دوره 9، شماره 3 - ( May & June 2018 1397 )                   جلد 9 شماره 3 صفحات 186-177 | برگشت به فهرست نسخه ها


XML English Abstract Print


چکیده:  
Introduction: Video games are common cultural issues with great influence in all societies. One of the important cognitive effects of video games is on creating stress on video players. The present research objective was to study different types of stress in players based on video game styles. 
Methods: A total of 80 players, aged 18 to 30 years, played four types of video games;  Runner game, Excitement game, Fear game, and Puzzle game. In the beginning, the players filled in the form of personal information as well as some general and specialized information on the games. Before starting each game, the saliva samples of the players were collected to measure their level of cortisol and α-amylase. At the end of each game, the same samples were collected again. The concentrations of cortisol and α-amylase were measured using a specialized kit and an ELISA device. In addition, the variations of brain waves were recorded by an Emotiv system. Finally, the data were analyzed in SPSS and Matlab system (after and before playing video game). 
Results: The research findings revealed that the salivary α-amylase concentration increased significantly after playing the Fear game, Runner game, and Excitement game and decreased significantly after playing the Puzzle game. Moreover, the concentration of salivary cortisol increased significantly after playing the Runner game, Excitement game, and Fear game and decreased significantly after playing the Puzzle game. The brain wave analysis also revealed that the level of stress experienced by playing Fear game was higher than the Excitement game.
Conclusion: According to the research findings, video games can affect the stress system as well as the cognitive system of humans depending on the game style. In addition, the type and level of stress triggered in the players depend on the game style.
نوع مطالعه: Original | موضوع مقاله: Computational Neuroscience
دریافت: 1396/9/9 | پذیرش: 1397/1/6 | انتشار: 1397/2/11

فهرست منابع
1. Aliyari, H., Kazemi, M., Tekieh, E., Salehi, M., Sahraei, H., Daliri, M. R., et al. (2015). The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers. Basic and clinical neuroscience, 6(3), 193-201. [PMID] [PMCID] [PMID] [PMCID]
2. Anderson, A., Kludt, R., & Bavelier, D. (2011). Verbal versus visual working memory skills in action video game players. Poster presented at the Psychonomics Society Meeting, Seattle, Washington, 14-17 November 2011.
3. Ballard, M. E., & Wiest, J. R. (1996). Mortal Kombat (tm): The effects of violent videogame play on males' hostility and cardiovascular responding. Journal of Applied Social Psychology, 26(8), 717-730. [DOI:10.1111/j.1559-1816.1996.tb02740.x] [DOI:10.1111/j.1559-1816.1996.tb02740.x]
4. Bartholow, B. D., Bushman, B. J., & Sestir, M. A. (2006). Chronic violent video game exposure and desensitization to violence: Behavioral and event-related brain potential data. Journal of Experimental Social Psychology, 42(4), 532–539. [DOI:10.1016/j.jesp.2005.08.006] [DOI:10.1016/j.jesp.2005.08.006]
5. Beylin, A. V., & Shors, T. J. (2003). Glucocorticoids are necessary for enhancing the acquisition of associative memories after acute stressful experience. Hormones and Behavior, 43(1), 124–131. [DOI:10.1016/S0018-506X(02)00025-9] [DOI:10.1016/S0018-506X(02)00025-9]
6. Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. [DOI:10.1016/j.actpsy.2008.09.005] [DOI:10.1016/j.actpsy.2008.09.005]
7. Burdo, S. (2014). Outlast (PS4) Review–Survival horror makes a comeback [Internet. Retrieved from http://metro.co.uk/2014/02/05/outlast-ps4-review-free-scares-4291806/
8. Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews, 26(3), 321–352. [DOI:10.1016/S0149-7634(02)00007-6] [DOI:10.1016/S0149-7634(02)00007-6]
9. David, T. D., Harris, G. A., Bley, J. A., & Jr. (1983). Eruption of Permanent Dentition in Rhesus Monkeys Exposed to ELF (extremely Low Frequency) Fields. [DOI:10.21236/ADA132065] [DOI:10.21236/ADA132065]
10. Davis, E. P., & Granger, D. A. (2009). Developmental differences in infant salivary alpha-amylase and cortisol responses to stress. Psychoneuroendocrinology, 34(6), 795–804. [DOI:10.1016/j.psyneuen.2009.02.001] [DOI:10.1016/j.psyneuen.2009.02.001]
11. Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2011). The Human Amygdala and the Induction and Experience of Fear. Current Biology, 21(1), 34–38. [DOI:10.1016/j.cub.2010.11.042] [DOI:10.1016/j.cub.2010.11.042]
12. Fox, D. (2011). Neuroscience: Brain buzz. Nature, 472(7342), 156–159. [DOI:10.1038/472156a] [DOI:10.1038/472156a]
13. Fuster, J. M. (1988). Prefrontal cortex. In Adelman G., (Eds.), Comparative Neuroscience and Neurobiology (pp. 107-109). Berlin: Springer. [DOI:10.1007/978-1-4899-6776-3_43] [PMID] [DOI:10.1007/978-1-4899-6776-3_43]
14. Gracia-Bafalluy, M., & Noel, M. P. (2008). Does finger training increase young children's numerical performance? Cortex, 44(4), 368-375. [DOI:10.1016/j.cortex.2007.08.020] [DOI:10.1016/j.cortex.2007.08.020]
15. Gray, J. R., Braver, T. S., & Raichle, M. E. (2002). Integration of emotion and cognition in the lateral prefrontal cortex. Proceedings of the National Academy of Sciences, 99(6), 4115–4120. [DOI:10.1073/pnas.062381899] [DOI:10.1073/pnas.062381899]
16. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537. [DOI:10.1038/nature01647] [DOI:10.1038/nature01647]
17. Krawczyk, D. C. (2002). Contributions of the prefrontal cortex to the neural basis of human decision making. Neuroscience & Biobehavioral Reviews, 26(6), 631–664. [DOI:10.1016/S0149-7634(02)00021-0] [DOI:10.1016/S0149-7634(02)00021-0]
18. LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 7(1), 54–64. [DOI:10.1038/nrn1825] [DOI:10.1038/nrn1825]
19. Lupien, S. J., Fiocco, A., Wan, N., Maheu, F., Lord, C., Schramek, T., et al. (2005). Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology, 30(3), 225–242. [DOI:10.1016/j.psyneuen.2004.08.003] [DOI:10.1016/j.psyneuen.2004.08.003]
20. Lupien, S. J., & Lepage, M. (2001). Stress, memory, and the hippocampus: can't live with it, can't live without it. Behavioural Brain Research, 127(1), 137-158. [DOI:10.1016/S0166-4328(01)00361-8] [DOI:10.1016/S0166-4328(01)00361-8]
21. Maheu, F. S., Joober, R., & Lupien, S. J. (2005). Declarative Memory after Stress in Humans: Differential Involvement of the β-Adrenergic and Corticosteroid Systems. The Journal of Clinical Endocrinology & Metabolism, 90(3), 1697–1704. [DOI:10.1210/jc.2004-0009] [DOI:10.1210/jc.2004-0009]
22. McEwen, B. S., & Morrison, J. H. (2013). The Brain on Stress: Vulnerability and Plasticity of the Prefrontal Cortex over the Life Course. Neuron, 79(1), 16–29. [DOI:10.1016/j.neuron.2013.06.028] [DOI:10.1016/j.neuron.2013.06.028]
23. Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34(4), 486–496. [DOI:10.1016/j.psyneuen.2009.01.014] [DOI:10.1016/j.psyneuen.2009.01.014]
24. Pham, T. D., & Tran, D. (2012). Emotion recognition using the emotiv epoc device. Paper presented at the International Conference on Neural Information Processing, Dortmund, 12-15 November 2012. [DOI:10.1007/978-3-642-34500-5_47] [DOI:10.1007/978-3-642-34500-5_47]
25. Ramirez, R., & Vamvakousis, Z. (2012). Detecting Emotion from EEG Signals Using the Emotive Epoc Device. Lecture Notes in Computer Science, 175–184. [DOI:10.1007/978-3-642-35139-6_17] [DOI:10.1007/978-3-642-35139-6_17]
26. Rosenbloom, M. H., Schmahmann, J. D., & Price, B. H. (2012). The Functional Neuroanatomy of Decision-Making. The Journal of Neuropsychiatry and Clinical Neurosciences, 24(3), 266–277. [DOI:10.1176/appi.neuropsych.11060139] [DOI:10.1176/appi.neuropsych.11060139]
27. Smeets, T., Otgaar, H., Candel, I., & Wolf, O. T. (2008). True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval. Psychoneuroendocrinology, 33(10), 1378–1386. [DOI:10.1016/j.psyneuen.2008.07.009] [DOI:10.1016/j.psyneuen.2008.07.009]
28. Szubert, M., & Jaśkowski, W. (2014). Temporal difference learning of n-tuple networks for the game 2048. Paper presented at 2014 IEEE Conference on Computational Intelligence and Games (CIG). Dortmund, 26-29 August 2014. [DOI:10.1109/CIG.2014.6932907] [DOI:10.1109/CIG.2014.6932907]
29. Weber, R., Ritterfeld, U., & Mathiak, K. (2006). Does Playing Violent Video Games Induce Aggression? Empirical Evidence of a Functional Magnetic Resonance Imaging Study. Media Psychology, 8(1), 39–60. [DOI:10.1207/S1532785XMEP0801_4] [DOI:10.1207/S1532785XMEP0801_4]
30. Yu, R. (2016). Stress potentiates decision biases: A stress induced deliberation-to-intuition (SIDI) model. Neurobiology of Stress, 3, 83–95. [DOI:10.1016/j.ynstr.2015.12.006] [DOI:10.1016/j.ynstr.2015.12.006]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.