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Introduction: Neurogenesis mainly occurs in the hippocampus that is sensitive to 
radiation. More histological changes are reported at higher doses of radiation, while 
low dose radiation causes cognitive dysfunction in adult mammals. In the present study, 
we tried to correlate the Endoplasmic Reticulum (ER) stress-mediated hippocampus 
dysfunction after whole-body gamma radiation of mice. 

Methods: Mice were exposed to a series of gamma radiations, followed by isolation of 
hippocampus. To elucidate the gene expression profile, qPCR was performed for ER stress 
markers CHOP, BiP, and hippocampal specific genes WFS1, Nectin 3, and Sostdc 1 on the 
isolated hippocampus. Expression of CHOP and ERK½ were analyzed by western blot on 
exposure to gamma radiation. 

Results: qPCR results showed a significant increase in the expression of ER stress-
specific genes CHOP, BiP, and decrease in hippocampal specific genes WFS1, Nectin3, 
and Sostdc1. Western blot study suggests a significant increase in ER stress proteins 
like CHOP and ERK½ expression.

Conclusion: Exposure to gamma radiation significantly increased the expression of ER-
stress genes, suggesting that ER stress plays a major role in inducing radiation mediated 
dysfunction of the hippocampus. Also, significant downregulation of WFS1, Nectin3, and 
Sostdc1 genes suggests radiation mediated effect of hippocampal CA 1, CA 2, and CA 3 
regions. A further significant increase of ERK½ shows involvement of the ERK pathway 
in mediating radiation-induced ER stress dysfunction in mice hippocampus. The present 
findings may lead to the identification of ER stress as a new marker to study radiation-
induced neurodegenerative disorder.
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1. Introduction

n various clinical conditions, the brain gets ex-
posed to ionizing radiation. Though radiothera-
py is considered as one of the primary treatment 
modality in different pathological conditions, the 
potential injury to normal tissue is unavoidable. 

Radiation exposure often causes a wide array of cogni-
tive dysfunctions in adult and pediatric tumor patients 
(Merchant, Pollack, & Loeffler, 2010). Ionizing Radia-
tion (IR) has a wide plethora of effects in both young 
and adult brain. More histological changes are reported 
at higher doses of radiation, while low dose radiation 
causes cognitive dysfunctions in adult mammals (Ra-
ber et al., 2004). Repeated exposure to various stresses 
leads to the adverse effect in cognition across multiple 
life stages (Lupien, McEwen, Gunnar, & Heim, 2009). 

Hippocampus is considered to be one of the major sites 
for active neurogenesis (Van Praag, 2005; Mizumatsu et al., 
2003). Hippocampal CA1, CA2, CA3 areas play a signifi-
cant role in maintaining CNS homeostasis and are involved in 
various physiological processes (Frederick Hitti, Siegelbaum, 
2014; Jensen & Lisman, 1996; Dudek, Alexander, & Farris, 
2016; Meyer et al., 2014). Nectin-3 an immunoglobulin-like 
cell adhesion molecule which is mainly localized in the CA3 

pyramidal neurons plays an important role in the synaptic 
formation, maintenance, and remodeling (Mizoguchi et al., 
2002; Honda et al., 2006; Thompson et al., 2008).

Studies indicate that exposure to ionizing radiation 
could induce ultrastructural modifications in the ER 
(Boraks, Tampelini, Pereira, Chopard, 2008). ER forms 
the major protein folding machinery in the cell. Cell ho-
meostasis gets disrupted when the load of the unfolded 
protein increases and Unfolded Protein Response (UPR) 
pathway fails to repair the misfolded protein which leads 
to the accumulation of these proteins in the ER lumen 
(Taniguchi, Yoshida. 2015). Accumulation of these 
misfolded proteins has been proved to cause apoptosis 
(Oakes, Papa. 2015), which ultimately leads to neurode-
generative diseases. The UPR pathway usually is active 
as self-defense machinery in the cell, which increases 
the secretion of molecular chaperones such as BiP and 
GRP78, which belongs to the heat shock protein family 
and foldases. However, when misfolded proteins accu-
mulate in the excessive amount, they may overwhelm 
the quality control machinery. 

The mammalian UPR directs the cell to an apoptotic 
pathway, leading to cell death. C/EBP Homologous 
Protein (CHOP), also known as GADD153 (growth 

Highlights 

• Gamma-irradiation exposure causes significant endoplasmic reticulum (ER) stress-mediated apoptosis in mice hip-
pocampus.

• WFS1 gene plays a part in inducing ER stress-mediated dysfunction in the hippocampus.

• Downregulation of nectin3 also suggests hampered episodic memories and loss of neurogenesis in the CA3 region 
of the hippocampus.

• Sostdc1 gene, which is predominantly found in the CA2 region of the hippocampus, is also reported to play a major 
role in the Wnt receptor signaling pathway. 

• Upregulation of ERK ½ protein expression post 10-Gy exposure of gamma radiation suggests ERK pathway-
mediated cell death, which might be due to phosphorylation of pro-apoptotic signal.

Plain Language Summary 

Myelination is essential for normal brain functions. The significance of various radiation-induced brain disorders has 
been more apparent recently because of the pathology of numerous disorders of the brain in people exposed to various 
kind of ionizing radiation directly or indirectly. Furthermore, patients who have schizophrenia show a decreased den-
sity of glial cells and memory loss. The endoplasmic reticulum stress response is mediated by chaperone proteins and 
cause an imbalance in brain homeostasis. This study aims to understand the influence of Gamma-irradiation on mouse 
brain and study how molecular markers can be targeted for the early identification of radiation-induced brain disorders.
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arrest- and DNA damage-inducible gene 153), is trig-
gered by ER stress. CHOP overexpression triggers cell 
cycle arrest and apoptosis, down-regulates the pro-sur-
vival molecule Bcl-2, and promotes the production of 
reactive oxygen species (Marciniak et al., 2004). Quite 
the opposite, overexpression of the ER chaperone BiP 
reduces CHOP induction that is associated with ER 
stress and attenuates apoptosis (Wang et al., 2013).

Another player, WFS1, is a transmembrane protein 
present in the ER is shown to play a significant role in 
mitigating ER stress response in the cell (Takeda et al., 
2001). Wolfram syndrome a genetic condition of dia-
betes, optic atrophy neurodegeneration, and psychiatric 
illness, is reported to be caused by mutation of WFS1 
gene (Strom et al., 1998; Inoue et al., 1998). Reports also 
suggest that the increased level of ER-stress signaling 
leads to cell death, causing neuronal dysfunction in the 
Wolfram syndrome (Yamada et al., 2006; Riggs et al., 
2005; Kakiuchi, Ishiwata, Hayashi, & Kato, 2006). 

Sclerostin Domain Containing 1 (Sostdc1) belongs to 
a Bone Morphogenetic Protein (BMP) antagonist. In the 
development of cultured sympathetic and cerebellar neu-
rons, the BMP family of proteins play a significant role 
by inducing synaptogenesis and dendritic growth (Lein et 
al., 2002). An altered level of Sostdc1 contributes to vari-
ous disease conditions (Park et al., 2009). Sostdc1 gene 
has also been reported in thapsigargin-induced ER stress 
in mouse osteoblasts (Hamamura, Liu, & Yokota, 2008). 
However, the underlying mechanism is still unclear.

Cell Adhesion Molecules (CAM) are the principal con-
stituent of synapses and also the modulators of synaptic 
activity and plasticity (Shapiro, Love, & Colman, 2007). 
Nectin-3 is a class of immunoglobulin-like CAM that 
presents in both postsynaptic and presynaptic and is con-
nected to the actin cytoskeleton via L-afadin. The nectin-
afadin complex coordinates with the cadherin-catenin 
junction and participates in synaptic formation, remodel-
ing, and maintenance (Mizoguchi et al., 2002; Honda et 
al., 2006). Evidence also suggests impaired nectin-me-
diated damage in hippocampal development and mental 
retardation (Park et al., 2009). Nectin-3 is abundantly 
present in CA3 region of the hippocampus (Thompson 
et al., 2008) and is vulnerable to acute and chronic stress 
(Mizoguchi et al., 2002; Suzuki et al., 2000). Protein ki-
nases play a crucial role in various signaling networks to 
maintain cell homeostasis and its functions. 

Mitogen-Activated Protein Kinase (MAPK) has a con-
served function and contributes to various hippocampus-
mediated neurodegenerative diseases (Giovannini et al., 

2008). Extracellular-signal-Regulated kinase½ (ERK½) 
is one of the members of the MAPK family and has been 
spotted in various disease conditions. Ultraviolet irra-
diation activates ERK½ in various primary immortal-
ized and transformed cells (Tang et al., 2002). However, 
radiation-induced changes in hippocampal Nectrin3, 
WFS1, and Sostdc1 gene expression in ER stress con-
dition via ERK½ pathway are still unclear. To the best 
of our knowledge, there is no report on how radiation 
induces ER stress-mediated alteration in the hippocam-
pus of mice exposed to whole-body radiation. In the 
present study, we have tried to understand the ER stress-
mediated changes in mice hippocampus after exposing 
to whole-body gamma radiation.

2. Methods

2.1. Study subjects

Adult Swiss albino mice (Mus musculus) were housed 
in pairs under standard laboratory conditions with arti-
ficial 12 h light/dark cycle at an ambient temperature of 
25°C-27°C with free access to food and water. All ex-
periments were conducted following the ethical guide-
lines by the Committee for the Purpose of Control and 
Supervision of Experiments on Animals, Government 
of India and cleared by the Institutional Animal Ethics 
Committee.

2.2. Gamma irradiation

For irradiating the samples, 60Co-gamma cham-
ber-1200 supplied by Board of Radiation and Isotope 
Technology (BRIT), DAE, Mumbai was used in the 
Centre for Application of Radiation and Radioiso-
tope Technology (CAART, Mangalore University). 
The dose rate of the above the gamma chamber was 
measured and found 10.2333 Gy/min using Fricke do-
simetry system (Nairy, Bhat, Sanjeev, & Yerol, 2016). 
For the experiment, 6-8 weeks old matched (weighing: 
25±2 g) male Swiss albino mice (Mus musculus) were 
used. All animals were supplied with standard mice 
food and water ad libitum.

Jagetia et al. (2003) reported, 6- to 12-Gy intensity of 
gamma radiation significantly increase lipid peroxida-
tion and depletion of Glutathione (GSH) in mice exposed 
to whole-body radiation. In the present study, the mice 
were exposed to gamma radiation in dose ranges of 7 Gy, 
8 Gy, 9 Gy, 10 Gy in a well ventilated restrained perplex 
box. After exposure, the animals were kept for 24 h and 
then sacrificed and their hippocampus were isolated for 
further analysis. The above experimental protocol was 
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approved by the Institutional Animal Ethics Committee 
(IAEC) of Mangalore University.

2.3. Isolation of hippocampus

After killing the mice, their brains were immediately 
dissected out on the ice and placed in a pre-chilled ste-
reotaxic brain block (Kopf, USA). One-millimeter thick 
sections of the hippocampus were serially cut out using 
Paxinos and Watson atlas. The parts of some sections of 
the hippocampus are stored in RNA Later Solution (In-
vitrogen) for gene expression studies and RIPA buffer 
(Himedia) for protein expression studies. For both Real-
Time qPCR and western blot analysis, 5 adult Swiss al-
bino mice were kept in each experimental group.

2.4. Real-time qPCR analysis

Total RNA was isolated from cells by TRIzol reagent 
(Invitrogen). The Qubit RNA assay kit (Invitrogen) was 
used for quantifying the isolated RNA. One microgram 
of the total RNA was used for a 20 μL reaction. The 
Verso cDNA synthesis kit (Applied Biosystems) was 
used for the Reverse Transcription (RT) reaction. For 
the quantitative RT-PCR, SYBR Select Master Mix (Ap-
plied Biosystems) was used in QuantStudio 12K (Life 
Technology) real-time PCR machine with primers spe-
cific to detect the target messenger RNA (mRNA).

2.5. Western blot

The western Blot analysis was carried out to under-
stand the expression level of CHOP and ERK pathway 
on exposure to IR in mice hippocampus. The tissues 
were lysed using lysis buffer (Himedia) and stored at 
–20°C for further analysis. Qubit protein assay kit (In-
vitrogen) in Qubit 2.0 fluorometer (Invitrogen) was used 
to quantify the isolated protein from the hippocampus 
tissue homogenate. About 40 µg of the quantified pro-
tein sample was dissolved in 10% SDS polyacrylamide 
gel and further transferred to the nitrocellulose mem-
brane. After transfer, the membrane was blocked using 
3% BSA in Tris-buffered saline and Tween 20 mixture 
(0.2 %) and incubated in primary antibody overnight at 
4°C. The primary antibodies of anti-GAPDH (1:1000, 
Abchem), anti-CHOP (1:1000, Cell signaling), and anti-
ERK½ (1:1000, Pierce) were used. The bands were vi-
sualized in ChemiDoc (Bio-Rad) using corresponding 
horseradish peroxidase-conjugated secondary antibod-
ies (Sigma). The bands were quantified using ImageJ 
software and graphs were plotted by GraphPad Prism-3 
software.

2.6. Statistical analysis

Statistical analysis was performed by 1-way ANOVA 
followed by Dunnett’s multiple range test in Prism 3 
software (GraphPad Software Inc.). The data were ex-
pressed as Mean±SD. P values less than 0.05 were con-

Figure 1. qRT-PCR analysis of isolated hippocampus on exposure to whole-body gamma radiation of mice. 

The qRT- PCR analysis of the transcript levels of ER stress-specific gene a. CHOP; and b. BiP on exposure to 7 Gy, 8 Gy, 9 Gy, 
and 10 Gy radiation. GAPDH was used as an internal control for the estimation of target gene expression. For quantitative 
representation, the graph is plotted as gene expression compared to the control. Then, 1-way ANOVA, followed by Dunnett’s 
multiple, were used to check the significance based on the control. Error bars represent Mean±SD with ANOVA parameters 
(*P<0.05; **P<0.01; ***P<0.001).
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sidered statistically significant (*P<0.05; **P<0.01;  
***P<0.001).

3. Results

3.1. Effect of radiation on ER stress and hippocam-
pus specific gene expression

BiP and CHOP are well-known ER chaperones and get 
up-regulated under conditions of ER stress. We assessed 
the expression of BiP, CHOP, WFS1, Sostdc1, and Nec-
tin3 by quantitative RT-qPCR on irradiated mice hippo-
campus. Results demonstrate increase in CHOP and BiP 
gene expression with increase in dose of 7 Gy to 10 Gy 
and also 4 fold increase of ER stress-specific gene CHOP 
(***P<0.001) and 6 fold increase in BiP (**P<0.01) at 
10 Gy of gamma radiation dose with respect to control 
(Figure 1 A-b). Furthermore, 7-10 Gy dose of gamma 
radiation significantly downregulates the expression of 
Nectin3 gene (***P<0.001), WFS1 (***P<0.001) and 

Sostdc1 (*** P<0.001) by 1 fold which ultimately at the 
10-Gy dose (Figure 2 a-c).

3.2. Protein expression analysis of CHOP and 
ERK½ 

CHOP gene has been commonly used as a hallmark for 
the ER stress-mediated apoptosis, and induction of this 
gene confirms ER stress-mediated apoptosis. Whole-
body gamma radiation dose significantly increased 
(**P<0.01) expression of CHOP (Figure 3 a-b) protein 
level, suggesting the induction of ER-stress-mediated 
apoptosis in the isolated hippocampus. Significant in-
crease in the CHOP protein expression (**P<0.01) at 
10 Gy of dose gamma advocates profuse ER stress-
mediated apoptosis. Also, significant (*P<0.05) increase 
of ERK½ protein expression at the dose range of 10 
Gy dose of radiation are observed on the hippocampus 
(Figure 3 a, c) which further validate the involvement of 
ERK½ pathway, inducing ER-stress-mediated apoptosis 

Figure 2. qRT-PCR analysis of the transcript levels of a.Nectin3; b. WFS1; and c. Sostdc1. 

The graph is plotted of gene expression relative to control and 7-Gy, 8-Gy, 9-Gy, and 10-Gy doses of gamma radiation. GAPDH 
served as internal control. To evaluate the significant fold induction as compared to the control, 1-way ANOVA and Dunnett’s 
multiple range test were performed (*P<0.05; **P<0.01; ***P<0.001). Error bars are presented as Mean±SD.
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Figure 3. Western blot analysis of protein levels of the hippocampus after whole-body gamma radiation 

CHOP and ERK½ protein level were analyzed. Representative a. western blot images ; b. Quantitative analysis of western 
blot of CHOP; and c. ERK½. Quantitative graphical representation was done using GraphPad Prism software. To represent a 
statistically significant protein expression as compared to the control, 1-way ANOVA and Dunnett’s multiple range test were 
performed with 1-way ANOVA parameters (*P<0.05;**P<0.01; ***P<0.001). Error bars are presented as Mean±SD.

Figure 4. Hypothetical schematic diagram shows the mechanism of whole-body mice gamma radiation induced-ER stress-mediated dis-
ruption of hippocampal homeostasis. 

Radiation induces inhibition of Sostdc1 gene resulting in disruption of the WNT pathway, which might lead to ER stress of 
cells. Also, radiation downregulates Nectin3 resulting in hampered nectin-afadin complex and ultimately might be causing 
various neurodegenerative disorders. The onset of ER stress leads to the dissociation of BIP from the unfolded protein, ulti-
mately leading to the subsequent activation of IRE1α, PERK, and AT6 pathway downstream in the ER lumen. Radiation inhib-
its WFS1 gene expression resulting in IRE1α-mediated apoptosis. IRE1α also activates MEK which leads to the phosphoryla-
tion of ERK½, which ultimately leads to apoptosis via phosphorylating DAPK.
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in isolated hippocampus. Significant increase in the lev-
els of CHOP and ERK½ suggests that IR induces hip-
pocampal dysfunction by inducing ER-stress-mediated 
apoptosis, which might be further responsible for vari-
ous IR-mediated hippocampal dysfunction.

4. Discussion

Understanding the molecular machinery responsible 
for radiation-induced cognitive dysfunction will provide 
insight into the molecular mechanism and neurobiology 
of stress-induced neurodegenerative disorders. Here we 
tried to understand how radiation onsets ER stress-in-
duced dysfunction of the hippocampus of mice brain af-
ter whole body radiation. We observed a positive corre-
lation with the upregulation of ER stress-specific genes 
and also the genes responsible for various physiological 
functions in the hippocampal regions. ER stress has been 
reported to disrupt neuronal functions and is responsible 
for various neurological disorders like Alzheimer dis-
ease, Parkinson disease, and Huntington disease (Siman, 
Flood, Thinakaran, Neumar, 2001). Radiation-induced 
ER stress has also been reported by us and others in vari-
ous cell lines (Zhang et al., 2009). 

In the present study, we found elevated expression of 
GRP78/BiP which has been reported earlier to have a 
dual role which activates under ER-stress condition as a 
self-defense mechanism in the cell, but under unresolved 
ER stress, this leads to cell death (Akutsu, Matsubara, 
Urashima, Komatsu, Sakata, Nishimori, et al, 2007). 
Another marker, CHOP, a downstream component of 
the ER stress pathway, is reported to get upregulated 
along with the induction of BiP signaling and lead the 
cell towards apoptotic pathway. CHOP overexpression 
has been linked with various neurodegenerative diseases 
and also targeted for development of therapeutic drugs 
against ER stress (Ohoka, Yoshii, Hattori, & Onozaki, 
Hayashi, 2005). In the present study, we observed sig-
nificant upregulation with the increasing gamma radia-
tion dose suggesting the 7 Gy gamma radiation exposure 
brings about significant induction of ER stress-mediated 
apoptosis in mice hippocampus.

Previous reports have suggested cells deficient in 
WFS1 are more susceptible to ER stress-mediated apop-
tosis. The present study we have observed a reduction of 
WFS1 gene with the increase of radiation dose in sync 
with an increase of BiP and CHOP, suggesting WFS1 
plays an important role in mediating ER stress-mediated 
apoptosis. Also, the reduced level of WFS1 is linked 
with a genetic condition leading to Wolfram syndrome 
which causes severe depression, psychosis, or organic 

brain syndrome, as well as impulsive verbal and physical 
aggression (Takeda et al., 2001). In the current study, we 
observed a decrease in WFS1 gene expression with an 
increase of radiation dose, suggesting a link role of the 
WFS1 gene in inducing ER stress-mediated dysfunction 
in the hippocampus.

Previous reports have suggested the major role of 
CAM Nectin-3 in hippocampal-dependent learning and 
memory (Wang et al., 2013). Reduced level of nectin 
is associated with early life stress, disruption of synap-
tic contacts, and also hampered spatial memory. In our 
present study, we observed a dose-dependent decrease of 
Nectin-3 expression suggesting that 7- to 10-Gy gamma 
radiation have severe effect in destabilizing the hippo-
campal neurons, which might be disrupting hippocam-
pal-dependent cognitive functions. Downregulation of 
Nectin-3 also suggests hampered episodic memories and 
loss of neurogenesis in the CA3 region of the hippocam-
pus.

Sostdc1 gene, which is predominantly found in the 
CA2 region of the hippocampus, is also reported to play 
a major role in the WNT receptor signaling pathway (In-
estrosa et al., 2005). We have observed significant down-
regulation of Sostdc1 gene on the exposure of gamma 
radiation, which suggests radiation causes significant 
changes in the WNT signaling pathway, and this might 
ultimately lead to various hippocampus-induced neuro-
degenerative diseases.

Heat shock protein is said to activate various kinase 
pathways that control proliferation and survival like 
ERK½ and Akt (Mebratu & Tesfaigzi, 2009). ERK½ 
activation is reported to promote ER stress-induced 
cell death in neuroblastoma cell line (Arai et al., 2004; 
Mukerjee, McGinnis, Park, Gnegy, & Wang, 2000). The 
suppression of ERK½ or Akt activation during stress 
condition increases heat sensitivity. On the contrary, 
overexpression of wild-type ERK½ protects cells from 
stress (Gabai et al., 2000). In the present study, we have 
observed significant upregulation of ERK½ protein ex-
pression post 10-Gy exposure of gamma radiation sug-
gesting ERK pathway mediated cell death, which might 
be caused via phosphorylation of pro-apoptotic signal of 
DAPK as also reported earlier by Mebratu & Tesfaigzi 
(2009) (Figure 4).

In conclusion, our present study suggests that a 7-Gy 
dose of whole-body gamma radiation in mice is suffi-
cient to induce ER stress specific markers BiP and CHOP 
and also downregulates hippocampal genes WFS1, Sos-
tdc1, and Nectrin3, which ultimately disrupt the hippo-
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campal homeostasis. Significant increase of ERK½ also 
suggests cells innate response to overcome ER stress. As 
the hippocampus is involved in a wide array of physi-
ological functions, radiation-induced damage in the hip-
pocampus might lead to various neurodegenerative dis-
eases such as AD, PD, etc. The present study may lead to 
the identification of ER stress and hippocampal genes as 
new markers to study radiation-induced neurodegenera-
tive disorder induced by hippocampal dysfunction.
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