google-site-verification=NjYuzjcWjJ9sY0pu2JmuCKlQLgHuwYq4L4hXzAk4Res Integrated MATLAB Toolbox for fMRI Visualization and Data Conversion - Basic and Clinical Neuroscience
دوره 16، شماره 4 - ( 5-1404 )                   جلد 16 شماره 4 صفحات 714-701 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jaber H, Aljobouri H, Koçak O M, Algin O, Çankaya I. Integrated MATLAB Toolbox for fMRI Visualization and Data Conversion. BCN 2025; 16 (4) :701-714
URL: http://bcn.iums.ac.ir/article-1-1418-fa.html
Integrated MATLAB Toolbox for fMRI Visualization and Data Conversion. مجله علوم اعصاب پایه و بالینی. 1404; 16 (4) :701-714

URL: http://bcn.iums.ac.ir/article-1-1418-fa.html


چکیده:  
Introduction: Working with functional magnetic resonance imaging (fMRI) often involves engaging with multiple file formats and complex viewers. In this study, we developed a novel platform as a visualization and conversion fMRI (VCfMRI) MATLAB toolbox for fMRI data.
Methods: The VCfMRI was developed to read and write 3D fMRI volumes in DICOM, NIfTI, ANALYZE, and MAT formats and convert between them, on a single user-friendly platform. It includes 62 functions across seven graphical user interface modules for conversion, batch read/write, and orthogonal viewing (sagittal, coronal, horizontal). This toolbox also supports overlaying statistical maps on anatomical images with adjustable thresholds. We built and tested VCfMRI using real datasets from a scanner (3T, Siemens Co.) at UMRAM, Bilkent University.
Results: VCfMRI successfully converted and visualized all supported formats in one environment, enabling synchronized 3D views and functional overlays with interactive threshold control, streamlining previously fragmented steps.
Conclusion: The VCfMRI toolbox provides a simple and efficient solution for fMRI data conversion and visualization. It simplifies the handling of fMRI datasets across different formats, which is especially beneficial for physicians, healthcare specialists, and researchers who face challenges in processing and visualizing multi-format neuroimaging data.
نوع مطالعه: Original | موضوع مقاله: Computational Neuroscience
دریافت: 1397/11/10 | پذیرش: 1398/5/10 | انتشار: 1404/4/10

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Basic and Clinical Neuroscience می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb