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Introduction: Brain injury induces an almost immediate response from glial cells, especially 
astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and 
reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-
inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through 
the prevention of neuronal death in several models of central nervous system injury. This study 
aimed to investigate the effect of melatonin on astrocyte activation induced by Traumatic Brain 
Injury (TBI) in rat hippocampus and dentate gyrus. 

Methods: Animals were randomly divided into 5 groups; Sham group, TBI group, vehicle 
group, and melatonin‐treated TBI groups (TBI+Mel5, TBI+Mel20). Immunohistochemical 
method (GFAP marker) and TUNEL assay were used to evaluate astrocyte reactivity and 
neuronal death, respectively. 

Results: The results demonstrated that the astrocyte number was reduced significantly in 
melatonin‐treated groups compared to the vehicle group. Additionally, based on TUNEL 
results, melatonin administration noticeably reduced the number of apoptotic neurons in the 
rat hippocampus and dentate gyrus. 

Conclusion: In general, our findings suggest that melatonin treatment after brain injury reduces 
astrocyte reactivity as well as neuronal cell apoptosis in rat hippocampus and dentate gyrus. 
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1. Introduction

entral nervous system injury induces an al-
most immediate reaction in glial cells, espe-
cially astrocytes (Pekny & Nilsson, 2005; 
Pineau, Sun, Bastien, & Lacroix, 2010). 
Astrocytes contribute to brain homeostasis 
and comprise approximately 90% of total 
brain mass (Gee & Keller, 2005). Previous 
studies have shown that primary neuronal 

injury caused an increase in reactive oxygen species pro-
duction and inflammatory cytokines released by reactive 
astrocytes. These conditions may lead to secondary neu-
ronal damage (Asadi-Shekaari, Basin, & Babaee, 2014; 
Blasko et al., 2004; Ozdemir et al., 2005). The Cornu Am-
monis (CA1) region of the hippocampus and neurons in 
the dentate gyrus (Farina, Aloisi, & Meinl, 2007) are vul-
nerable to a variety of chemical, physical, and cytotoxic 
insults (Ansari, Roberts, & Scheff, 2008; Barha, Ishrat, 
Epp, Galea, & Stein, 2011; Liang et al., 2008). To dimin-
ish as much as possible the secondary neurological con-
sequences following injuries of brain tissue, neuroprotec-
tive strategies such as using antioxidant compounds are 
urgently required (Hall,Vaishnav, & Mustafa, 2010). 

Melatonin is a tryptophan derivative that is synthesized 
generally in the pineal gland. This neurohormone con-
trols the circadian rhythm and sleep induction (Hickie & 
Rogers, 2011; Reiter, Tan, Osuna, & Gitto, 2000). Also, 
melatonin has a better antioxidant and anti-inflammatory 
effect than vitamin E and can secondarily upsurge the ex-
pression of other antioxidant enzymes (Babaei-Balder-
lou, Zare, Heydari, & Farokhi, 2010; Boutin, Audinot, 
Ferry, & Delagrange, 2005). A recent study has shown 
that melatonin secretion decreased following neuronal 
injury (Seifman et al., 2014). Therefore, some research-

ers, using exogenous administration of melatonin, ex-
amined its neuroprotective effects on several models of 
neural cell injuries (Ding et al., 2014; Dong et al., 2016). 
For instance, melatonin administration after neonatal 
hypoxic ischemia reduced neural cell death and reac-
tive astrogliosis (Alonso-Alconada, Alvarez, Lacalle, & 
Hilario, 2012). Brain injury research until quite recently 
has focused on the pathophysiology of injured neurons, 
while very little attention has been paid to non-neuronal 
cells (Barreto, Gonzalez, Torres, & Morales, 2011; Bur-
da, Bernstein, & Sofroniew, 2016). 

Because of inadequate attention to the melatonin effects 
on astrocytes reactivity and vulnerability of nervous tis-
sue to inflammation and oxidative stresses (Leszek, 
Barreto, Gasiorowski, Koutsouraki, & Aliev, 2016), we 
investigate the effects of exogenous administration of 
melatonin on astrocyte activation induced by traumatic 
brain injury in rat hippocampus and dentate gyrus.

2. Methods

2.1. Animals and experimental protocols

All experiments were done in accordance with the 
rules of the Ethics Committee of Medical Faculty (EC/
KNRC/90‐2; Kerman University, Iran). A total of 35 
male rats (NMRI, 230 to 275 g) were kept in the animal 
cage with free access to food and water. Animals were 
randomly divided into 5 groups before Traumatic Brain 
Injury (TBI) induction: Sham (intact) (n=7), TBI group 
(n=7), vehicle (n=7) that exposed to TBI and received 
an intraperitoneal injection of melatonin vehicle (etha-
nol + normal saline; 0.33 mL/rat) (Chern, Liao, Wang, 
& Shen, 2012; Dehghan, Hadad, Asadikram, Najafipour, 
& Shahrokhi 2013), and two TBI+melatonin groups that 

Highlights 

● Melatonin markedly diminished astrocyte reactivity following traumatic brain injury.

● Melatonin treatment reduced the number of apoptotic neurons.

● Melatonin reduces astrocyte reactivity and cell death in a dose-independent pattern.

Plain Language Summary 

Annually, many people lose their lives due to brain injury worldwide. Brain injury induces an almost im-
mediate response from glial cells. Also, activation of glial cells may result in secondary neuronal dam-
age. Melatonin is known as an anti‐inflammatory agent, and it has been reported to exert neuroprotection. 
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were exposed to TBI and then received 5 mg/kg and 20 
mg/kg melatonin (Sigma, St. Louis, MO), respectively at 
1 hour, and then 1, 2 and 3 days post‐TBI (Babaee et al., 
2015; Gutierrez‐Cuesta et al., 2007).

2.2. Induction of TBI

After incision in the skull skin, the animals were ex-
posed to diffuse brain trauma through the Marmarou 
method (Marmarou et al., 1994). In this method, the 
skull of animals was enclosed with a metallic disc (with 
3 mm thick and a diameter of 10 mm), and then a 250 g 
weight (at the height of 2 m) was thrown onto the skull 
of the rats. Following recovery, the rats were returned to 
their cages (Babaee et al., 2015; Marmarou et al., 1994).

2.3. Preparing the brain tissue

For histological evaluation, all rats were anesthetized 
with IP injection of 400 mg/kg chloral hydrate (Merck, 
102425) (Mortezazadeh et al., 2018) 72 h after brain 
trauma and were perfused intracardially with 140-180 mL 
of heparinized 0.9% saline, followed by 100 to 120 mL 
of 4% paraformaldehyde in Phosphate-Buffered Saline 
(PBS). The perfusion continued until the lungs and liver 
were clear of blood (for 10 to 15 min) (Babaee et al., 2019; 
Pourhoseini et al., 2017). Then, animals’ brains were cau-
tiously removed and immediately transferred in 10% form-
aldehyde and maintained overnight at 4°C. The brains were 
then dehydrated by alcohol solution and finally embedded 
in paraffin (Babaee et al., 2015; Ding et al., 2014).

2.4. TUNEL staining

TUNEL staining was carried out on the cerebral sections 
using the apoptosis detection kit (Indianapolis, Roche, 
IN). Staining of sections was performed according to the 
manufacturer’s instructions. Afterward, cerebral sections 
were incubated with DAB (3, 3’-diaminobenzidine) and 
hydrogen peroxide; the brownish color shows damage to 
neuronal perikarya (Hakemi, Sharififar, Haghpanah, Ba-
baee, & Eftekhar-Vaghefi, 2019; Varshosaz, Taymouri, 
Pardakhty, Asadi-Shekaari, & Babaee, 2014). Also, nega-
tive and positive controls were included.

2.5. Immunohistochemistry

For assessing astrocytic reactivity, we used mouse 
monoclonal anti‐GFAP (Glial Fibrillary Acidic Pro-
tein) antibody (Dako A/S Denmark, 1:400) (Dehghani-
Soltani, Shojaee, Jalalkamali, Babaee, & Nematollahi-
Mahani, 2017). For this purpose, after deparaffinization 
in a microwave oven with 65°C and rinsing of sections 

in xylene (5 min), they washed with PBS and were put 
in the 10 mM citrate buffer for 1 h (temperature of 90°C 
and pH 6). Then the sections were placed in 0.3% H2O2 
for 12 minutes. After overnight incubation with primary 
antibody, the sections were washed with PBS and then 
incubated with secondary antibody (1:350, rabbit anti‐
mouse) for 2 hours at room temperature (Babaee et al., 
2015; Babaee et al., 2018).

2.6. Cell counting

Five coronal sections of the hippocampus were cho-
sen for cell counting. In each section, the TUNEL posi-
tive cells were counted in four fields of dentate gyrus 
and hippocampus at 200× magnification (Pazar et al., 
2016). Additionally, GFAP positive cells (astrocytes) 
were counted in four random and non‐overlapping re-
gions (Eftekhar-Vaghefi, Raygan, Eftekhar-Vaghefi, 
Dehghani-Soltani, & Babaee, 2017; Soltani et al., 2016) 
of the hippocampus and dentate gyrus using an optical 
microscope (TS100, Nikon, Japan).

2.7. Statistical analysis

The obtained data were expressed as Mean±SEM. 
One-way ANOVA followed by Tukey‐Kramer multiple 
post hoc test was used to assess the significant differ-
ences (P<0.05) between groups (Mortazavi, 2009).

3. Results

After preparation of coronal sections, including the 
hippocampus and dentate gyrus, some of them were 
stained with hematoxylin and eosin for morphological 
evaluation (Figure 1), and the others were subjected to 
TUNEL staining and immunohistochemistry.

Figure 1. A coronal section of the rat brain that indicated the 
cornu Ammonis regions (CA1, CA2, CA3) of the hippocam-
pus as well as Dentate Gyrus (DG) (H&E staining, 100×). 
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3.1. Evaluation of apoptotic cells

Our findings showed that apoptotic cells were sig-
nificantly increased (P<0.001) in dentate gyri and hip-
pocampi of TBI group rats in comparison to the sham 
group, while the number of apoptotic neurons in the 
melatonin-treated groups was significantly decreased 
(Figures 2 and 3) that were not dose-dependent.

3.2. The number of activated astrocytes

In the present study, increased GFAP-positive astro-
cytes were detected in the hippocampi and dentate gyri 
of TBI group rats compared to that in the sham rats (Fig-
ures 4 and 5). Also, treatment with melatonin significant-
ly (P<0.01) reduced activated astrocytes that were not 
dose-dependent (Figure 6).

4. Discussion

The results of the current study have demonstrated the 
neuroprotective effect of melatonin after traumatic injury 
in rats. Acquired data indicate that TBI leads to a signifi-
cant increase in neuronal cell death in the hippocampus 
and dentate gyrus, and based on TUNEL staining, the 
number of apoptotic cells noticeably decreased in the 
melatonin treatment groups (Mel5 and Mel20). Gao et 
al. reported that traumatic brain injury causes synaptic 
and dendritic degeneration in the dentate gyrus (Gao, 
Deng, Xu, & Chen, 2011). Also, Hung et al. have shown 
that melatonin alleviates hippocampal injury following 
hypoxia (Hung, Tipoe, Poon, Reiter, & Fung, 2008). An-
nually, more than 1 million people die following TBI 
worldwide (Babaee et al., 2015). Neural inflammation 
and production of oxidative stress are two major patho-
logical mechanisms of neuronal cell death after TBI 
(Cornelius et al., 2013; Woodcock & Morganti-Koss-

Figure 2. Neuronal apoptosis

Control group (A): Arrows showing the healthy neurons; TBI group (B): Arrows showing the TUNEL positive cells (apoptotic 
neurons); Scale bar=15 µm.

Figure 3. Melatonin treatment reduced apoptosis that induced by TBI in hippocampi (A) and dentate gyri (B) of rats

Results are expressed as Mean±SEM. (***Differences vs sham group; ++Differences vs TBI group).
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mann, 2013). To inhibit secondary injuries after primary 
brain injury, it is essential to limit the neural inflamma-
tion via decreasing the astrocyte activation (Kabadi, 
Stoica, Loane, Luo, & Faden 2014). Chern et al. have 
shown that intraperitoneal administration of melatonin 
improved the neuronal survival rate in ischemic-stroke 
mice (Chern et al., 2012).

Besides, melatonin has been assessed as an effective 
medicine in TBI through increasing glutathione peroxi-
dase and superoxide dismutase activities (Dehghan et al., 
2013). The result of this study does not show any notice-
able difference between two different doses of melato-
nin. Ozdemir et al. reported that melatonin significantly 
reduced oxidative damage induced by TBI in immature 
rats, which was equally effective at different doses of 5 
mg/kg and 20 mg/kg (Ozdemir et al., 2005).

Glial cells activation, particularly astrocytes, occurs in 
response to different injuries of brain tissue, such as trau-
ma, chemical injuries, tumor formation, brain ischemia, 
and neurodegenerative disease (Guo et al., 2014; Hald, 
Nedergaard, Hansen, Ding, & Heegaard, 2009; Lee et 
al., 2010). Activation of astrocytes following brain in-
jury has known as astrogliosis. Previous studies have 
demonstrated that up‐regulation of GFAP occurs during 
the astrogliosis phenomenon (Hostenbach, Cambron, 
D’haeseleer, Kooijman, & De Keyser, 2014; Kamphuis 
et al., 2012). Therefore, this study has focused on astro-
cyte activation based on GFAP immunoreactivity.

Astrocytes, as the most abundant glial cells in brain tis-
sue (Farina et al., 2007), maybe the target of melatonin. 
Our findings have shown that the number of astrocytes 
is decreased in the melatonin treatment groups, which 
shows the alleviation of astrogliosis induced by TBI. In 

Figure 4. Immunohistochemical analysis of GFAP-positive cells

Hippocampal astrocytes in Sham group (A): TBI group; and (B): TBI+Mel20 group; Arrows display the astrocytes (Scale bar=35 µm).

Figure 5. Immunohistochemical analysis of GFAP-positive cells in the dentate gyrus of different groups

A: Sham group; B: TBI group; and TBI + Mel20 group (Scale bar=15 µm).
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an experimental study, Ananth et al. demonstrated that 
domoic acid‐induced astrogliosis is attenuated signifi-
cantly in the hippocampus of adult rats using exogenous 
administration of melatonin (Ananth, Gopalakrishna-
kone, & Kaur, 2003). Barreto et al. reported that astro-
cytic-neuronal interactions could act as a neuroprotec-
tive strategy against brain injury (Barreto et al., 2011).

The blood brain barrier has an important role in ex-
acerbating neuronal damage following traumatic brain 
injury (Abbott, Patabendige, Dolman, Yusof, & Beg-
ley, 2010; Persidsky, Ramirez, Haorah, & Kanmogne, 
2006). In other words, damage of this barrier resulted in 
entrance of neutrophils, lymphocytes and monocytes to 
the injured site. Glial cells are then activated and induce 
inflammation that may promote neuronal death (Seo et 
al., 2013; Ziebell & Morganti-Kossmann, 2010).

In addition, Tsai et al. demonstrated that melatonin ad-
ministration reduced proinflammatory cytokines via up-
regulation of STAT1 DNA binding activity (Tsai, Chen, 
Tsai, Ching, & Chuang, 2011). However, the modulation 
actions of melatonin to astrocyte, which was introduced 
as the primary source of proinflammatory cytokines such 
as IL‐6β, have not yet been widely examined. Our ex-
periment only shows the neuroprotective effects of mela-
tonin following a short period after brain injury (1 h to 
72 h). Thus, additional investigations need to be done to 
elucidate the molecular mechanism of melatonin to al-
leviate astrocyte reactivity.
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Figure 6. Melatonin treatment 

A: Decreased astrocytes in hippocampi; and B: Dentate gyri of rats following TBI induction. The results are presented as 
Mean±SEM (***Differences vs sham group; ++Differences vs TBI group).
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