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In this study, we focused on the gait of Parkinson’s disease (PD) and presented 
a gray box model for it. We tried to present a model for basal ganglia structure 
in order to generate stride time interval signal in model output for healthy and 
PD states. Because of feedback role of dopamine neurotransmitter in basal 
ganglia, this part is modelled by “Elman Network”, which is a neural network 
structure based on a feedback relation between each layer. Remaining parts of the 
basal ganglia are modelled with feed-forward neural networks. We first trained 
the model with a healthy person and a PD patient separately. Then, in order to 
extend the model generality, we tried to generate the behaviour of all subjects 
of our database in the model. Hence, we extracted some features of stride signal 
including mean, variance, fractal dimension and five coefficients from spectral 
domain. With adding 10% tolerance to above mentioned neural network weights 
and using genetic algorithm, we found proper parameters to model every person 
in the used database. The following points may be regarded as clues for the 
acceptability of our model in simulating the stride signal: the high power of the 
network for simulating normal and patient states, high ability of the model in 
producing the behaviour of different persons in normal and patient cases, and the 
similarities between the model and physiological structure of basal ganglia.
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               1. Introduction

arkinson’s disease (PD) is the most com-
mon neurological disorder after Alzheimer. 
This neurodegenerative disease is progres-
sive and disabling andIts main symptoms 
are tremor, rigidity, bradykinesia, and gait 

disturbance. The destruction of Substantia Nigra Pars 
Compacta of basal ganglia with an unknown cause 
leads to PD [1].

P
One important symptom of PD is gait disorder. It is of-
ten presented in the primary stages of the disease. Gait 
disorder is progressive in all stages of the disease and 
is caused by muscle rigidity, bradykinesia, abnormal 
rhythmicity, asymmetry of the left and right parts of 
the body, and abnormal scaling of pace length. The gait 
disorder in PD patients includes slowed gait, shortened 
length of stride, decreased rhythm and cadence, in-
creased time of double support in the stance phase, shuf-
fling and festinating gait, decreased swing of the arms, 
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and disturbed regulation of the stride length. 5 minute 
walking uncovers the disturbances in patients [1].

Mathematical modeling in PD has been done by dif-
ferent researches in recent years. A mathematical model 
can produce a global understanding of complex biologi-
cal systems. PD is a common neurodegenerative dis-
ease with unknown etiology. This mysterious behavior 
increases the importance of modeling approach. 

In 1965, Austin et al. presented a simple model for 
PD tremor which was based on Van-Der-Pol oscillator. 
They argued that tremor is the result of altering the input 
of an internal oscillator in human body. However, their 
model had not included most physiological findings [2]. 
In 1995, Beuter and Vasilakos postulated the PD to be 
an apparent dynamic disease and claimed that tremor is 
the result of altered parameters of a control system in 
the patient. Their mathematical model included a linear 
combination of two nonlinear coupled oscillators. This 
study had not used real physiological data for validat-
ing the model [3].1n 1999, Edwards et al. presented an 
artificial neural network model with a parameter for 
attenuating the connections of neurons to simulate the 
decreased dopamine level in PD. The relation between 
this parameter and dopamine level was unclear [4]. In 
2003, Asai et al. presented a model based on “central 
pattern generator” for PD pedaling. The change in the 
input of the model was supposed to be the cause of 
disturbed patient behavior. Although the roles of lower 
motor parts are considered in this research, the brain 

function is neglected for the purpose of simplicity [5]. 
In 2005, Haeri et al. focused on BG structure and pre-
sented a mathematical model for tremor. While being a 
simple model and accepting some assumptions as con-
sidering the tremor to be simple sinusoidal signal, the 
role of drugs and DBS treatments were simulated fairly 
suitable and clinically plausible [6]. In 2006, Niktrash 
supposed that there are some tremor-like oscillations 
in internal globus pallidus. They introduced a network 
model and chose the model parameters from a random 
Gaussian distribution. The role of different parameters 
was evaluated, but the response of the model was not 
compared with clinical data [7]. In 2006, Cutsuridis and 
Perantonis presented a network model for bradykine-
sia of PD. They tried to make error vector and desired 
velocity vector for monoarticular hand movement, al-
though there was no physiological clue for these vec-
tors. In this model, attention was paid to downstream 
levels of BG and the role of BG was presented only as 
a model input [8]. In 2008 MashhadiMalek et al. pre-
sented a model of BG structures based on Central Pat-
tern Generator (CPG) in each block. They showed that 
rigidity and tremor are correlated. However, the pres-
ence of oscillations in the BG internal parts contradicts 
this hypothesis [9]. In 2009, Guthrie et al. introduced a 
conceptual neural network to model action selection of 
dopaminergic neurons. The role of dopamine signal on 
phasic rise & fall and tonic level and its effect on reward 
were showed.  They tried to discuss the role of changing 
dopamine signal on cognitive deficit. The behaviour of 
L-dopa was implemented on the model [10].

Figure 1. Basal ganglia and their components [6].
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It is worth noting that one important symptom of PD 
is gait disturbance and different studies have evaluated 
the difference between normal and PD gait. Some stud-
ies have concentrated on the differences between  PD 
and normal gait  in time domain [11, 12]. Some other 
researchers have observed the fractal changing behav-
iour in PD patients [13, 14, 15]. Meanwhile, few models 
are presented for PD gait, which are generally based on 
CPG theory [16, 17].

As it was noted, most  approaches have modeled the 
PD as black-box, and few physiological findings have 
been  used and most models have compared the overall 
behavior of the model with  real plants. On the other 
hand, different studies show that gait analysis has a 
good capability for PD evaluation  and it can be used 
for modeling purposes, more than previous studies. In 
this study we try to present a comprehensive model, 
based on physiological findings, for all the members of 
our  database. It is obvious that having such a model can 
help researchers in analyzing, diagnosing, controlling, 
and predicting the behavior of PD. 

In this study, we present a model for basal ganglia in 
order to generate stride time intervals for healthy and PD 
states. Physiological findings show a feedback structure 
for dopamine modulatory effect in basal ganglia that has 
a critical role in PD. Because of this important effect, 
we had to consider it in our modelling strategy. Elman 
network is a neural network structure which is based 
on a feedback relation inside each layer. The remaining 

parts of the basal ganglia and the neuromuscular sys-
tem involved in gait production are modelled with feed-
forward neural networks. Hence, the proposed model 
consists of an Elman network and some feed forward 
neural networks.  

In order to produce healthy and PD states in our mod-
el, we first trained our model with the data from one 
healthy and one PD person. However, it seems better 
to have a model which can simulate the behaviour of 
a great number of patients. Therefore, first it was nec-
essary to extract some proper features of stride signal. 
Then, considering 10% tolerance in presented neural 
network weights and using multi object genetic algo-
rithm, we found proper parameters to simulate the fea-
tures of every person in our database.

 2. Methods

In this section, we describe a physiological background 
about the structure of basal ganglia and the gait behavior 
of PD. Then, clinical data and the overall structure of 
the proposed model will be described.  We have a brief 
review on Elman and feed forward neural networks. Fi-
nally, feature extraction stage and model training will 
be explained.  

2.1. Physiological Background

BG are involved in motor control. When the person 
decides to do a certain movement, this willing is con-

Figure 2. BG structure considering direct and indirect pathways.

Table 1.  The mean of differences between real and model features in normal and PD cases

Mean Variance
Petrosian
Dimen-

sion

1st 
Spectral 
Feature

2nd 
Spectral 
Feature

3rd 
Spectral 
Feature

4th 
Spectral 
Feature

5th 
Spectral 
Feature

Parkinonian 0.077564 0.003914 0.001143 0.162065 0.080369 0.064878	 0.068935 0.104781

Healthy 0.07111 0.002074 0.000871	 0.115247 0.042811 0.029832 0.029826	 0.026804
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verted to motor commands, mainly by cerebellum, BG 
and cortex. These commands pass from spinal cord and 
reach the motor end plate. BG are responsible for regu-
lating the quality of motion. Therefore, defects in BG 
do not cause movement cessation; instead, they cause  
disturbed movements, i.e. loss of smoothness, abnor-
mal timing, and additional movements. It is suggested 
that BG have key roles in timing, initiation of voluntary 
movement, controlling the speed and acceleration of 
movement, regulation of muscle tone and etc. 

BG input is from cortex and BG output is relayed 
through thalamus to supplementary motor area (SMA). 
Based on neuronal structure and neurotransmitters re-
leased, BG are supposed to be composed of 5 neuro-

nal blocks: substantia nigra (SN), globus pallidus (GP), 
subthalamic nucleus (STM), putamen and caudate. 
Putamen and caudate act as BG inputs and are called 
collectively “striatum” (Str). Based on the mechanism 
of action, SN is divided into two functionally different 
parts: Substantia Nigra pars reticulata (SNr) and Sub-
stantia Nigra pars compacta (SNc).

Globus pallidus is similarly divided into two parts: ex-
ternal (GPe) and internal (GPi). SNr and GPi constitute 
the output of BG. The relations between BG blocks as 
well as the kinds of neurotransmitters are depicted in 
Fig. 1. As it is shown, BG inputs and outputs are re-
lated to each other by two different pathways: The 
first, which connects Str to BG output, is called direct 
pathway. The second, which connects Str to BG out-
put through STN and GPe, is called indirect pathway. 
These two pathways are controlled by dopamine signal 
via the modulatory effect of SNc. The direct pathway 
has a simple and fast processing on the BG input, but 
the indirect pathway fulfils more complex processing on 
the BG input. The balance between these two pathways 
is regulated by SNc. In PD, because SNc is destructed, 
dopamine output is reduced and the balance between 
the two pathways is disrupted. The hypothetical schema 
that we used as the basis of our model is shown in Fig. 
2 [1, 6].

2.2. Clinical Data: We used the data presented in www.
physionet.org [13]. This database includes 14 Parkinso-
nian patients and 16 healthy persons as controls. Ob-
jects were able to walk independently for 5 minutes. In 
this database, time intervals of stride, swing, and stand 
are presented for both legs. Objects were asked to walk 
for 5 minutes in a 77 meter direct path. Patients didn’t 
show falling or freezing of gait (FOG). Normal subjects 

Figure 3. Schematic representation of the presented model.

Figure 4. A schema of Elman neural network.
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had no previous neural disease or gait disorder. The gait 
data of the first 20 seconds were deleted in order to omit 
the effect of movement initiation. For measuring time 
intervals, plantar force sensors were used. The plantar 
force signal was sampled with the frequency of 300Hz.

2.3. Overall Structure of the Proposed Model

Because of its importance in PD, the role of SNc and 
its dopamine output is in the core of attention in our pre-
sented model. Because of the dopamine feedback and 
its role in the disease, the Elman structure is considered 
for this part of BG. Elman network contains feedback 
and can be easily trained by the back-propagation al-
gorithm. Elman network is really powerful for produc-
ing and modelling periodic and semiperiodic signals. In 
this model, since the final output is stride time intervals, 
we are prone to semiperiodic signals. Therefore, Elman 
network is useful for producing the final output signal. 
For modelling  other parts of BG, we used feed-forward 

neural networks to have a model similar to physiologi-
cal findings. Therefore, we finally used an Elman net-
work with one layer and a feed-forward network with 
two layers. The role of dopamine was considered in the 
feed-back of first layer (Elman network). Because the 
input of cortex to BG is intact in PD patients, the input 
of the model (input of the cortex to BG) was chosen as a 
constant signal which was not different between normal 
and patient states.. However,  model parameters (BG) 
are changed in PD state in comparison with normal per-
sons. The model structure, according to physiological 
structure of BG, is shown in Fig. 3.

2.4. Artificial Neural Networks

The structure of an Elman’s Recurrent Neural Net-
work is illustrated in Fig. 4. Here, X, Y, C, Z, and z-1 
are input layer vector, hidden layer vector, context layer 
vector, output layer vector, and unit delay element, re-
spectively.

Figure 5. Feature extraction from spectral analysis.

Figure 6. Real and simulated signals of a normal person.
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Weight matrices are as follows: W1 is the weight 
matrix between input layer and hidden layer, W3 the 
weight matrix between context layer and hidden layer 
and W2 is the weight matrix between hidden layer and 
output layer.

The outputs of the neurons in the hidden layer and out-
put layer for sth iteration can be computed as:

Where f is the activation function of each neuron [18].

Feed-forward structure does not contain the recurrent 
part of Elman structure. The relation between different 
parts of the network is similar to Elman relations with-
out feedback part. If we put W3=0 in Fig. 3, we can find 
the schema of feed-forward structure.

In our model, the numbers of neurons are 30, 30, and 
15 in the first, second and third layers, respectively. The 
activation function of all layers is sigmoid. Output of 
the network’s third layer  passes through a pure-line 
function and produces the final network output. There 
were 20 inputs to the system, which were supposed to 
be constant in healthy and PD state. Since the nature of 

this signal is complicated and immeasurable, we used 
a random 20 point time series as an initial assumption. 

2.5. Feature Extraction 

 Previous studies  usually have focused on statistical 
analysis of mean and variance. Significant differences 
have usually been  seen between the mean and variance 
of stride in normal cases and patients [13]. Therefore, 
we used these two features in our study. Because of the 
semi-periodic behaviour of gait (stride) as well as the 
results of our previous studies, power spectra seem to 
be proper. These studies show that normal persons have 
more regular behaviours and their spectra have high 
energy in definite ranges. In contrast,  patients had ir-
regular behaviours and their spectra were distributed ir-
regularly in all  ranges. Therefore, the features extracted 
from spectral analysis can be useful for making the 
model responses similar to the real signals. 

For calculating the power spectra of signal, we used 
Fast Fourier Transform (FFT) to convert our original 
signal to frequency domain. Then, we calculated the ab-
solute value of FFT to produce the power spectra den-
sity [19].  

For this purpose, the power spectra range was divided 
into 5 equal parts. The amount of energy (the area under 
the curve) in each part was calculated and chosen as a 
feature (Fig. 5).

Figure 7. Representation of real and simulated signals of a normal person simul-
taneously.
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In the disease situation, the state of the person is 
changed with respect to the normal conditions. Chaotic 
features are proper for showing the state changes. Dif-
ferent studies including EEG processing have evaluated 
the state change with chaotic features. For this reason, 
we used these features in our study. Fractal dimension 
is fairly proper for showing the state change. One meth-
od for fractal computation is Petrosian’s Algorithm. 
Petrosian uses a quick estimate of the fractal dimension 
which can be done by extracting a time series from the 
present signal with different methods. Then this relation 
is used [20]: 

Where N is the length of the sequence (number of 
points) and NΔ is the number of sign changes (number 
of dissimilar pairs) in the generated binary sequence.

2.6. Training Stages

We first trained our model based on the data of one 
healthy and one PD person by back-propagation meth-
od. To isolate the direct and indirect pathways in 2nd 
layer, we divided the neurons in two groups and cleared 
the connection weights between the neurons of the two 
groups (i.e. we set them to zero). The cleared connec-
tions are shown as dashed connections in Fig. 3. We 

wanted to use this structure as the base model for simu-
lating different healthy and PD states. In order to evalu-
ate the ability of the model to produce healthy and PD 
states, we tried to produce the behaviour of other per-
sons which are not used in training process (healthy and 
PD patients). For this purpose, we tried to correct some 
weights of the network. For modelling the behaviour of 
other normal humans, we decided to let the input signal 
and some of the weights of different parts of model to 
change in a 10% range. The signals from cortex to BG 
may differ among different persons, because of physi-
ological differences between people. Also, the weights 
of BG are more or less different between individuals. 
For patients, we chose the weights of network only from 
SNc and input signal, because the main difference of 
patients depends on the amount of defect in SNc. The 
weights of SNc in our network were related to Elman 
layer feedback. 

For choosing proper weights, genetic algorithm was 
used. We tried to have the same features of real cases in 
the outputs of our model. Genetic algorithm was used 
in multi-object manner and each of the features ap-
proached to the real ones, separately. The chosen fea-
tures for stride signal were mean and variance of the 
strides, Petrosian Dimension of strides and power spec-
tra features.  For the purpose of clarification, we explain 
the genetic algorithm optimization method briefly:

Genetic algorithm (GA): Genetic algorithm, which is 
a randomized searching method, mimics evolutionary 
natural processes. Using a stochastic optimization meth-

Figure 8. Real and simulated signals of a PD patient.
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Figure 9. Representation of real and simulated signals of a PD patient simultaneously.

od, it can find and guide the searching space for optimi-
zation. It can also adjust the search direction adaptively 
without special rules. 

In nature, weak species become extinct in their en-
vironment due to natural selection. The reason is that 
strong species are more likely to pass their genes to fu-
ture generations through reproduction. Consequently 
after several generations, the species with proper gene 
combination become dominant in the population. This 
algorithm is valuable for solving multi-objective prob-
lems.

Since our goal was producing all the features of model 
response similar to real cases, we considered each fea-
ture of the signal as one object and used GA in multi-ob-
ject manner. Therefore, each of the features of the model 
approached the real features of the stride. 

3. Results

We pointed out that model response is the stride time 
intervals of normal and PD patients. Real and simulated 
signal of a normal person are shown in Fig 6. In Fig. 7, 
we show modelled and real data simultaneously. Also, 
Fig. 8 shows the real and simulated signal of a PD pa-
tient. In Fig. 9, we show modelled and real data simul-
taneously. As it is shown in these figures, the real signal 

and model output are clearly similar. The considerably 
good ability of the model in generating a response simi-
lar to real recorded data shows the high potency of the 
model structure. 

The power spectra of normal and PD persons are 
shown in Fig. 10 and their difference is seen apparently: 
normal ones have their most energy in low ranges of 
the spectrum, while the energy of PD patients is distrib-
uted in all ranges of the spectrum.  We tried to produce 
the behaviour of  normal and PD persons who were not 
used in training process. For each person, we corrected 
the model with up to 10% change in selected weights. 
Features of model response in each person were calcu-
lated and compared with the real features. The differ-
ence of real and model features in each normal and dis-
ease state were calculated and its mean was computed. 
Table 1 shows this mean difference of features in nor-
mal and PD states. This table shows  how these features 
are similar, which means that model response is very 
similar to the real signal. 

4. Discussion

PD is a common neurological disease and the core of 
attention of researches. Different researchers have fo-
cused on symptoms, etiology, behaviour and treatment 
of PD. Meanwhile, some researchers have tried to find 
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Figure 10. The power spectra of normal and PD persons.

out and analyse the cardinal symptoms of PD and model 
them in order to understand BG behaviour. Such models 
help us in identifying the disease behaviour and state the 
changes in BG. The brain structure is so complex that it 
is impossible to recognize its performance in different 
states exactly. In disease states, this complexity is usu-
ally increased. Computational models present a global 
understanding of a specific brain function in PD and 
normal states. There are different computational models 
for PD, most of which are black boxes that have con-
sidered some details of physiological findings. Most of 
the models are implemented for tremor and few proper 
models are presented for gait disorder. The gait behav-
iour and its disorders are complex and for this reason, 
designing a model based on physiological findings may 
be useful in understanding the disease and finally to di-
agnose and control it in earlier stages. 

In this study, based on reliable physiological find-
ings, we tried to introduce a model which can include  
key roles of BG and produce the stride of normal cases 
and patients. For this purpose, in accordance with BG 
structure, a three layer ANN with feedback in the first 
layer (Elman structure) was designed. The feedback in 
the first layer of ANN simulates the modulatory effect 
of SNc on striatum (by dopaminergic signal). We tried 
to match the fraction of neurons in each layer of ANN 
with physiological findings. The excitatory and inhibi-

tory relations were simulated by the sign of weights be-
tween different layers. The final response of the ANN 
was assumed to be the real stride. At first step, the ANN 
was trained for a normal person and a PD patient. This 
was used in the remaining parts of our study as the pre-
liminary model.  It must be noted that the final model of 
our study must be able to produce the behaviour of all 
normal cases and patients. For achieving  such a gen-
eral simulation power, we executed several steps: 1) the 
main features of the stride time intervals were chosen 
and extracted for each  subject. 2) The weights of the 
preliminary ANN were allowed to select proper amount 
in 10% tolerance of the initial values. 3) A multi object 
GA was implemented to find the proper chromosome 
(proper set of ANN weights), so that proper features 
of each subject, can be generated by the model. This 
means that our model is now able to simulate each of the 
subjects in our database.    

It must be noted that with choosing the above men-
tioned features, the signals are analyzed from three dif-
ferent views, i.e. time domain, frequency domain, and 
complexity. 

In a general view, the following points may be re-
garded as  clues for the acceptability of our model in 
producing the stride signal: the high power of the ANN 
when training it for normal and PD states, high ability 
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of the ANN in producing the behaviour of different per-
sons in normal and PD cases (with maintaining a unique 
structure and minute change of some parameters), and 
the similarities between the model and physiological 
behaviour of BG. 

We suggest that based on physiological plausibility 
of this novel model, it can be used as a proper primary 
template for future PD studies. We think that our model 
is capable of testing different treatment routes in PD.
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