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Introduction: The neural response is a noisy random process. The neural response to a 
sensory stimulus is completely equivalent to a list of spike times in the spike train. In previous 
studies, decreased neuronal response variability was observed in the cortex’s various areas 
during motor preparatory in reaching tasks. The reasons for the reduction in Neural Variability 
(NV) are unclear. It could be influenced by an increased firing rate, or it could result from the 
intrinsic characteristic of cells during the Reaction Time (RT).

Methods: A neural response function with an underlying deterministic instantaneous firing 
rate signal and a random Poisson process spike generator was simulated in this research. Neural 
stimulation could help us understand the relationships between the complex data structures of 
cortical activities and their stability in detail during motor intention in arm-reaching tasks. 

Results: Our measurements indicated a similar pattern of results to the cortex, a sharp reduction 
of the normalized variance of simulated spike trains across all trials. We also observed a reverse 
relationship between activity and normalized variance.

Conclusion: The present study findings could be applied to neural engineering and brain-
machine interfaces for controlling external devices, like the movement of a robot arm.
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1. Introduction 

ortical cells receive inputs from many sourc-
es, and the distribution of post-synaptic po-
tentials is Poisson-like (Anderson, Caran-
dini, & Ferster, 2000; Carandini, 2004). 
The brain activity is inherently variable, 
as its output in the form of motor behavior. 

The response of cortical neurons to an identical stimulus 
repeated over time exhibits large variability in spiking 
activity. The Neural Variability (NV) is characterized by 
the ratio of variance to the mean value of spike density 
function across repeated trials (Churchland et al., 2010; 
Shadlen & Newsome, 1998; Teich, Heneghan, Lowen, 
Ozaki, & Kaplan, 1997). The pure Poisson distribution 
with independent information follows the firing rate 
between spikes; accordingly, the measured NV equals 
unity, and for contaminated neural spike activity by addi-
tive noise, the latter exceeding unity (Geisler et al., 2005; 
Mazurek & Shadlen, 2002; Shadlen & Newsome, 1998). 
Above all the stimulus-driven neural responses, a noisy 
Poisson activity reduces the neural variability across 
cortical areas (Churchland et al., 2010). The exponen-
tial Poisson distribution of the neural response would be 
formed to a more regular compact pattern by increasing 

the firing rate and the refractoriness together (Maimon 
& Assad, 2009). During delayed reach-task, an increase 
in the firing rate after the target presentation would pres-
ent a sharp decrease in variability during motor intention 
in the dorsal premotor cortex of monkey (Churchland, 
Byron, Ryu, Santhanam, & Shenoy, 2006). Briefly, re-
searchers designed a behavioral tasks for monkeys. 
Monkeys were trained to sit in a primate chair to per-
form a set of arm-reaching tasks. Every task consisted of 
several trials, and each trial started with a stimulus onset 
(e.g. central spot on the screen) and ended with a juice 
reward if successful (Figure 1). 

After designing a behavioral task and training the mon-
keys for a specific experiment, the neural data could be 
recorded. There are several methods for recording neu-
ral activity. For instance, the extracellular activity could 
be recorded with electrodes (glass-coated tungsten-
platinum fibers; 1–2 M_ impedance at 1 kHz) using a 
Thomas Recording system. 

In the current study, the neural Poisson distribution 
time-locked to the target onset was simulated. Indeed, 
the struggle was the quantification of a relationship be-
tween the simulated neural Poisson spike process and 

Highlights 

The simulation of neural spike trains in the cerebral cortex was conducted during a reach-to-grasp task performed by 
a monkey.

The definition of neural mechanisms and trial-to-trial variability in the execution of movements by the simulation 
model of spike trains as neural activity; they were measured by normalized variance as neural variability.

 The reduction of simulated neural variability, compared to similar behavior in the real variation of cortical activity 
after target onset or before the movement was observed.

Plain Language Summary 

The brain activities are nonidentical in repeated trials during the motor preparation and hand movements. This 
variation of cortical neural responses could result from the internal and external properties of individual neurons 
or neural populations. The stimulus onset reduces neural cortical variability during the hand movement. If this 
reduction is coordinated to variability in the sensorimotor neural population, then the observational error move-
ment should have represented low values. To understand the mechanism of reduction, the neural response has been 
simulated as a random Poisson process spike generator with or without noise. The simulation model demonstrated 
a decrease in variability of simulated neural responses with noise after the target onset; however, no changes of 
activity was observed in the absence of noise. The simulation of this mechanism provides a great opportunity for a 
better understanding of the neurophysiological substrate of the neurodegenerative and mental conditions. Applying 
neural variability in predicting hand movements control could support brain-machine interfaces for stroke patients’ 
paralysis and even neuro-feedback therapy. Controlling hand movement could be modeled in a closed-loop neural 
circuit with added noise and neural variability.
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the measured neural variability. There are several rate 
coding methods to measure the firing rate of single cells 
or population activity (Figure 2). The endogenous activ-
ity of a time-varying cell, as a stimulus-response, is a 
Spike Density Function (SDF). SDF for each movement 
direction and cell have been calculated. Initially, operat-
ing spike timing alignments were performed to the onset 
of the hand movement periods or the target presentation 
in trials, respectively. Secondly, spikes were replaced by 
a Gaussian function with a width (SD) of 30 ms. Con-
sequently, a full area of 1.a continuous signal (firing 
rate) was observed after the normalization (considering 
the trial numbers) to produce the SDF for each cell and 
movement conditions. To compute the mean firing rate, 
we also averaged SDFs across trials for each movement 
direction (Saberi-Moghadam, Ferrari-Toniolo, Ferraina, 
Caminiti, & Battaglia-Mayer, 2016).

2. Methods

 The first and second-order moment statistics were ap-
plied to estimate the mean and variance parameters of 
neuronal responses. The NV, i.e. the time function of tri-
al-to-trial variability, is defined as the variance-to-mean 
ratio of spike density function across trials. This method 
is proposed by some scholars (Churchland, Afshar, & 
Shenoy, 2006) with the following Formul 1:

1. NV(t)=k×
ε+Var (SDF(t))

kε'+Mean(SDF(t))
Where ε=ε'=0.01 and k=0.1.

To prevent the ratio of NV from becoming zero in the 
dominator in some cases, the constant value was added. 
Based on the assumption that neural activity is common-
ly generated as the Poisson process, the mean values of 
the firing activity and variance are identical; thus, NV is 
unity. This value of fraction could be changed depending 
on the internal and external states of the individual and 
population neurons. 

The neural activity of each neuron in contact with the 
neural network in various areas of the cortex exhibits 
chaotic patterns; it implies the intrinsic and extrinsic 
characteristics of that cell. Therefore, to detect a cell’s 
characteristics for repeated trials (in random responses 
to the same stimulus), firing rates were simulated (equal 
to SDF) in two types of pure Poisson distribution of fir-
ing rates and pure Poisson activities by adding a random 
noise (noisy Poisson distribution). The aforementioned 
random noise contains random numbers that follow a 
Gaussian distribution. The pure Poisson distribution is 
a set of Poisson random numbers generating random 
numbers from the Poisson distribution with an average 
number of occurrences µ over a period. Poisson distribu-
tion is an event with a small probability of occurrence 
and a large number of independent trials taking place. 
The obtained NV has revealed different behaviors for 
each group. To use the Poisson spike generator in a sim-
ulation, a model neuron is required. The probability of 
spikes for a Poisson distribution is as Formul 2:

2. P(X=k)= (e-μ×μk)/k!

Where is the average number of spikes per intervals, 
e is the Euler’s number, and the parameter is a Poisson 
random variable that takes non-negative discrete values 
0, 1, 2, and so on.

3. Results

To determine the relation between NV and firing rates, 
the mean firing rate of simulated activity was firstly com-
puted. Then, the normalized value of neural response 
was found through calculating the maximum value of 
the firing rate. Next, the normalized value of the ampli-
tude of the neural response was divided into three levels, 
i.e. the maximum value of the response, (0.8%-1%) of 
maximum value, (0.5%-0.8%) of maximum, and <50%, 
and finally, the distribution value of NV related to each 
level was found.

Figure 1. The monkey was trained for the arm-reaching task 

After training, long-term neural recordings in behaving ani-
mals were collected for pre-processing.
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There was a reverse relationship between the firing rate 
and normalized variance. The neural variability was de-
clined by an increased firing rate. 

Previous studies demonstrated the temporal evolution 
NV (±, computed across individual cells and target di-
rections) significantly declined in the frontal areas after 
the target presentation or before the movement onset. To 
overcome unreliable statistical results across repeated 
trials, selected neurons and all directions were pooled. 
The neural signal and neural variability were averaged 
across all trials and directions. This strength of NV re-
duction in the frontal lobe could be a result of increased 
activity only within specific time windows that depends 
on the considered area. In our study, the simulated level 
of neural activity was changing during the time course of 

behavior (Figure 3). The obtained results suggested the 
reduction of variation in time windows. It was confirmed 
that neural variability is a time course of neural activity 
to predict or code events.

The simulation in Figure 4 illustrates the neural activity 
and variability for a neuron with Poisson spiking statis-
tics. An inhomogeneous Poisson model (time-varying) 
was used to generate spike trains for 100 trials and 1ms 
duration, which we presented in the raster plots of 50 
trials in Figure 4. A and 40 trials in Figure 4 B. The pure 
Poisson distribution of spike activities indicated linear 
effects between the variance and mean values of the 
firing rate, leading to a neural variability equal to one 
(Figures 4 A & C). If the simulated neural response was 
contaminated by the random noise with a random poison 
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Figure 2. The different levels of maximum values (spike count from random Poisson spike trains) for each associated neural 
variability across trials 
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Figure 3. The time course of the simulated spike train (firing rate) and variability in an inhomogeneous Poisson distribution 

NV, aligned to the target presentation, was declined by the change in the population neural activity represented in the form of 
population spike density function or firing rate.
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distribution, the nonlinear effects between the mean and 
variance cause the NV to become greater than one (Fig-
ures 4 B & D). The NV is sensitive to small changes in 
contaminated signals, and it decreases by increased neu-
ral activity in a noisy Poisson distribution. This decline 
results in the change of the activity and the internal states 
of neurons in the population level of neural networks. 

Figure 5 illustrates a closed-loop of neural circuits of a 
motor plan. In the block diagram, the neural variability 
can be supposed as a disturbance; the motor cortex in the 
spiking neural network controller controls the complex 
motor information, and the output of motor command 
decodes the motor intention. 

The copy of the movement was compared with electri-
cal stimulation (input of a closed-loop system). The neu-

ral variability method could be applied in the brain-ma-
chine interfaces to support neurodegenerative diseases, 
like optic ataxia in human and animal research studies, 
to obtain a better understanding of the performance of 
this closed-loop neural circuits in the cortex, a mutual 
connection between the motor and the parietal cortex.

4. Discussion  

No single study was performed on simulated neural 
variability to characterize the role of the noise in the 
brain. These study findings suggested that the neural 
variability, as an internal-external state of noise in the 
brain, was a function of modulations of trial-to-trial fir-
ing rate variability on the single and population level in 
the parietal, dorsal premotor, and motor cortices. In real 
data, the across-trial variability of firing rates through the 

Figure 4. A Poisson model of a spike generator for 100 trials and 1000ms 

A: A raster plot of pure Poisson; B:  Noisy distribution; C: Pure Poisson of the Firing Rate (FR), and the relevant neural vari-
ability. There was no change of neural variability (close to unity) even after a rise in the firing rate; D: Noise-contaminated firing 
rate, and the relevant neural variability. In this case, the NV increased the odds of changes after the jumps of the firing rates.
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Figure 5. The block diagram of a closed-loop neural circuit of the motor planning cortex 
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normalized variance was first measured. In all investi-
gated frontal and parietal areas, after the target presenta-
tion, a significant decline of NV was observed.

The neural variability is a disturbance or noise (target 
value) in this system and sensory feedback (forward 
model) to compare the changing status (movement) and 
the desired motor plan (target position). The closed-loop 
system in the motor cortex controls the motor plan.

To assess the dependency between the activity and the 
temporal or non-temporal pattern variability across repeat-
ed trials, spike trains designed through a random process 
were simulated; it generated pure Poisson distribution with 
no change of variability. By adding the noise to signal, a 
normalized variance was increased across contaminated 
trials. Moreover, the significant increment of the averaged 
noisy activity (by supposing time-locked to the stimulus on-
set) appeared a predominant impact on relative and absolute 
refractory periods of neuronal responses and a sharp decline 
of normalized variance on time patterns. 

5. Conclousion

The neural variability associated with the composition 
of a motor plan described the task events and the behav-
ioral performance of the animal in a satisfactory way. 
Moreover, there was a strong correlation between the 
neural and movement variability where the NV could 
predict the temporal evolution of movement planning 
and behaviors in humans. However, the mechanisms 
underlying the temporal variability of the neural plan-
ning in the human motor cortex and its characteristic 
changes in mental disorders could be related to the neu-
rophysiological substrate of the disorder. By improving 
this method, as a scanner of the neural firing rate in 
the cortex, other forms of bio-signals in the other areas 
of the brain might also have potentials as a predictor 
of the behavior. These results could be related to the 
neurophysiological substrate of the disorder. To study 
this active inhibition notion, active task involvement is 
necessary to imply an interactive task performance. By 
improving the therapy with the suggestions mentioned 
above, other forms of neuro-feedbacks might also have 
potentials as a treatment for Attention-Deficit Hyperac-
tivity Disorder (ADHD).
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