● Most significant connectivity features from generalized partial directed coherence method.

● Hierarchical feature selection from Kruskal-Wallis test and concave minimization method.

Plain Language Summary 

Brain analysis methods by Electroencephalogram (EEG) signals provide a suitable method to monitor human brain 
activity due to having high temporal resolution, being noninvasive, inexpensive, and portable method. Analysis of 
mental arithmetic based EEG signal is helpful for psychological disorders like dyscalculia where they have learning 
understanding arithmetic, attention deficit hyperactivity, and autism spectrum disorders with attention deficit problem. 
This study finds distinctive effective brain connectivity features and creates a hierarchical feature selection for classifi-
cation of mental arithmetic and baseline tasks effectively. Best EEG classification performance in 29 participants and 
60 trials is obtained using Generalized Partial Directed Coherence (GPDC) methods and feature selection via concave 
minimization method in Beta2 (15−22Hz) frequency band with 89% accuracy. Thus, this new hierarchical automated 
system is useful for discrimination of mental arithmetic and baseline tasks from EEG signal effectively.
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method with relative success in mental arithmetic recog-
nition (Dimitriadis, Sun, Thakor, & Bezerianos, 2016). 
Consequently, this study aims to find distinctive, com-
pelling connectivity features and develop a hierarchical 
feature selection and classification method to discrimi-
nate mental arithmetic vs. resting state. 

2. Methods

In this study, twenty-nine healthy individuals were 
without reported neurological, psychiatric, or other brain-
related diseases (15 females & 14 males, Mean±SD 
age: 28.5±3.7 years) (Shin et al., 2017). According to 
the Ethics Committee of Technical University of Berlin 
(SH_01_20150330). 

Thirty electrodes of EEG data were recorded at 1000 
Hz sampling rate by BrainAmp EEG amplifier accord-
ing to the international 10-5 system with Fz as the refer-
ence electrode. The research participants sat at a 1.6 m 
distance from a 50-inch white screen with nobody mov-
ing. Three sessions of the experiment were performed on 
mental arithmetic and baseline task. Each session includ-
ed a 1 min resting in pre and post-experiment and 20 rep-
etitions (10 trials for each mental arithmetic & baseline 
task). The task period is 10 s and 15 to 17 s resting period 
randomly. Figure 1 shows the schematic diagram of the 
experimental paradigm. In the mental arithmetic task pe-
riod, participants repeatedly perform a subtraction like 
384-8, and in the baseline task, no specific action is done. 
The mental arithmetic and baseline tasks were random-
ized in 10 s of a task period (Shin et al., 2017). Therefore, 
for each participant in the three sessions, 30 trials for the 
mental arithmetic task and 30 trials for the baseline task 
in 10 s of a task period were performed.

Effective connectivity describes causal interactions and 
representations of the direction and power of the informa-
tion flow among different brain areas (Astolfi et al., 2007). 
Granger Causality (GC) is a popular statistical method 
to estimate effective connectivity is Granger Causality 
(GC), i.e., based on a data-driven approach (Granger, 
1969; Geweke, 1984). This method is based on estimat-
ing parameters of the Multi-Variable Auto-Regressive 
(MVAR) model for individual signal data. Quantitative 
spectral GC measures are: Generalized Partial Directed 
Coherence (GPDC) (Baccalá, & Sameshima, 2001; Bac-
calá, Sameshima, & Takahashi, 2007), Directed Transfer 
Function (DTF) (Korzeniewska, Mańczak, Kamiński, 
Blinowska, & Kasicki, 2003), and direct DTF (dDTF) 
(Kaminski, Ding, Truccolo, & Bressler, 2001). These 
techniques determine directional influences among dif-
ferent EEG channels per specific frequency range. We 

extract each frequency range for each measure by aver-
aging theta (4 − 7Hz), alpha or mu (8 − 12Hz), beta1 
(12 − 15Hz), beta2 (15 − 22Hz), beta3 (22 − 30Hz), and 
gamma (30−45Hz) frequency bands (the results of low-
frequency delta band was not reported here due to low 
accuracy classification). All calculations were done in 
MATLAB (The Mathworks, Inc., Natick, MA, USA) via 
the open-source SIFT toolbox (Mullen, 2010). 

Due to the limited dataset, k-fold cross-validation was 
used. In our work, through trial and error, we used vari-
ous amounts of K. We found out that K=10 yields the best 
results in terms of maximizing the classification perfor-
mance and minimizing overfitting. In each trial, the classi-
fication structure is constructed with 90% of data (80% for 
the training & 10% for validation) and evaluated with the 
remaining data as testing data. The procedure is repeated 
10 times, with each subsample as the testing data until all 
the dataset has been used for testing, and evaluation per-
formance is reported by averaging the 10 results. More-
over, the 10-fold cross-validation is done for 100 consecu-
tive runs, and the average of the results is calculated. 

The EEG data were re-referenced using a typical aver-
age reference, and the fourth-order of Chebyshev pass-
band filter of 2-45 Hz was done. Moreover, EOG rejec-
tion is done using independent component analysis in 
EEGLAB (Delorme & Makeig, 2004).

The statistical significance of the extracted features 
obtained from effective connectivity methods between 
mental arithmetic tasks vs. resting states is studied by 
the Kruskal-Wallis test (Spurrier, 2003). Insignificant 
features with P>0.01 were deleted. Next, 5 widely fea-
tured selection algorithms choose the best parts. The 
first method is Recursive Feature Elimination based on 
Support Vector Machine (SVM-RFE) (Guyon, Weston, 
Barnhill, & Vapnik, 2002). This method uses SVM to 
score a given subset of features and selects features in 
a sequential, backward elimination manner. The other 
three feature selection methods are the Fisher score (Gu, 
Li, & Han, 2011). Mutual Information (MI) (Zaffalon, 
& Hutter, 2002), and minimum Redundancy Maximum 
Relevance (mRMR) (Ding, & Peng, 2005; Peng, Long, 
& Ding, 2005). In these three approaches, the selection 
of features is based on the general characteristics of data 
and ignores the classifier. Attributes are evaluated, and a 
subset is extracted. Fisher’s method calculates a score as 
the ratio of interclass separation and intra-class variance 
for a feature. The MI method considers the MI between 
the distribution of the feature values and the member-
ship to a specific class. Then, the final feature selection 
in these two methods is made by collecting top rankings. 
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In the mRMR algorithm, features can be selected to be 
mutually far away from each other while still having 
the highest relevance to the target classes. Eventually, 
we have used feature selection via concave minimiza-
tion and SVM (Bradley & Mangasarian, 1998). In this 
method, the feature selection procedure is injected into 
the training of the SVM classifier, and the learning and 
the feature selection parts cannot be separated.

This binary classifier is used to categorize the data that 
the margin between the hyperplane and nearest data be-
comes maximum (Bradley & Mangasarian, 1998). In 
this method, when overlapped features exist, Support 
vector classification maps the component into a higher 
dimension space by quadratic, polynomial, or Radial 
Basis Function (RBF). It creates a good discriminatory 
hyperplane in that space. 

3. Results

Spectral effective connectivity measures (GPDC, DTF, 
dDTF) based on the calculated MVAR model parameters 
were estimated based on each signal frequency band range 
(theta, alpha, beta1, beta2, beta3, and gamma). All trials of 
each subject’s session were considered an observation for 
classification (3×29 observations for each class). In each 
session, 10 trial runs for each task (10 seconds of data 
with frequency sampling=1000 Hz), leading to 100000 
samples, are considered. Thus, we fit one MVAR model 
with the order of 60 to each observation with 100000-time 
samples. These 100000-time samples and order of 60 are 
selected according to the whiteness of residuals, stability, 
and consistency of the model (using built-in SIFT toolbox 
procedure called pop_est_validateMVAR). 

Having 30-channel EEG, 900 (30×30) directed causal 
connection between channels as effective connectiv-
ity features are extracted for each GC method in each 
frequency band range that makes further computations 
complex. Accordingly, we performed a feature selection 
method based on the Kruskal-Wallis statistical test for 
each feature vector element, comparing the data of the 
two interest groups to choose the most significant fea-
tures for discrimination of mental arithmetic task and 
baseline state. Using this test, the nonsignificant features 
with p > 0.01 are deleted. Then, using the five feature se-
lection algorithms (SVM-RFE, Fisher, MI, mRMR, and 
feature selection via concave minimization and SVM), 
the best features remained after the Kruskal-Wallis test 
are selected. Finally, the best-selected features are fed 
to the SVM classification structure to classify EEG data 
into mental arithmetic tasks accurately vs. resting state in 
29 participants. A 10-fold cross-validation was used. In 

our case, we used 10% of the data for test and 90% for 
training and validation (80% train and 10% validation). 
In our methodology, through trial and error, we evalu-
ated different kernels and different parameters in vali-
dation data and finally used an SVM with RBF kernel 
and sigma of 0.9. The diagram of the proposed method 
is demonstrated in Figure 2.

The classification accuracies obtained by the spectral ef-
fective connectivity measures (GPDC, DTF, dDTF) and 
5 widely featured selection methods over all participants 
for each frequency band range are given in Table 1, sepa-
rately. Accordingly, GPDC and feature selection via con-
cave minimization yields the best results with high accu-
racy within beta2 (89.05) frequency bands of EEG. Raw 
900 (30×30) connectivity features for the GPDC method 
for Beta2 frequency band over all participants for mental 
arithmetic task vs. resting state are shown in Figure 3. 
Moreover, the best selected of GPDC connectivity fea-
tures obtained from feature selection via concave mini-
mization and SVN for Beta2 frequency band over all 
participants for mental arithmetic task vs. resting state 
are shown in Figure 4. In these two Figureures, a higher 
absolute value of connectivity feature is presented us-
ing warmer colors. A higher absolute difference value of 
connectivity in Figure 4 between mental arithmetic task 
vs. resting state means a better separability with higher 
significance. Furthermore, during the mental arithmetic 
task, EEG generally indicated high separability around 
the frontal and prefrontal areas (Figure 4).

4. Discussion

A new automated method for discriminating mental 
arithmetic tasks vs. resting state from EEG signal in 29 
participants. We used the effective pairwise connectiv-
ity among different brain regions in different frequency 
bands as features in the hierarchical machine learning 
classification algorithm. Satisfactory classification ac-
curacy was obtained. One of our novelties is using the 
GPDC method and also compareing it with other meth-
ods of effective connectivity such as DTF and dDTF in 
multi-frequency bands. Effective connectivity values us-
ing GPDC could effectively quantify the EEG signals’ 
complexity during a mental task. Another novelty of 
our paper is proposing a hierarchical machine learning 
structure based on two feature selection methods (Krus-
kal–Wallis test and feature selection via concave mini-
mization) and finally, SVM structure with high accuracy. 
The overall accuracy of 89% during the Beta2 frequency 
band is obtained effectively using a set of discriminative 
features using the proposed hierarchical method.
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In investigating the causality and information flow in 
the brain for the mental arithmetic task, we had several 
options such as Dynamic Causal Modeling (DCM) and 
Granger causality tool based on structural equation mod-
eling to extract effective connectivity. Granger causal-
ity is more straightforward in computation than DCM 
since it needs to compute autoregressive models instead 
of fitting statistical distributions using the expectation-
maximization algorithm to construct DCM. We used 
SIFT toolbox to extract the GC measures. We tested all 
the measures and only reported the best measures (in the 
sense of classification performance). Results of GPDC 
features in the present study have the maximum accu-

racy in differentiating mental arithmetic task vs. resting 
state. In many neurophysiological applications, localiz-
ing activity sources is more critical than sinks. Therefore, 
using connectivity measures like GPDC, proposed to 
indicate the sources, might be more relevant (Baccalá, 
Sameshima, & Takahashi, 2007). Figure 4 shows strong 
sources (AFP1 and AFP2) in the frontal area during the 
mental arithmetic tasks compared to the resting state.

This study tested five widely used feature selection algo-
rithms after the Kruskal-Wallis test. Our results observed 
wrapper methods that embedded feature selection methods 
like concave minimization and SVM yielded better clas-

Figureure 1. Schematic sequence diagram of the experimental paradigm

Figureure 2. The process of the proposed system

A: Raw EEG data; B: Preprocessing; C: Construction of effective connectivity matrix; D: The statistical significance of the extracted con-
nectivity features between mental arithmetic and baseline tasks using the Kruskal-Wallis test; E: Feature selection and ranking using 
five feature selection methods; F: Classification using SVM; G: Discriminative connectivity maps.
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sification results. In this method, the feature selection part 
is combined with the training of an SVM as the classifier 
and cannot be separated. Moreover, embedded methods 
have better performance for feature selection since they use 
a classifier during the feature selection phase (Bradley, & 
Mangasarian 1998). Other methods, such as filter methods 
(e.g., Fisher score, MI, & mRMR), only consider the rel-
evance of features with a dependent variable using statisti-
cal measures like correlation and ignoring the classifier. In 
contrast, wrapper methods like concave minimization and 

SVM use a classifier, like SVM in feature selection. Previ-
ous studies have reported that theta, alpha, and beta bands 
are relatively sensitive to cognitive workload change (Lang 
et al., 2012; Bertsekas, 1995). Moreover, previous studies 
have indicated that when a participant is performing the 
mental arithmetic task, specific frequency components of 
EEG in frequency bands of 7-30 as a neural oscillation of 
brain electrophysiological activity are (de)synchronized, 
and best results of mental recognition are obtained (Har-
mony et al., 1999; Rebsamen et al., 2011; Wang, & Sourina, 

Figure 3. Raw 900 (30×30) GPDC connectivity features for Beta2 frequency band over all participants for mental arithmetic task 
vs. resting state

A higher absolute value of connectivity feature shows with warm colors. Thirty electrodes are as follow: 1=F7, 2=AFF5h, 3=F3, 4=AFp1, 
5=AFp2, 6=AFF6h, 7=F4, 8=F8, 9=AFF1h, 10=AFF2h, 11=Cz, 12=Pz, 13=FCC5h, 14=FCC3h, 15=CCP5h, 16=CCP3h, 17=T7, 18=P7, 
19=P3, 20=PPO1h, 21=POO1, 22=POO2, 23=PPO2h, 24=P4, 25=FCC4h, 26=FCC6h, 27=CCP4h, 28=CCP6h, 29=P8, 30=T8.

Resting state Mental arithmetic

Figure 4. The best GPDC connectivity features were obtained from feature selection via concave minimization for Beta2 fre-
quency band over all participants for mental arithmetic task vs. resting state

A higher absolute value of connectivity feature shows with warm colors. The arrows represent directional connectivity.

Resting state Mental arithmetic
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2013; Lang et al., 2012; Smith, Gevins, Brown, Karnik, & 
Du, 2001). This study on mental arithmetic vs. resting state 
pattern discrimination is per previous results. The results of 
the Delta band were not promising and were below 50%; 
therefore, it was omitted in the report. The best results of 
mental arithmetic recognition and significant changes in the 
effective connectivity are mainly from the alpha and beta 
bands, especially in the beta2 band. 

Our network analysis revealed during the mental arith-
metic task that EEG generally shows high separability 
around frontal and prefrontal areas (Figure 4, especially 
AFP1 and AFP2). The effective connectivity varied and 
increased mostly around these areas’ frequency bands. 
In other words, most discriminative beta-band effective 
connections are exhibited around the frontal and prefron-

tal regions. Neuropsychological findings demonstrated 
that cognitive workload is done in the prefrontal cortex 
(Fernández et al., 1995; Brass, Ullsperger, Knoesche, von 
Cramon, & Phillips, 2005). So our results might serve as 
evidence for the correlation of the frontal lobe with the 
cognitive workload. According to this result, prefrontal 
and frontal regions contribute to the visual recognition of 
numbers and are vital for mental calculation. Our results 
have highlighted the interaction of the prefrontal with 
central, temporal, and parietal cortices. Time-lag and 
causal effects between prefrontal and central, temporal, 
parietal cortices explain how mental calculation can be 
matched to enable a comprehensible cognitive function. 

The results of directional connectivity metrics (GPDC fea-
tures) in multichannel EEG in the present study infer that infor-

Table 1. Classification accuracy

GC Methods

Mean±SD

Feature Selection Methods

RFE Fisher MI mRMR Concave Minimization

Theta band

DTF 50.2±2.94 63.1±5.30 56.3±2.10 60.7±4.59 67.8±3.82

dDTF 54.1±2.75 65.3±5.60 58.2±3.39 68.2±5.54 71.2±4.42

GPDC 58.6±4.75 71.2±6.75 60.5±5.94 72.1±6.70 77.5±6.39

alpha band

DTF 55.1±1.93 64.1±4.58 58.3±3.07 62.1±5.35 70.2±5.20

dDTF 58.1±1.19 70.3±4.94 60.2±2.67 72.2±6.65 74.1±6.71

GPDC 59.3±2.74 74.4±5.76 65.5±4.86 76.8±6.70 82.3±6.79

Beta1 band

DTF 56.2±3.42 65.2±4.96 57.3±4.58 65.1±5.25 72.5±6.53

dDTF 60.2±3.11 72.1±5.28 62.1±3.48 74.1±4.09 76.1±6.71

GPDC 61.3±4.52 78.2±4.75 67.4±2.38 79.2±5.56 85.7±6.82

Beta2 band

DTF 56.8±3.83 72.1±5.88 62.8±2.46 75.1±5.81 78.2±5.23

dDTF 62.1±2.44 74.7± 5.25 67.3±4.31 78.2±4.09 85.2±6.39

GPDC 65.3±3.31 80.2±6.23 70.2±5.70 82.6±6.50 89.2±4.89

Beta3 band

DTF 53.1±1.78 63.3±5.27 57.2±3.69 68.2±4.82 69.2±4.57

dDTF 54.1±2.00 65.3±5.30 59.3± 2.35 70.2±5.56 72.3±5.56

GPDC 58.9±3.84 71.4±6.53 63.2±5.45 74.7±5.23 80.6±6.42

Gamma-
band

DTF 52.8±2.66 60.1±5.74 55.3±3.84 61.7±3.01 66.2±4.57

dDTF 53.1±3.97 64.8± 4.54 59.3±4.02 65.2±4.35 70.8±5.46

GPDC 57.6±3.71 68.5±5.12 62.5±4.53 70.2±5.21 75.1±6.69
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mation flow from different parts of the brain to the other plays a 
vital role in the differentiation of mental arithmetic tasks vs. rest-
ing state. As shown in Figure 4, differential patterns of the best 
selected GPDC connectivity features obtained from Kruskal–
Wallis test and feature selection via concave minimization for 
Beta2 frequency are around frontal and prefrontal areas. Also, 
the accuracies attained with our method (89%) outperform the 
other methods that use EEG features from individual channels 
(80%) Shin et al. (2017) in the same database. To mention a 
limitation of our study, we believe that the performance of a 
multi-modal system based on EEG and Near-Infrared Spectros-
copy (NIRS), compared with a single modality, might improve 
accuracy. Finally, the performance of the system of discrimina-
tion of mental arithmetic tasks might be improving. 

5. Conclusion

This study addresses a new automated system based on effec-
tive connectivity quantified with the GPDC method and a hierar-
chical machine learning structure methods for discrimination of 
mental arithmetic task vs. resting state from EEG signals with an 
accuracy of 89% on the 29 participants within beta2 frequency 
band. Results indicate that exploring causal dependencies be-
tween participants’ brain regions using directed information flow 
plays an important role and has potential discriminative value. 
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