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Introduction: Parkinson disease (PD) is the second most common neurodegenerative disease 
affecting older individuals with signs of motor disability and cognitive impairment. Epicatechin 
(EC) and edaravone have neuroprotective effects most probably due to their antioxidant 
activity; however, a limited number of studies have considered their role in PD. This research 
aimed at investigating the neuroprotective effect of EC and edaravone in a neurotoxin-induced 
model of PD.

Methods: An in vitro model of PD was made by subjecting SH-SY5Y neuroblastoma cells 
to neurotoxin: 6-hydroxydopamine (6-OHDA) 100 µM/well. The cytoprotective effect 
of EC and edaravone in five concentrations on cell viability was tested using the MTT 
(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. The apoptotic assay 
was done by annexin V and propidium iodide method using flow cytometry.

Results: According to the MTT assay analysis, EC and edaravone had protective effects 
against 6-OH DA-induced cytotoxicity in SH-SY5Y neuroblastoma cells that were much more 
significant for edaravone and also a relative synergistic effect between EC and edaravone was 
observed. The apoptotic analysis showed that edaravone alone could decrease early and late 
apoptosis, whereas EC diminished early apoptosis, but enhanced late apoptosis and necrosis. 
Besides, co-treatment of edaravone and EC had a synergistic effect on decreasing apoptosis 
and increasing cell viability. 

Conclusion: The protective effect of edaravone on apoptosis and cytotoxicity was demonstrated 
clearly and EC had a synergistic effect with edaravone. 
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1. Introduction 

arkinson Disease (PD) is an age-dependent 
cumulative neurodegenerative illness that 
is estimated to affect almost 9 million over 
50 years old people by 2030 (Dorsey et al., 
2007). Pathologically, PD occurs due to the 

loss of dopaminergic neurons in the substantia nigra, 
which in turn induces dopamine depletion in the stria-
tum (Dauer & Przedborski, 2003). An abnormal accu-
mulation of alpha-synuclein named Lewy bodies is also 
diagnosed in surviving neurons (Przedborski, 2005). 
Dopamine loss finally can lead to disturbing more mo-
tor functions, resulting in clinical signs in patients, such 
as tremor, rigidity, and slow responsiveness (Snyder & 
Adler 2007). Several causes, such as neuroinflammation, 
mitochondrial dysfunction, failure of the ubiquitin-pro-
teasome system, and proteinopathy, have been proposed 
to describe the neurodegeneration events in PD (Schulz, 
2007), among which oxidative stress-related apoptosis 
has been involved in the pathogenesis of neurodegenera-
tive diseases. Oxidative stress is produced by the accu-
mulation of excessive partially reduced Reactive Oxygen 
Species (ROS) within the cell, which attack electron-
rich biological molecules, such as DNA, proteins, and 
lipids affecting cellular functions (Wang, Xie, Wang, & 

Bi, 2014). ROS is produced as a part of normal cellular 
oxidative materials that damages neuronal biomolecules 
(Gandhi & Abramov, 2012) and increases the mass of 
iron in specific areas of the brain and is considered as the 
major pathological aspects of PD and Alzheimer Disease 
(AD) (Riederer, et al., 1989). 

Generally, the disturbance of the equilibrium between 
pro-oxidant and antioxidant homeostasis leads to oxida-
tive stress that can further produce ROS in neuronal cells 
(Lepoivre, Flaman, Bobé, Lemaire, & Henry, 1994). 
Post-mortem studies have shown that in PD, mitochon-
drial function impairment and ROS accumulation are 
two events associated with apoptotic pathways in do-
paminergic neurons (Yew, Koh, Chye, Othman, & Ng, 
2014). Also, post-mortem examinations have revealed 
that nigral cell death in PD is related to an increase in 
lipid peroxidation (Dexter et al., 1989), decreased re-
duced glutathione (GSH) levels (Sofic, Lange, Jellinger, 
& Riederer, 1992), enhanced superoxide activity (Saggu 
et al., 1989) and increased levels of iron in substantia 
nigra (Dexter et al., 1987). It has been reported that mito-
chondrial injury may have a key role in the pathogenesis 
of AD and PD (Du et al., 2010) and several studies have 
shown that various xenobiotics can increase the risk of 

Highlights 

● Epicatechin (EC) and edaravone have neuroprotective effects most probably due to their antioxidant activity;

  ● According to this research, MTT assay analysis shown, EC and edaravone had protective effects against 6-OH DA 
induced cytotoxicity in SH-SY5Y neuroblastoma, 

 ● Protective effect was much more significant for edaravone and also a relative synergistic effect between EC and 
edaravone was observed.

 ● The apoptotic analysis showed that edaravone alone could decrease early and late apoptosis, whereas EC dimin-
ished early apoptosis, but enhanced late apoptosis and necrosis

 ●EC had a synergistic effect with Edaravone on decreasing apoptosis and increasing cell viability.

Plain Language Summary 

Parkinson Disease (PD) is the second most common neurodegenerative disease affecting older individuals with signs 
of motor disability and cognitive impairment. Epicatechin (EC) and edaravone have neuroprotective effects most prob-
ably due to their antioxidant activity; however, a limited number of studies have considered their role in PD. This re-
search aimed at investigating the neuroprotective effect of EC andedaravone in a neurotoxin-induced model of PD.Our 
study on cell proliferation and apoptosis in a cell model of parkinson diseases shown that both EC and Edaravone have 
cytoprotective effect and antiapoptotic effect which this effect for Edaravon was more potent and there was synregism 
effect between Edaravone and epichatechine 
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PD and AD via mitochondrial dysfunction or oxidative 
damage (Agnati et al., 2005; Cuevas et al., 2009). 

Therefore, mitochondrial protection and subsequent 
reduction of oxidative damage can be considered as a 
therapeutic strategy to cure these diseases (Ataie, Sabet-
kasaei, Haghparast, Moghaddam, & Kazeminejad, 2010; 
(Du et al., 2010). Although the exact mechanism of ni-
gral cell death in PD is still unknown, oxidative stress 
is strongly considered as an essential factor. Dopamine 
replacement with levodopa or dopamine agonists, like 
madopar is currently the main drug for the treatment of 
PD (Jenner & Olanow 1996). Although these drugs are 
effective in the early stages of PD, they may be associ-
ated with serious adverse effects in the long-term. There-
fore, a therapeutic strategy for PD treatment may act via 
modulation of oxidative stress (Birkmayer et al., 1985), 
which can result in a better prognosis and treatment.

Phenolic compounds with antioxidant properties, such 
as flavonoids, are a large group of natural products that 
are widely distributed in plants and are the main constit-
uents of many fruits, nuts, leaves, etc. (Kühnau, 1976). 
Green tea has protective effects against neurological dis-
eases, such as PD, AD, and ischemic damages. It also 
has an anti-diabetic effect in insulin-resistant animal 
models. Besides, other properties of green tea, such as 
antibacterial, anti-HIV, and anti-aging effects, have been 
reported (Sutherland, Rahman, & Appleton, 2006). The 
antioxidant effect of green tea is due to its polyphenols, 
like catechin and its ability to scavenge ROS, such as 
hydroxy-phenol groups on the B-ring of non-galolite of 
Epicatechin (EC) and Epigallocatechin (EGC), B-ring 
and D-ring of galolite of epicatechin-3-gallate and Epi-
Gallocatechin Gallate (EGCG). 

The presence of 3, 4, 5-trihydroxy B-ring is important for 
antioxidant and radical scavenging properties of catechins. 
The antioxidant effects of catechins in green tea is more 
than vitamin C and E (Sutherland et al., 2006). Flavonols, 
such as (-)-EC, represent a major class of flavonoids com-
monly present in some plants, such as Camellia sinensis 
(green tea) (Cuevas et al., 2009). Moreover, studies on 
rats using EC extracts have demonstrated some effective-
ness regarding oxidative stress, cognitive function, and 
memory performance (Shah et al., 2010). Green tea poly-
phenols have also been confirmed to hinder the apoptotic 
pathway of mitochondria (increasing Bcl2 and decreasing 
caspase-3 activity), protect mitochondrial membrane po-
tential, inhibit ROS production, and regulate calcium con-
centration levels (Guo, Bezard, & Zhao, 2005). 

Amyloid-beta neurotoxicity has been associated with 
producing free radicals, which can be prevented by ef-
fective radical scavengers (Christen, 2000). More ef-
fective radical scavengers have been shown as good 
amyloid beta inhibitors (Ghosh, Pandey, & Dasgupta, 
2013). The radical scavenging specifications of GTPs 
are as order as ECG>EGCG>EGC (Kondo, Kurihara, 
Miyata, Suzuki, & Toyoda, 1999; Zaveri, 2006) that in-
dicates a better inhibitory activity of ECG than the two 
others. According to this evidence, specific attention has 
been focused on studying the antioxidants’ neuroprotec-
tive effect, iron chelating and anti-inflammatory quali-
ties of tea flavonoids, especially (-)-epicatechin-3-gallate 
(ECG) (Slikkker et al., 1999).

The novel free radical scavengers are considered based 
on their neuroprotective activity, including calcium ho-
meostasis (Ishige, Schubert & Sagara, 2001), the extra-
cellular Mitogen-Activated Protein Kinases (MAPK) 
(Schroeter et al., 2002), protein kinase C (PKC) (Levites, 
Amit, Mandel & Youdim, 2003), antioxidant enzymes 
(Levites, Weinreb, Maor, Youdim, & Mandel, 2001), An-
tioxidant Regulatory Element (ARE) (Chen, Yu, Owuor, 
& Kong, 2000), survival genes (Levites, Amit, Youdim, 
& Mandel, 2002), and the Amyloid Precursor Protein 
(APP) pathway (Levites et al., 2003). Edaravone, as a 
novel free radical scavenger, has been used recently for 
inhibiting oxidative stress and inducing apoptosis in some 
diseases. It is the first clinical drug for neuroprotection, 
used for ischemic stroke since June 2001 and has shown 
effectiveness on cerebral injury in ischemic situations 
(Kikuchi et al., 2009). Edaravone blocks neuronal dam-
age by reducing microglia-derived free radicals and nitric 
oxide (Kaur & Ling, 2008; Yan et al., 2012). Edaravone 
is a drug with antioxidant effect that decreases hydrox-
yl radicals and superoxide radical production (Ito et al., 
2008). In addition, it has recently showed neuroprotective 
properties in neurodegenerative diseases, such as PD, AD, 
and amyotrophic lateral sclerosis (Xiong et al., 2011). 

Edaravone has antioxidant and anti-apoptotic proper-
ties that can also block lipid peroxidation, maintains mi-
tochondrial function, and provides energy (Zhang et al., 
2013). It decreases ROS production and induces MAPK 
signaling pathway activation which protect HT22 cells 
against H2O2 toxicity (Zhao et al., 2013). It can protect 
dopaminergic neurons against neurotoxicity with rote-
none and 6-hydroxydopamine (6-OHDA) and blocks 
apoptosis in the dopaminergic neurons, alleviates ROS 
production, down-regulates Bax expression and up-reg-
ulates VMAT2 expression (Yuan et al., 2008; Xiong et 
al., 2011). In 6-OHDA-induced PD models in vitro and 
in vivo, edaravone is neuroprotective for dopaminergic 
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neurons (Yuan et al., 2008). Therefore, edaravone is ef-
fective for the treatment of PD. However, further inves-
tigations are needed to find the mechanism underlying 
its neuroprotection properties. The present study aimed 
at evaluating the synergistic effect of epicatechin and 
edaravone in combination with levodopa as anti-Parkin-
son drug (L-Dopa;) on the proliferation and apoptosis 
in SH-SY5Y neuroblastoma cell line affected by 6-OH 
Dopamine as an in vitro PD model using MTT assay and 
flow cytometry method.

2. Methods

2.1. Drugs and reagents

 Edaravone, 6-OHDA, ECG, Dulbecco’s modified Ea-
gle’s medium (DMEM), and fetal bovine serum (FBS) 
were purchased from the Sigma Chemical Co. (Sigma Al-
drich, Germany). Levodopa was prepared from the Roach 
and Sigma companies (Switzerland). Penicillin and strep-
tomycin were purchased from the Roach, and also SH-
SY5Y neuroblastoma cell line was provided from the Na-
tional Cell Bank of Iran (Pasteur Institute of Iran). 

2.2. Cell culture

SH-SY5Y cells were cultured in DMEM and supple-
mented with 10% FBS, penicillin (100 IU/mL) and 
streptomycin (100 µg/mL). The medium was refreshed 
every 2 days. Cell cultures were kept at 37° C in a hu-
midified atmosphere containing 95% air and 5% CO 
(Yew et al., 2014).

2.3. Cell viability assay for SH-SY5Y cells

Cell viability was assessed by MTT assay, which mea-
sures the activity of mitochondria, based on the reduction 
of yellow tetrazolium salt to purple formazan by the de-
hydrogenase activity of mitochondria. First, the cells were 
washed once with PBS before adding 0.1 mL serum-free 
medium containing MTT (1 mg/mL) to each well. Then 
they were incubated for 3 h, the supernatant was removed, 
and the obtained formazan product was dissolved in 1 mL 
of dimethyl sulfoxide (DMSO) with stirring for 15 min on 
a microtiter plate shaker, and the absorbance was detected 
at 550 nm. The percentage of viable cells in each treat-
ment group was determined by comparing their respec-
tive absorbance with the control group (Yew et al., 2014).

2.4. Drug treatments 

Different concentrations of ECG, edaravone, and le-
vodopa (30, 60, 125, 250, and 500 μg/mL) were incu-

bated for 1 h into SH-SY5Y cells, which were split in 
the 96-well plates at a density of 1.0×104 /well (IC50 
concentration was calculated for each of these materi-
als) (Yew et al., 2014). They were then exposed to 100 
μM of 6-OHDA for 24 h in 96-well plates. Besides, 
6-OHDA was considered as a positive control, whereas 
the DMEM was a negative control. After a 48-h incuba-
tion, the MTT solution was added into the culture to a 
final concentration of 0.5 mg/mL. Four hours later, the 
medium, which was kept at 37°C, was replaced with 
an equal volume of DMSO and dissolved in the purple 
formazan crystal. Then, the absorbance was measured 
spectrophotometrically with a microplate reader (Dynex 
Opsys MR 24100) at 570 nm and compared with the 
control (Yew et al., 2014).

2.5. Apoptosis analysis (flow cytometry)

Apoptosis procedure was assessed by the Annexin V-
FITC Apoptosis Detection Kit (BD Pharmingen, USA). 
Briefly, after the treatments (incubating the cells with 
different drugs for 24 h in a CO2 incubator at 37° C), 
the cells were harvested and washed with binding buffer. 
Then, the cells were counted and a final concentration of 
1×106 cells/mL was obtained. Annexin V and propidium 
iodide (PI) were then added and the cells incubated in 
the dark for 15 min. After washing, the cells’ suspension 
was fixed with 1% formaldehyde for 10 min on ice. Af-
ter washing cells twice with binding buffer and adding 
RNAase enzyme (EMD Biosciences, USA), they were 
incubated for 15 min at 37° C. At last, the cells were 
washed and analyzed with FACSCalibur Flow Cytom-
eter (BD Biosciences, USA) and the ProQuest software 
(Yew et al., 2014).

2.6. Statistical analysis

Data were analyzed in triplicate with at least 3 indepen-
dent experiments. Values are expressed as Mean±SD. 
Statistical significance was examined by the Analysis of 
Variance (ANOVA) and dunnett t-test (P<0.05).

3. Results

3.1. In vitro assay

According to MTT assay, 6-OH DA as positive control 
significantly decreased cell viability compared with the 
negative control (Figure 1). EC at EC50 concentration 
had protective effect (column 3; P<0.01). The protective 
effect of edaravone at EC50 concentration was evenly 
much more significant (column 4; P<0.0001).
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Levodopa (positive anti-Parkinson control), as expect-
ed, had a protective effect (columns 5 and 6; P<0.001). 
According to the graph, the protective effect of edaravone 
was even far higher than levodopa (column 4; P<0.0001). 
There was a partial synergistic effect between edaravone 
and ECG with levodopa (columns 7 and 8; P<0.0001), 
whereas the synergic effect between ECG and levodopa 
was not noticeable (columns 10 and 11; P<0.05). Also, 
ECG could increase the impact of edaravone (columns 
7 and 8). Levodopa 1 was purchased from Roach Co; 
levodopa 2 was purchased from Sigma Co.

3.2. Apoptosis analysis

Figures 2 and 3 are showing apoptosis assay results 
with Annexin-V propidium iodide flow cytometry 
method of variant treatments on SH-SY5Y neuroblas-
toma cells following 24 h incubation. According to the 
flow cytometry results, negative control samples had 
the highest levels of living cells (99%), and the rate of 
cell apoptosis and necrosis was very low (<0.5%; Figure 
3A). In positive control samples (6-OH DA), the rate of 
living cells drastically dropped (76%), whereas the rate 
of apoptosis (early and late) and necrosis significantly 
increased in comparison with the negative control (Fig-
ure 3 B). Using edaravone, early and late apoptosis de-

creased to 0.12% and 7.34%, respectively, which was 
comparable with the positive control (Figure 3 C). It also 
reduced evenly to 0.01% and 1.1% using edaravone and 
ECG synergistically (Figure 3 D) and 0.02%-3.2% for 
ECG alone (Figure 3 E). Therefore, both ECG and eda-
ravone could prevent apoptosis, and a synergistic effect 
was observed between edaravone and ECG. It should be 
noticed that a decrease in apoptosis and necrosis is con-
sidered as the effectiveness of an anti-Parkinson drug.

4. Discussion

According to the obtained results, edaravone and ECG 
had anti-cytotoxic and anti-apoptotic effects in an in vi-
tro model of PD in neuroblastoma cells, and this effect 
was more considerable for edaravone. In addition, a 
synergism effect was observed between edaravone and 
EC. Different neurotoxins, such as rotenone, 1-methyl-
1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopa-
mine (6-OHDA), and paraquat have been used as experi-
mental models of PD to imitate the neuropathology of 
this neurodegeneration both in vitro (i.e., human neuro-
blastoma SK-N-SH cells) and in vivo (animals models) 
(Hien, Gortnizka, & Kraemer, 2003).

Figure 1. MTT assay 

The results of cell viability following different treatments on SH-SY5Y neuroblastoma cells after 24 h incubation. All cells were 
treated both with the drugs in their EC50 concentration and 100 μM of 6-OHDA; epicatechin (3) significantly increased the 
proliferation of neuroblastoma cells and this effect for edaravone (4) was more significant and also a synergistic effect between 
epicatechin, levodopa, and edaravone was observed (columns 7, 8, and 9).

a: P<0.01 compared with the positive control (C+); aa: P<0.001 compared with the positive control (C+); aaa: P<0.0001 com-
pared with the positive control (C+); b: P<0.05 compared with the positive control (C+); d: P<0.01 compared with column 11; 
f: P<0.01 compared with column 13; g: P<0.05 compared with column 11.

1: Negative control; 2: Positive control (6-OHD); 3: Epicatechin; 4: Edaravone; 5: Levodopa 1; 6: Levodopa 2; 7: 
Epi+levadopa1+edaravone; 8: Epi+levadopa2+edaravone; 9: Levadopa2+edaravone; 10: Epicatechin +levodopa 1; 11: 
Epicatechin+Levadopa 2; 12: Levadopa 1+edaravone; 13: Epicatechin without 6OHD
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6-OHDA as a catecholaminergic neurotoxin can cause 
an irreversible loss of nigrostriatal dopaminergic neu-
rons by producing ROS and inhibiting complex I and 
complex IV of the electron transport chain through intra-
cerebral infusion (Zuo & Motherwell, 2013). The selec-
tive disturbance of dopaminergic neurons in Substantia 
Nigra has shown to be the direct cause of neurodegen-
eration in PD (Olanow & Tatton, 1999). Also, it has 
been reported that 6-OHDA can cause dopaminergic cell 
death (Schober, 2004).

Green tea polyphenols can permeate into the brain (Su-
ganuma et al., 1998; El Mohsen et al., 2002) and have 
a relatively potent metal-chelating efficacy (Guo, Zhao, 
Li, Shen, & Xin, 1996; Grinberg et al., 1997), which has 
been due to the gallate moiety present in the C-ring of 
both EGCG and ECG (Kumamoto, Sonda, Nagayama, 
& Tabata, 2001). Many studies on PD have revealed a 
moderate reduction in the risk of PD among tea users 
compared with non-drinkers (Weinreb, Mandel, Amit, & 
Youdim, 2004). Accumulation of iron at brain areas as-
sociated with neurodegeneration is lower in tea drinkers 
(Erikson, Shihabi, Aschner, & Aschner, 2002).

Green tea catechins decrease the incidence of cancer, ar-
thritis, and UV damage in the skin (Pan, Jankovic & Le, 
2003). It has been proved that EC and EGCG were more 
potent than catechin (Gómez-Guzmán et al., 2012). ECG 
has been reported to have the highest antioxidant activity 
compared with other tea polyphenols (Jin, Shen, & Zhao, 
2001). Therefore, the efficacy of polyphenols to act as 
radical scavengers and chelators of transitional metals as 
iron and copper can be considered for the treatment of PD 
and AD (Weinreb,et al., 2004). Herbal medicines, such as 

ECG and chunghyuldan have currently been studied in 
neurodegenerative diseases, like AD and PD (Fernández-
Moriano, González-Burgos, & Gómez-Serranillos, 2015). 
They have shown to inhibit apoptosis and ROS generation 
and maintain mitochondrial membrane potential (Kim et 
al., 2010). Among the isolated natural products, polyphe-
nol has widely regarded. Resveratrol as another polyphenol 
compound, has also been shown with in vitro primary fibro-
blasts cultures in PD patients who carry PARK2 mutations 
to regulate homeostasis of the mitochondrial energy due to 
an increase in complex I activity, citrate synthase activity, 
basal oxygen consumption, ATP production, and a decrease 
in lactate (Ferretta et al., 2014).

As a novel free radical scavenger, edaravone can in-
hibit oxidative stress and apoptosis (Watanabe, Tanaka, 
Watanabe, Takamatsu, & Tobe, 2004) with its antioxi-
dant properties. Also, it can decrease the production of 
hydroxyl and superoxide radicals (Ito et al., 2008). Eda-
ravone inhibits the production of Nitric Oxide (NO) and 
ROS through the activated microglia and protect meth-
amphetamine-induced striatal dopaminergic neurotoxic-
ity by peroxynitrite scavenging (Kawasaki et al., 2006). 
In addition, edaravone has been recently shown with 
neuroprotective efficacy in neurodegenerative diseases, 
such as PD, AD, and amyotrophic lateral sclerosis (Yan 
et al., 2012). It has in vitro and in vivo antioxidant and 
anti-apoptotic effects and also can inhibit lipid peroxi-
dation, preserve mitochondrial function and energy sup-
ply, and reduce caspase activity (intrinsic and extrinsic 
pathways) (Zhao et al., 2013). Edaravone and EC can 
have a protective role on neurons (Kawasaki, Ishihara, 
Ago, Baba, & Matsuda, 2007; Mandel, Amit, Weinreb, 
Reznichenko, & Youdim,, 2008).

Figure 2. Apoptosis assay results with Annexin-V propidium iodide flow cytometry method of variant treatments on SH-SY5Y 
neuroblastoma cells following 24 h incubation
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A: Negative Control: 99.03% alive, 0.56% late apoptosis, 0.15% early apoptosis, 0.26% necrosis.

B: Positive Control (6-OHD), 76.59% alive, 4.54% necrosis, 0.83.3% early apoptosis, 18.04% late apoptosis.
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C: Edaravone+6OHD, 7.34% late apoptosis, 0.12% early apoptosis, 88.19% alive, and 3.85% necrosis.

D: Edaravone+Epicatechin+6OHD: 69.25% alive, 29.63% necrosis, 0.01% early apoptosis, and 1.10% late apoptosis.
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The present study confirmed the protective effect of eda-
ravone and ECG against neurotoxicity in PD, which is con-
sistent with the other studies indicating the protective role 
of these compounds in neurodegenerative diseases. ROS 
scavenging and antioxidant properties of these compounds 
can explain their protective effect in neurodegenerative dis-
eases. Moreover, a synergic effect was found between EC 
and edaravone in reducing anti-cytotoxic and anti-apoptotic 
effects, whereas edaravone was more effective, and also EC 
when using alone showed a substantial impact. Also, we 
showed that levodopa co-treatment could increase its thera-
peutic effect in vitro synergistically. 

5. Conclusion

ECG had protective effect in the apoptosis of nerve cells, 
and it increases the protective effect of edaravone when 
used as a co-treatment. Further investigations are necessary 
in animal models to identify and indicate the properties of 
these compounds precisely. In summary, the present study 
showed that EC and especially, edaravone could be consid-
ered as co-treatment in the therapeutic regime of PD.
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