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Introduction: One of the interesting topics in neuroscience is problem solving and decision-
making. In this area, everything gets more complicated when events occur sequentially. One 
of the practical methods for handling the complexity of brain function is to create an empirical 
model. Model Predictive Control (MPC) is known as a powerful mathematical-based tool 
often used in industrial environments. We proposed an MPC and its algorithm as a part of the 
functionalities of the brain to improve the performance of the decision-making process. 

Methods: We used a hybrid methodology whereby combining a powerful nonlinear control 
system tools and a modular fashion approach in computer science. Our hybrid approach 
employed the MPC and the Object-Oriented Modeling (OOM) respectively. Therefore, we 
could model the interaction between most important regions within the brain to simulate the 
decision-making process.

Results: The employed methodology provided the capability to design an algorithm based on 
the cognitive functionalities of the PFC and Hippocampus. The developed algorithm applied 
for modulation of neural circuits between cortex and sub-cortex during a decision making 
process.

Conclusion: It is well known that the decision-making process results from communication 
between the prefrontal cortex (working memory) and hippocampus (long-term memory). 
However, there are other regions of the brain that play essential roles in making decisions, 
but their exact mechanisms of action still are unknown. In this study, we modeled those 
mechanisms with MPC. We showed that MPC controls the stream of data between prefrontal 
cortex and hippocampus in a closed-loop system to correct actions.
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1. Introduction

ecision-making is a recurrent, ubiquitous 
cognitive process and a consequential part 
of human behavior. A decision is made out 
of a set of items based on specific criteria. It 
is widely accepted in cognitive science that 
damage to the frontal lobe in the brain im-
pairs one’s ability to make a decision (Rat-

cliff & Rouder, 1998). The researchers are still study-
ing the relationship between thinking and automated 
human activities (Barraclough, Conroy, & Lee, 2004; 
Hasegawa, 2000; Wang, 2008), including the control of 
the decision-making process. By putting the prediction 
horizon and control horizon of a given control system 
together, we can take a step forward in increasing the 
trust and precision of decisions (Ramírez & Camacho, 
2006). In our study, the intelligent control of decision-
making process based on prior experience will improve 
brain functionality under a new conceptual control role. 
It results in the promotion of a learning model based on 
prior knowledge. 

In recent years, many efforts have been made to design 
various decision-making models using different kinds of 
neural networks such as neural networks in distributed 
decision making using the Kalman filter series (Gers & 
Schmidhuber, 2000) and fuzzy models, models which 
are based on primary knowledge and experience. While 

the field of decision-making research continues to be 
vibrant, several researchers, including Dawes (e.g. Has-
tie and Dawes, 2001), Loewenstein (e.g. Camerer et al., 
2005), and Mellers (2000) have proposed that the next 
phase of research in this area is likely to emerge from 
building on recent advances in the field of neuroscience. 
Since 1990, neuroscience methods and decision-making 
were combined to investigate the nature of decision-
making, brain structures, and neurological mechanisms 
(Niwa & Ditterich, 2008; Romo, Hernández, Zainos, Le-
mus, & Brody, 2002; Wong & Wang, 2006). The primary 
objective of this article is to predict the correct decision 
making path and control of these complex mechanisms, 
which results from human cognitive planning.

The Prefrontal Cortex (PFC) and hippocampus are the 
most critical parts of the human brain for decision mak-
ing. The decision-making process contains four steps. In 
the first step, some initial stimuli produced by sensory 
inputs, excite a set of hippocampal neurons as part of 
the neural system. In the second step, a set of second-
ary stimuli arrives in the hippocampus, and the stimu-
lusdriven neural response is produced as initial informa-
tion for two entry stimulus sets in the hippocampus. In 
the third step, the initial information is sent to PFC. The 
PFC determines the additional required information and 
retrieves complementary information from the hippo-
campus (Wang, 2008). In the last step, the PFC decides 
the proposed controlling process in this study. However, 

Highlights 

● A conceptual framework is designed for modeling decision path according to human cognitive planning.

● A high-level algorithm is developed for data flow in the human brain decision region.

● In this article, the flow of the sensory data analysis is controlled in the brain by Model Predictive Controller (MPC).

Plain Language Summary 

Decision-making is a cognitive process of the human brain. The brain behaves as a complex system, and providing a 
model would be a convenient way to represent the complexity of the brain. Every decision includes some stages: each 
stage can be interpreted as a cognitive criterion. The brain controls the path by predicting the action’s result. The brain 
needs to know the criteria to perform its primary function as a predictor. It is known that the hippocampus stores the 
knowledge, and the prefrontal cortex approximates the goals; therefore, our study models the interactions between the 
hippocampus and the prefrontal cortex by providing an algorithmic view. In our model, the effects of the brain regions 
controlling the path are replaced by the model predictive control. Now the neurological mechanisms of the decision-
making process in the brain can be simulated. This capability allows us to Work on some sort of neural networks dis-
eases such as neurodegenerative disease or some rehabilitations, which needs memory consolidation.
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there is a mutual communication between PFC and hip-
pocampus with neural connectivity. This neural wiring 
makes closed-loop neural circuits to generate a preferred 
decision.

2. Model Predictive Control

This paper is based on the concept of a Model Predic-
tive Controller (MPC) presented by Enkavi et al. (2017). 
MPC is used for path planning (trajectory) of autono-
mous actions and formation control. MPC is a proper 
technique for optimizing the efficiency of control sys-
tems, The MPC is a proper technique for optimizing 
the trajectory control problem. The MPC Controller tries 
to minimize the cost in each sample time by taking the 
initial and current states, and the optimization process 
calculated from the current state in the next loop.

As seen in Figure 1, the MPC (controller) is used to 
control the process (part of the brain) to make an op-
timized decision on a sequence of decision items. We 
proposed the MPC for a class of nonlinear discrete-time 
systems using the constraint positively invariant sets 
(Figure 1). We construct the algorithm by two control 
modes: The state feedback mode for keeping the state 
(decision items) in a set (decision plan) and the MPC 
mode for steering the state to the set. A typical cost func-
tion in MPC in our nonlinear discrete-time control sys-
tems is as follows Formol 1, 2, 3, 4 & 5:

1. 
J=min∑ ‖y(k+Hp)-r(k+Hp)‖

2+ρ‖uHp+k) ‖2

k=0

N-1  ̂

2.

u=[u(k),u(K+1),…,u(k+Hp-1)]T

3.

y ̂=[y ̂(k+1),y ̂(k+2),…y ̂(k+H_p )]T

4. 

r=[r(k+1),r(k+2),…,r(k+Hp)]
T

5. 

Constraints
umin≤uHp+k)≤ umax

umin≤uHp+k)≤ ymax

, where u (k), y (k),) and y ̂  (k) denote the controller 
output, the process output, and the predicted process 
output, respectively at time instant k, r (k) is the desired 
output or the set points (desired decision items), and H 
(P) is the predicted horizon step. At time k, MPC solves 
an optimal control problem over a finite future horizon 
of Hp step and receives a new controller output sequence 
u(k+1) and repeats the optimization at time k+1 by mini-
mization of J concerning u (k) and soon. 

The main problem to be solved here is to find a model, 
which could choose proper decision items in the decision 
plan and steer it in a state space from its current location 
(status) to its goal. Status is the understanding of a goal 

Figure 1. Model predictive control system for a decision-making process
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in control iterations (Figure 2). The state space is all pos-
sible states in the problem environment. 

3. The Proposed Model

Since the decision region (Figure 2) is related to the 
hippocampus and PFC (Weilbächer & Gluth, 2016), our 
process contains a set of neurons of both PFC and hip-
pocampus. Likewise, the offered model contains a con-
troller and set of the neural network as a process, which 
is interrelated and has nonlinear and dynamic parts. The 
model has a long-term memory (hippocampus), which 
maintains the classified sensory information (Enkavi et 
al., 2017). It can retrieve the classified information in 
PFC based on the properties of neurons. The input of the 
proposed process is sensory stimulation, and its output 
is a discrete signal, which contains decision item types. 
Therefore, the offered model with a dynamic property 
has a structure based on saved knowledge and experi-
ence which results in the next decision. In other words, 
the output of the MPC controller, as a controlling signal 
input of our process block (Figure 1) and changes in our 
neural network weights is based on experience analo-
gous to human memory.

Suppose a sequence of decision items (desired set 
points) like (A-E-L-H) are created and classified based 
on forming cognitive planning. Figure 2 illustrates that 
decision-making could result from a comparison be-
tween the sensory stimuli of two frequencies (f1 and f2) 
in the specific area of the brain in the decision region 
(Haegens, Nácher, Luna, Romo, & Jensen, 2011). In 
this paper, the decision region is composed of the hip-

pocampus and PFC and neural connectivity’s between 
them (Figure 3). 

 

While some interactive signals interchange through the 
main parts of our model, the decision is made. The first 
part of our model, which takes the initial signal from the 
somatosensory system is hippocampus. Hippocampus is 
in pre-exited mode and waits for stimulation from so-
matosensory area. When f1 reaches the permanent mem-
ory in the hippocampus, the neural network transients to 
the exciting or loading mode (Wang, 2008). After a few 
seconds, the second sensory stimulus from somatosen-
sory area (f2) reaches to the hippocampus. The first and 
secondary stimulus (f1 & f2) create a neural response in 
the hippocampus (Figure 3). The PFC would be aware 
of the situation by taking this neural response as initial 
information.  

The PFC goes to comparison mode by receiving the 
initial information. The PFC based on this received in-
formation sends a request to hippocampus for additional 
information. Hippocampus responses with appropriate 
saved knowledge as complementary information to the 
working memory in the PFC. This mutual communica-
tion (request and response) is called a retrieval mecha-
nism (the hachure region in Figure 3). The retrieved 
knowledge contains decision-items such (A-E-L-H). 
These patterns maintained in working memory as a set 
point. For example, item A is our first target in a decision 
plan. The decision plan is controlled by the output of the 
MPC system, as a controlling signal, which is called the 
Modified Frequency (MF).

Figure 2. Proposed model for a closed-loop system of the spiking neural network: a decision-maker
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Figure 3. The interaction between PFC and hippocampus for retrieving the required information

Figure 4. Decision-making flow chart of our proposed model
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The MPC controller works under constraints, and cost 
function needs to find the best-predicted items clos-
est to the desired set points (decision plan [A-E-L-H]). 
Therefore, it generates multiple future scenarios in a sys-
tematic way where an optimizer comes into the MPC 
controller block. A copy of the decision-items (output of 
process) goes to the MPC and is compared to the desired 
set points. By solving an optimization problem, the MPC 
controller tries to minimize the difference between the 
desired set points and predicted items of decision items 
(A-E-L-H). 

The output of the MPC block produces the future con-
trolling signal over the prediction horizon and predict the 
MF, which drives brain response to make a correct deci-
sion. The cost function of this optimization problem is 
represented as a weighted squared sum of the predicted 
errors (Eq. 1). Moreover, MPC ensures that the MF and 
correct decision making stays within pre-determined 
limits (Eq. 5). These are referred to as constraints such 
as the range of amplitude and frequency of brain re-
sponses during the decision process. Generally, the MPC 
controller is solving the optimization problem over the 
prediction horizon while satisfying the constraints. The 
predicted item with the smallest cost function gives the 
optimal solution and therefore determines the optimal 
MF (outputs of MPC) that will get the predicted item 
as close as possible to the desired set points. Figure 4 
shows the algorithmic modeling for the process of de-
cision making. This flow chart represents our proposed 
model systematically. 

In other words, a combination of model responses 
(saved knowledge), past controlling signal (MF), desired 
set points (decision plan), and process output create the 
future output process, and finally, the future decision is 
made. Therefore, in the control process, we can obtain 
a new desired set points signal in each feedback loop. 
It means that if we want to go from item (A) to (E), we 
choose (E) as the desired set points, and we try to reach 
decision item (E) based on prediction horizon and MPC 
control horizon. Then in the next closed loop, we choose 
a new-desired set point (L), and the purpose is to reach a 
new decision point.

4. Discussion

It is believed that damage to the brain frontal lobe may 
impair one’s ability to think and make decisions. The 
precise process of the prefrontal cortex is still unknown. 
In this paper, by offering a universal algorithmic model, 
we replaced the non-specific area of the brain with an 
MPC controller to mimic the frontal lobe function. To 

make a decision, we have assumed four main activities 
that may be part of the control design, including inter-
nal and external properties of neuronal subpopulations. 
MPC is planning to develop the model with more stabil-
ity and robustness against disturbances and noise. 

The proposed model has the predictive and control ho-
rizons to optimize future decision plan with higher accu-
racy compared with the other methods. Since the human 
brain has a set of neurons with corresponding complex-
ity, it seems that the decision-making and cognitive pro-
cess of the brain can solve this complexity in an advanced 
control block. Therefore, to reach this horizon, we tried 
to combine both hippocampus and prefrontal cortex parts 
(decision area) and consider this combination as a model 
process and take advantage of MPC for this model. In 
other words, model process is defined with the neural 
wiring between cortical and subcortical networks in a 
closed-loop control system. It is worth mentioning that 
the change of electrical properties of neural responses 
(frequency and amplitude) create some specific informa-
tion in decision area. The change of these properties de-
termines a decision signal in a comparison mode. 
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