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Introduction: Pain is valuable in diagnosis and also warning of the patients. Many molecular 
reagents are introduced which are related to pain. In this research, the pain-related genes are 
screened to identify the critical ones. 

Methods: First, the pain-related genes were pulling out from the STRING database, and 
Cytoscape software was used to make the interactome unit. Then the central genes and their 
neighbors were analyzed. Finally, the genes were clustered, and the essential genes were 
introduced.

Results: After analyzing 159 genes of the network, FOS, IL6, TNF, TAC1, IL8, and KNG1 
were identified as the essential genes. Further analysis revealed that 88 genes are directly 
connected to the central genes. More resolution led to ignoring TNF and IL8 and considering 
SCN-alpha and PAICS as additional critical nodes. 

Conclusion: Six critical genes related to pain were identified. They can be potentially 
considered as new drug targets. Further investigation is required to introduce the central genes 
as a pain killer.
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1. Introduction

espite many investigations on the types of 
pain, unfortunately, the concept of pain is 
still unclear. This problem has resulted from 
the absence of distinction between pain sen-
sation and its causes. Pain is a sensation, 
and this sense has several common features 
with the other sensations such as itching. It 

also occurs in various locations of the body. Due to this 
complexity, types of pain are categorized based on loca-
tion, etiology, intensity, duration, and pathophysiology. 
However, pain cannot be considered just a physical en-
tity but a sensation as well. Types of pain are known as 
distressing experiences, which are associated with dam-
age or injury to the tissues.

 Pain has various dimensions, such as sensory, emo-
tional, cognitive, and social (Brodal, 2017; Orr, Shank, 
& Black, 2017; Williams & Craig, 2016). Based on the 
evidence, genetics has an important impact on pain sen-
sation. So far, several genes have been introduced that 
affect pain sensation and its intensity. Reportedly, peo-
ple respond differently to painful stimuli. Genetics may 
provide reasons for such different reactions between 
patients. Investigation shows that pain development is 
predictable. It seems that better understanding of the 
molecular mechanism of pain can mark suitable drug 
targets and more potent pain killers (Fillingim, Wallace, 
Herbstman, Ribeiro‐Dasilva, & Staud, 2008; Foulkes 
& Wood, 2008). This genetic variability in individuals 
calls for continuous efforts to achieve effective treatment 
of pain. Genome-wide investigation and bioinformatics 
can be used to gain a new perspective about types of pain 
(Clarke et al., 2015; Smith et al., 2018). 

Several therapeutic guidelines for types of pain based 
on reported phenotypes have been established. Some ef-
forts are made to collect dispersed documents to present 
a gene set responsible for variation in pain sensation (Van 

Hecke et al., 2015; Veluchamy, Hébert, Meng, Palmer, & 
Smith, 2018). Protein-Protein Interaction (PPI) network 
has drawn the attention of scientists to solve such genetic 
complexity, which hopefully explains the types of pain. 
In this approach, the all known genes related to specific 
diseases are included in an interacting unit while each 
plays different roles relative to the others in the integ-
rity of the constructed network. The important genes are 
highlighted as central genes and can be considered as 
prominent genes in the onset or development of the dis-
order (Safari-Alighiarloo, Taghizadeh, Rezaei-Tavirani, 
Goliaei, & Peyvandi, 2014). In the present study, a net-
work analysis approach for pain is planned to introduce 
critically involved genes in different types of pain.

2. Methods

STRING database (Szklarczyk et al., 2016) was used as 
genes resource. The genes related to pain were extracted 
via disease query of the database. The genes were includ-
ed in a PPI network by using Cytoscape software version 
3.6.0 (Tavirani et al., 2018). Network analyzer a plugin 
of Cytoscape software was applied to determine the cen-
tral nodes of the network. The top nodes (the nodes with 
closeness above mean +2 SD) were identified (Safari‐
Alighiarloo et al., 2017). A sub-network, including the 
central nodes and their direct neighbors, was constructed, 
too. A combination containing the least number of central 
nodes that were necessary to maintain the integrity of this 
sub-network was identified. To consider the other nodes 
which were not included in the neighbor nodes sub-net-
work, they interacted in the non-neighbors nodes sub-net-
work, and the critical nodes based on degree value were 
identified. The central nodes of both sub-networks were 
considered as key genes related to pain.

3. Results

A total number of 214 genes related to types of pain 
were extracted and included in the interactome. The 

Highlights 

● New possible drug targets (genes) are introduced for different types of pain.

Plain Language Summary 

Different types of pain as distressing experiences usually are associated with tissue injuries or damages. Several 
painkillers are introduced that each is characterized by beneficial or aversive effects. In this study, new drug targets are 
investigated to examine new painkillers. Among many candidates, six genes are determined, which may be suitable 
drug targets.
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network of 49 isolated genes, 2 triple units, and a main 
connected component (characterized by 159 nodes) was 
constructed (Figure 1). Closeness is defined as 1/avg 
L(n, m), where avg stands for average and L(n, m) is 
the length of the shortest path between two nodes n and 
m, so it is a measure of how fast information spreads 
from a given node to other reachable nodes in network 
(Malhotra, Jha, Singh, & Pandey, 2017). Therefore the 
nodes with the higher value of degree (or higher amount 
of neighbors) can be considered as the high score nodes 
based on closeness value. The six top nodes (FOS, IL6, 
TNF, TAC1, IL8, and KNG1) based on closeness value 
considering the cut-off value of Mean±SD were deter-
mined and presented in Table 1. In this Figure, degree, 
length of the shortest path between two nodes n and m, 
betweenness centrality, and closeness centrality related 
to the six central nodes are shown.

Figure 2 shows the connections between the six top 
nodes of the pain network in the represented sub-net-
work. Considering the dense relationship between these 
central nodes, it seems these 6 genes and their direct 
neighbors play a critical role in the integrity of the pain 
network. A sub-network, including the 6 central nodes 
and their direct neighbors is constructed and is shown in 
Figure 3. Since the six central nodes have direct access 

to the 88 nodes, we examined the least number of central 
nodes which are necessary to maintain the integrity of 
the sub-network. After using different combinations of 
the six genes, it was found that FOS, IL6, TAC1, and 
KNG1 combination is the best grouping which serves as 
the core of the sub-network (Figure 4). 

This sub-network includes 88 nodes (2 excluded cen-
tral node+86 direct neighbors). In this procedure, the 
number of nodes which were not included in Figure 3 
was not considered. However, these vanished genes 
may play roles in types of pain. So the missing genes 
were included in a sub-network as it is shown in Figure 
5. Sub-network analysis revealed that SNC8A, SNC9A, 
SNC11A, (SNCA gene family) and PAICS are the hubs 
based on the cut-off value of Mean±SD. Mode of regula-
tion of the 4 central nodes and SNCA gene family was 
investigated and shown in Table 2.

4. Discussion

Based on the evidence, the genes related to specific 
diseases need additional relevant genes to construct a 
scale-free PPI network. Network analysis can screen the 
interacted genes to find important ones which may be 
useful in disease management (Safari-Alighiarloo et al., 

Figure 1. The main connected component; nodes are laid out based on degree value 

The main connected components of the pain network, including 159 nodes, are presented. The nodes are laid out based on 
degree value. Colors from green to red refer to increment degree. The bigger size refers to more connections.
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2014). As it is shown in Figure 1 and Table 1, six cen-
tral nodes are introduced, which can be considered as the 
key elements in pain. The findings that are presented in 
the figures 2, 3 , and 4 refer to the significant role of FOS, 
IL6, TAC1, and KNG1 among the six central genes in 
control of pain PPI network.

Further analysis (Figure 5) also revealed the notewor-
thy role of SNC8, SNC9, SNC11A, and PAICS in pain. 
It is well-known that SNC8A, SNC9A, and SNC11A are 
varieties of voltage-gated channel alpha subunit (SNCA) 
(England & De Groot, 2009). It seems that FOS, IL6, 
TAC1, KNG1, SNCA, and PAICS are the crucial genes 
related to the types of pain. As it is shown in Table 2, all 

crucial genes are up-regulated (a direct statement about 
the regulation of PAICS was not found in the literature). 
The possible roles of the introduced critical genes in pain 
are discussed briefly in the following paragraphs.

Emma V. Bird et al. investigation about the role of 
Chemokine Lymphotactin (XCL1) and its receptor 
(XCR1) in the nervous system led to introduce the role 
of FOS in pain. They reported that expression of c-FOS 
in trigeminal subnucleus caudalis exposed to XCL1 in-
creased. Based on their analysis, XCL1-XCR1 axis is 
involved in the peripheral and central trigeminal pain 
pathway. In other words, induction of c-FOS, extracel-
lular signal-regulated kinase, and PP38 expression and 

Table 1. The top nodes of the main connected components of the pain network based on closeness value considering cut-off values of 
Mean±SD 

R Display Name Degree Stress Avg (L [n, M]) BC CC

1 FOS 51 22700 1.91 0.13 0.52

2 IL6 47 20440 1.92 0.10 0.52

3 TNF 45 17868 1.94 0.08 0.51

4 TAC1 49 17026 1.96 0.07 0.51

5 IL8 43 14236 1.98 0.07 0.50

6 KNG1 44 14580 2.00 0.08 0.50

L (n, m). length of shortest path (distance) between two nodes n and m; BC. Betweenness centrality; and CC. Closeness centrality

Figure 2. A sub-network including the 6 top nodes  
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Figure 3. A sub-network containing 6 top nodes and their direct neighbors.

A sub-network of the main connected components of the pain network containing the 6 top nodes and their direct neighbors is pre-
sented. This sub-network includes 94 nodes. Sixty-five nodes are deleted from the main connected components.

Figure 4. A sub-network including FOS, IL6, TAC1, and KNG1 combination and their direct neighbors

A sub-network of the main connected components of the pain network, including FOS, IL6, TAC1, and KNG1 combination 
and their direct neighbors is presented. The sub-network included 88 nodes which its layout is based on degree value.  
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also hyper-excitability within the trigeminal subnucleus 
caudalis nociceptive circuitry compose the possible pro-
posed mechanism (Bird et al., 2018).

The second central gene is interleukin 6. It is a well-known 
cytokine which plays different roles in host defense because of 
its vast range of activities in immune and hematopoietic pro-
cesses. It is considered as one of the key elements in acute phase 
response induction. Many diseases are associated with over-

expression of IL-6 (Simpson, Hammacher, Smith, Matthews, 
& Ward, 1997). Zhou et al. (2016) published a review of the 
regulatory role of IL6 in pathological pain. Based on numerous 
documents, they stated the essential part for IL6 in pathological 
types of pain. They investigated the importance of IL6 in the 
pathological types of pain associated with several diseases such 
as bone cancer, the peripheral neuropathy due to chemotherapy, 
and spinal cord and peripheral nerve injuries (Zhou et al., 2016).

Figure 5. A sub-network of the nodes which are not direct neighbors of six central nodes

A sub-network is represented containing the nodes which are not direct neighbors of six central nodes of the main connected 
components.  The nodes of sub-network are laid out based on degree value. The bigger size of the node corresponds to a higher 
value of degree. 

Table 2. Mode of regulation of the introduced central nodes 

R Gene Expression Reference

1 FOS Up-regulated (Harris, 1998)

2 IL6 Up-regulated (Zhang & An, 2007)

3 TAC1 Up-regulated (Shanley, Lear, Davidson, Ross, & MacKenzie, 2011)

4 KNG1 Up-regulated (Reyes-Gibby et al., 2018)

5 SCN Up-regulated (Drenth & Waxman, 2007)

6 PAICS Not determined -
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Tachykinins encode small polypeptide chains which are 
known as different neuropeptides. TAC1, TAC3, and TAC4 
belong to this gene family. It was established that TAC1 con-
tributes to inflammation and immune response (Botz et al., 
2013). Reportedly, TAC1 encodes neuropeptide Substance P 
(SP) which is involved in the neurogenic inflammation pro-
cess. Up-regulation of SP in A and B neurons after noxious 
stimulation and its presence in C fibers indicate the role of 
TAC1 gene product in inflammatory pain (Shanley, Lear, Da-
vidson, Ross, MacKenzie, 2011).

There is evidence that bradykinin is involved in sensi-
tizing nervous (nociceptor) peripheral terminals, which 
lead to a reduction of pain threshold (Wang et al., 2005). 
The investigation is shown that there are two homolo-
gous copies; KNG1 and KNG2 as kininogen gene which 
High-molecular-weight Kininogen (HK) is a product of 
KIN1-derived mRNA. Bradykinin results from cleaved 
HK (Yang et al., 2017). Absence of pain due to SCN9A 
mutation and also a spectrum of human genetic pain 
disorders were reported (Drenth & Waxman, 2007; Ra-
jasekharan, Martens, Domingues, & Cauwels, 2017).
It seems that the introduced critical genes alone or in a 
combination are suitable candidates for drug targeting.

Network analysis showed six critical genes which are in-
volved in pain development. Considering up-regulation of 
the key genes, suitable inhibitor reagents of the introduced 
important genes can be attentive as painkillers.
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