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Introduction: Long-term stressful situations can drastically influence one’s mental life. 
However, the effect of mental stress on recognition of emotional stimuli needs to be explored. 
In this study, recognition of emotional stimuli in a stressful situation was investigated. Four 
emotional conditions, including positive and negative states in both low and high levels of 
arousal were analyzed. 

Methods: Twenty-six healthy right-handed university students were recruited within or after 
examination period. Participants’ stress conditions were measured using the Perceived Stress 
Scale-14 (PSS-14). All participants were exposed to some audio-visual emotional stimuli while 
their brains responses’ were measured using the Electroencephalography (EEG) technique. 
During the experiment, the subject’s perception of emotional stimuli is evaluated using the Self-
Assessment Manikin (SAM) questionnaire. After recording, EEG signatures of emotional states 
were estimated from connectivity patterns among 8 brain regions. Connectivity patterns were 
calculated using Phase Slope Index (PSI), Directed Transfer Function (DTF), and Generalized 
Partial Direct Coherence (GPDC) methods. The EEG-based connectivity features were then 
labeled with SAM responses. Subsequently, the labeled features were categorized using two 
different classifiers. Classification accuracy of the system was validated by leave-one-out method.

Results: As expected, performance of the system is significantly improved by grouping the 
subjects to stressed and stress-free groups. EEG-based connectivity pattern was influenced by 
mental stress level. 

Conclusion: Changes in connectivity patterns related to long-term mental stress have overlapped 
with changes caused by emotional stimuli. Interestingly, these changes are detectable from EEG 
data in eyes-closed condition.
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1. Introduction

ong-term mental stress, one of the most im-
portant issues in today’s society, causes a 
variety of health problems. Our cognition, 
perception, and decision making can also 
be affected by long-term stress. This paper 

investigates that how stress can influence our perception 
to external emotional stimuli. 

There is an association between mood (e.g. Long-term 
stress), emotional states and homeostatic changes (Craig, 
2003). When a stimulus is perceived, the brain initiates a 
reverse course of actions that releases different biochemi-
cal compounds throughout the body to bring the body 
back into a balance state. A balance state is a metabolic 
equilibrium between stimulating and tranquilizing chemi-
cal forces in the body. If either stimulating or tranquilizing 
chemical forces dominates the other without relief, then 
an on-going state of internal imbalance is experienced. 
This condition is known as stress which can have a seri-
ous consequence on the brain cells. Stress is defined as 
an on-going and unrelieved imbalance between stimulat-
ing and tranquilizing biochemicals. Thus, this condition 
may damage brain cells. Stress can be acute (short-term) 
or long-term. Acute stress is usually not a health risk. In 
contrast, long-term stress causes a wide variety of health 
problems (Lundberg, 2008). As long-term stress lasts 
longer than emotional states (Ekman, 1999), the result-
ing homeostatic instability can be considered as a base 
for emotional states. This hemostatic instability can po-
tentially affect subject’s emotional perception. 

In this study, long-term mental stress level of a subject is 
estimated by PSS-14 questionnaire (Cohen, Kamarck, & 
Mermelstein, 1983) that comprises 14 items. In each item, 
subject is asked how often he/she has experienced certain 
occurrence of a stressful situations during the last month. 
Response for each item is scored from 0 to 4, thus total re-
sponse scores range from 0 to 56. A higher response score 
correlates with a higher level of mental stress. However, 
there is no score cut-off point and comparisons are only 
sample-wise. In this study, subjects’ responses to PSS-14 
had mean and standard deviation of µ=24, σ=6.7 respec-
tively. Subjects with a score lower than µ-σ/2=21 were 
considered to be relatively stress-free whereas those with 
a score higher than µ+σ/2=28 were considered to have 
long-term stress. 

Furthermore, emotions are psychophysiological phe-
nomena associated with a wide variety of subjective feel-
ings and observable behaviors. In general, perception of 
an emotional stimulus comprises cognitive process, sub-

jective feeling, and physiological reactions. Subsequently, 
an expression in response to the stimulus is set by a series 
of chemical releases and reactions (Baumgartner, Esslen, 
& Jäncke, 2006). Physiological changes due to either 
perception or expression are detectable (Khosrowabadi, 
Hiok Chai, Wahab, & Kai Keng, 2010; Olofsson, Nordin, 
Sequeira, & Polich, 2008) and studies have shown that 
EEG also can be used to reveal them (Farquharson, 1942). 
In order to find EEG signatures related to perception of 
an emotional stimulus, subject’s feeling of the presented 
stimulus should be identified. Therefore, a way has to be 
described for distinction of subjects’ emotional states. 

Theories in emotion have suggested a number of basic 
emotions. Basic emotions are defined as emotions that 
are common across cultures and selected by nature be-
cause of their high survival factors. Commonly accept-
ed basic emotions are: happy, sad, fear, anger, surprise 
and disgust. Accordingly, complex emotions are then 
formed by combination of some basic emotions Theo-
ries in emotion have suggested several mutual emotions 
across cultures, aka: basic emotions, and some complex 
emotions that consist of elements of basic shared emo-
tions, such as happiness, fear, anger, surprise, and dis-
gust. These emotions were preserved by natural selec-
tion as they were necessary tools for survival (Ekman, 
1999; Ortony & Turner, 1990). However, there is still 
no coherent definition for basic emotions. Therefore, to 
overcome this issue, it has been suggested to categorize 
emotions based on their valence and arousal levels (Ek-
man, 1999; Russell, 1980). 

In this dynamic representation method, valence var-
ies from unpleasant to pleasant and arousal varies from 
low (calm) to high level of excitement. In addition, basic 
emotions can also be differentiated in the valence–arous-
al plan. Consequently, four types of emotional stimuli 
including positive and negative either with low or high 
level of excitement were investigate in this study. How-
ever, it should be noted that different subjects may ex-
perience different emotions while exposed to the same 
stimulus. Therefore, Self-Assessment Manikin (SAM) 
questionnaire (Lang, 1980) was used to find out about 
a subject’s true feelings. In the next step, the SAM re-
sponses were used to categorize EEG features. 

In this study, differentiable connectivity patterns of emo-
tional states were investigated. The connectivity patterns 
between eight brain regions were estimated based on 
EEG data. It has been shown in our previous studies that 
connectivity-based features are superior to other existing 
feature extraction methods for recognition of emotions 
by EEG signals. The extracted features were then labeled 
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by subjects’ SAM responses. Afterwards, the EEG fea-
tures correlates on emotional states were classified in a 
supervised manner. A significant change in the accuracy 
of recognizer system was observed after categorizing the 
subjects to stressed and stress-free groups. Hence, it was 
hypothesized that long-term stress disrupts patterns of 
connectivity between the brain regions. To investigate the 
matter, possibility of recognition of long-term stress level 
from EEG data was explored. The subjects participated 
in our study were categorized to stressed and stress-free 
groups based on their EEG data acquired in resting state 
(eyes-closed condition). The result of resting state also 
confirmed that the long-term stress distracts patterns of 
connectivity among different brain regions. Interestingly, 
this effect on neural activities was detectable in EEG sig-
nals acquired in eyes-closed condition.

The remainder of this paper is structured as follows. 
Section II describes experimental protocol. Section III 
describes the signal processing of EEG, feature extrac-
tion and classification part. Section IV presents the ex-
perimental results. Section V concludes the paper. The 
reminder of this report is structured in four sections. 
Section two explains the launched experimental proto-
col. Section three discusses the method of EEG signal 
processing, feature extraction and classification. Section 
four is devoted to the experimental results. Section five 
concludes the research.

1.1. Experimental design

The following section describes the experimental de-
sign to collect EEG correlates on emotions.

1.2. Emotion elicitation

Studies have shown that elicitor (subject elicited vs. 
event elicited), setting (controlled condition in the lab 
vs. real world), focus (expression vs. perception), and 
subject awareness (open recording vs. hidden recording) 

are factors that can influence the emotion elicitation re-
sults (Picard, Vyzas, & Healey, 2001). Subject elicited 
category refers to the instruction given to the subject to 
express a specific emotion (for example to mimic the fa-
cial expression of happiness), or recalling past emotional 
episodes. Event-elicited category refers to use of some 
images, sounds, video clips or any emotionally evoca-
tive stimuli. The International Affective Picture System 
(IAPS) (Lang, Bradley, & Cuthbert, 2005), International 
Affective Digitized sound System (IADS) (Bradley, 
Lang, University of Florida, & National Institute of 
Mental Health, 1999) Bernard Bouchard’s synthesized 
musical clips (Vieillard et al., 2008), and Gross and 
Levenson’s movie clips (Gross & Levenson, 1995) are 
standard data sets used for elicitation of emotions. Al-
though touching, smelling, and tasting are also known to 
influence human emotions, these are less studied in the 
literature (Kulish, Sourin, & Sourina, 2007). 

Therefore in this study, a combination of arousing 
pictures from IAPS and synthesized musical excerpts 
of Bernard Bouchard were used to elicit emotions. The 
emotional stimuli data set was evaluated by experts ac-
companied by average judgments of several people. 
However, actual emotional feeling of a stimulus may 
differ from one subject to another based on their experi-
ences. Therefore, even though predefined evaluation la-
bels were available, self-assessments questionnaire were 
also used. The subjects were asked to rate their feelings 
about the presented stimulus on a SAM questionnaire 
(Figure 1). After selection of emotional stimuli, a strat-
egy for sequence and durations of emotional stimuli 
should be selected.

1.3. Experimental protocol

The durations of affective stimuli are mainly defined 
based on study categories. Three major categories can 
be listed as: 1) full blown emotions that last from sev-
eral seconds to minutes, 2) moods that last from several 
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minutes to hours, and 3) emotional disorders that last 
from several years to entire lifetime (Cowie & Cor-
nelius, 2003). Hence, this study focuses on full blown 
emotions (Cowie & Cornelius, 2003) and emotional 
stimuli were presented for one minute in a counterbal-
anced and random order. In fact, an emotion recognition 
system should be ideally able to discriminate the emo-
tional states by EEG as fast as possible (Coan & Allen, 
2004). Therefore, a window length of 2 s was used to 
process the acquired EEG data. Figure 2 shows the pro-
tocol of stimuli presentation.

The EEG data were collected while subject was seated 
in a comfortable chair in a lit and controlled temperature 
room. Prior to the experiment, the experimental proce-
dure was explained to the subject in the registration room. 
The subject was asked to fill in a consent form, PSS-14, 
and handedness questionnaires (Oldfield, 1971). Then, 8 
Ag/AgCl electrodes with a reference electrode (Cz) were 
attached bilaterally on the subject’s scalp. The 10/20 sys-
tem of electrode placement was used in this study. Next, 
the EEG data were collected for a 10-min period that 
comprised 5 min in eyes-closed condition, 1 min in eyes-
open condition, and 1 min for each emotional stimulus. 
All subjects were exposed to 4 emotional stimuli in dif-
ferent levels of arousal and valence as explained in pre-
vious section. The visual stimuli were displayed on a 19 
inch monitor positioned 1 m away from the participant’s 
eyes and the audio stimuli were played with speakers 
with a constant output power. Four emotional stimuli for 
each participant were presented randomly while their se-
quences were counterbalanced to ensure each stimulus 
category was seen by each subject.

The EEG was recorded using the BIMEC device 
(Brainmarker BV, The Netherlands) with a sampling 
rate of 250 Hz. The impedance of recording electrodes 
was monitored for each subject prior to data collection 
and it was kept below 10 kΩ. The EEG was recorded 
by the BIMEC device (Brainmarker BV, The Nether-
lands). It was setup to sample with a rate of 250 Hz. 
The impedance level aimed to be below 10 kΩ so that 
the recording electrodes were carefully monitored for 
each subject prior to data collection and be kept within 
the impedance limits.

1.4. EEG correlates on emotion

As explained before, the valence-arousal plane was 
used for labeling the EEG data in this study. The sub-
jects’ responses to SAM questionnaires were used to la-
bel EEG features. 

1.5. Subjects

Statistically, a large sample size increases the preci-
sion of estimation. Therefore, EEG data were collected 
from as many as 26 healthy university students (all right-
handed, 18-30 years old, 20 male). The preparation for 
exams during the examination period was considered as 
a stressful situation. The EEG data were acquired from 
15 subjects during the examination period and 11 sub-
jects 2 weeks after their last exam. However, the PSS-14 
answers were used to categorize subjects into stressed 
and stress-free groups. It has been shown that long-term 
stress can impair subject’s ability to flexibly shift his or 
her attention by reducing connectivity to an attention-
regulating area of the prefrontal cortex (Arnsten, 2009). 
Such impairment can potentially influence the cognitive 
process involved in perception of emotional stimuli. 
Considering the time lasting of long-term mental stress, 
this effect should be detectable in resting state as well 
which is explained in the next section.

2. Methods

This section describes the methodology used to classify 
EEG correlates of emotion in this study. The EEG was 
processed as shown in Figure 3. In the first stage, the 
EEG data was normalized to amplitude range of .The 
methodology used to classify EEG correlates of emotion 
is explained here. Figure 3 shows the EEG processing 
protocol. Normalization was performed to fit amplitude 
range of 0 to 1. This scaling helps remove effects of re-
cording conditions for different subjects while it does not 
change the connectivity features. Since EEG contains a 
lot of noises and artifacts from bodily movements or eye 
blinks, noise removal was performed using a band-pass 
filter in range of 4 to 32 Hz. After, preprocessing, some 
EEG features were extracted from EEG data.

2.1. Feature extraction

Khosrowabadi, R. (2018). Stress and Perception of Emotional Stimuli. BCN, 9(2), 107-120.
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The challenging task is to extract distinctive features 
from EEG that correlates to subject’s emotional states. 
In the literature, techniques for extracting features 
from EEG correlates of emotional states include event-
related synchronization or desynchronization, event-
related potentials, visual-evoked potentials, and quan-
titative EEG (Aftanas, Varlamov, Pavlov, Makhnev, 
& Reva, 2001; Coan & Allen, 2004; Frantzidis et al., 
2010; Kemp, Gray, Eide, Silberstein, & Nathan, 2002; 
Olofsson et al., 2008; Petrantonakis & Hadjileontian-
dis, 2010). Studies have also shown that the cortical-
subcortical interactions play an important role in the 
perception of emotional stimulus (Kober et al., 2008; 
Lewis & Todd, 2007; Swanson, 2003). 

Therefore, brain connectivity features should be very 
informative. In addition, our previous studies have 
shown that emotional states can be accurately recog-
nized using these features extracted from EEG data. 
Therefore, various connectivity features were applied 
in this study to categorize EEG data collected in differ-
ent emotional states. Several connectivity measures in-
cluding phase slope index (Nolte et al., 2008), directed 
transfer function (Korzeniewska, Manczak, Kaminski, 
Blinowska, & Kasicki, 2003), and generalized partial 
directed coherence (Baccald & de Medicina, 2007) 
were applied in this study. 

Mathematical notations used to extract connectivity 
features are explained here. Inputs, outputs, related vari-
ables and functions are presented as follows.

Let ( )p c e sn n n ni × ×∈÷1 2,..., ,...,
p

t
s,i n n, x x x x =  x  denotes the multi-channel, multi-sub-
ject, and single-trial EEG data that are correlated to the 
valence and arousal ( )v e sn n n×∈ã �

( )2 e sn ni ×∈ö ; whereby nc denotes the 
number of EEG channels, np denotes the number of time 
samples per single-trial EEG, ns refers to the number of 
subjects, and ne is the number of categories of emotional 
stimuli.

 Let , 
1 2
1 1 1, , , , , , ,e e

s

Tn nt
s n

 =  ÷ X X X X X  1 2
1 1 1, , , , , , ,e e

s

Tn nt
s n

 =  ÷ X X X X X    whereby 
p cn nt

s i ×∈X  denotes the tth single-trial EEG data from the sth 

subject also 1≤t≤ne and 1≤s≤ns. The numbers nc, ne, ns, 
np are respectively fixed at 8, 4, 26, 15000 in this study. 

Let Xt =[Xt      , Xt      , ..., Xt      ,...,  Xt        ]T
S,1 S,1 S, i S, n

c
S , whereby 

1pnt
s,i i ×∈x  denotes a vector that represents the EEG time 

series from the ith channel and 1 2,..., ,...,
p

t
s,i n n, x x x x =  x , 

whereby xn denotes the nth sample. Note that a simplified 
notation of xn was used to denote ,t n

s,ix  in the remainder 
of this paper.

Let ( )v e sn n ni ×∈ã  denotes the extracted features that are 
correlated to ( )2 e sn ni ×∈ö ( )v e sn n ni ×∈ã , whereby nv denotes the number 
of features extracted for a particular feature extraction 
method.

Figure 3. Protocol of data processing

Khosrowabadi, R. (2018). Stress and Perception of Emotional Stimuli. BCN, 9(2), 107-120.



Basic and Clinical

112

March, April 2018, Volume 9, Number 2

Let 1 2
1 1 1, , , , , , ,e e

s

Tn nt
s n

 =  ã v v v v v   , whereby 1vnt
s

×∈v � 1vnt
s

×∈v � ( )2 e sn ni ×∈ö

, 1 2, , ,
v

t
s k nv v v v =  v   , and vk denotes the kth feature.

The basic functions applied to extract the features 
in this study include rectangular window, autocorre-
lation, cross correlation, discrete Fourier transform, 
power spectral density, and cross power spectral den-
sity. The mathematical notations of these functions are 
given as follows:

Let cN ni ×∈W , 1 2, , , , ,
c

T
i n =  W w w w w  , whereby 1N

i i ×∈w

, denotes a vector that represents the windowed time series 
EEG signal from the ith channel.

Let ( )w , ,f t
i s,i ts N=w x  denotes the rectangular window 

function of t
s,ix  given by Equation (1).

( ) 1 2
w , , , ,..., ,...,f t n N

s,i t i i i is N =  
 x w w w w                             (1)

, where N denotes the window length, st refers to the 
start point, and n

iw  denotes the nth sample of the win-
dowed signal that is the ( ts n+ )th sample of the ith chan-
nel of the EEG data. This study used a sampling frequen-
cy Fs=250 Hz, a window length N=512, and a starting 
point St=500 (2 s).

Let ( )ii oc if=r w  denotes the autocorrelation function 
and ( , )ij cc i jf=r w w  denotes the cross correlation function 
between the ith and the jth channel, whereby 1N

ii i ×∈r
and 1N

ij i ×∈r . Since wi and wj are stationary with the 
same length, the autocorrelation and the cross correla-
tion functions for l=0, …, N-1 are respectively given by 
equations (2) and (3).

 
*

1

1( )
N l

n n l
oc i i i

n
f

N l

−
+

=
=

− ∑w w w                                                 (2)

*

1

1( , )
N l

n n l
cc i j i j

n
f

N l

−
+

=
=

− ∑w w w w                                       (3)

, where * denotes the complex conjugate.

Let ( )i DFT i= f wz  denotes the Discrete Fourier Trans-
form (DFT), whereby 1N

i R ×∈z  transforms the win-
dowed EEG signal wi from time domain to frequency 
domain.

Let Zf
i denotes the fth sample of Zi given by Equation (4).

z  fi=∑wn
ie

N-1

N=0

-J2πfn
n                                                                    (4)

, where [ ]0,1,..., 1 sFf N
2× N

 = − ×  
 

, and J is the imaginary 
unit.

( )ii DFT ii= N f×s r  denotes the Power Spectral Density 
(PSD) of w, whereby 1N

ii i ×∈s  is the DFT of the au-
tocorrelation function rii. ( )ij DFT ijf= N × rs  denotes the 
Cross Power Spectral Density (CPSD) of wi and wj, 
whereby 1N

ij i ×∈s  is the DFT of the cross correlation 
function rij. The PSD and the CPSD functions are respec-
tively given by equations (5) and (6).

( ) *
DFT ii i if =

N
1r z z ,                                                             (5) 

(6) ( ) *
DFT ij i jf

N
1=r z z                                                     (6)

The Welch’s method, also called the periodogram 
method, computes the PSD for the entire input signal. 
This method is performed by dividing the time signal 
into successive blocks and by averaging the squared-
magnitude DFTs of the signal blocks (Welch, 1967).

2.2. Directed transfer function

Directed Transfer Function (DTF) is a method that 
simultaneously takes into account all channels of the 
process to estimate the activity flow in a given direc-
tion as a function of frequency based on the concept of 
Granger causality (Kaminski & Blinowska, 1991). DTF 
is closely related to spectral G-causality. The time series 
EEG signal from channel i (wi) is said to Granger cause 
another channel j (wj) if it can be shown by using statis-
tical test (normally F-test) on lagged values of wi (or 
lagged values of wj ) and values of wi provide statistically 
significant information about future values of wj. This is 
fundamental for effective connectivity and here the im-
portant point is that this predictability improvement is 
not reciprocal, i.e. wi may Granger cause wi withoutwj 
necessarily Granger cause wi. 

Using linear prediction of future values of multivari-
ate data with an rth order Multivariate Auto Regressive 
(MVAR) modeling is the simplest way to exploit this 
idea. Therefore, data can be modeled by Equation (7).

1

m
n r n r n

r

−

=

= +∑W A W î                                                       (7)

, where 1cni ×∈w , and 

1 ,..., ,..., ]
c

n n n n T
i nW = [w w w .                                               (8)

1cni ×∈î  is the matrix of innovation process (a zero-
mean Gaussian noise with an estimated covariance ma-
trix Σ). Each vector of iw , iî  is considered as an ele-
ment of w and î , respectively. c cn nr i ×∈A  is coefficients 
matrices, each corresponding to a specific lag r and m 
representing the order of AR model. The diagonal ele-
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ments of Σ ( iiÓ ) measure the remaining error when the 
future values of wj are modeled simultaneously with all 
the time series values. To analyze the EEG signal, fre-
quency decompositions are often of interest. Therefore, 
Geweke (Geweke, 1982) proposed using Fourier meth-
ods to examine G-causality in the spectral domain which 
is computed as follows. Equation (9) is computed by 
transforming Equation (7) to the frequency.

 
0

m
Fourierr n r n f f f

transform
r

=−

=
= →∑ A w Wî A î                            (9)

By recasting Equation (9) into the transfer function for-
mat, we obtain , where the transfer function 
(prediction error filter representation) is given by Equa-
tion (10).

 ( ) 1
f f

−
=H A                                                                               (10)

, for r=0,…, m; where A Af f  = −I  and I is the iden-
tity matrix. 

Therefore, 

                                                                      (11)

, where r
ijA  denotes the coefficients that describes the 

relationship between the present of time series iw  and 
the past of jw .

DTF represents the causal influence from channel j to 
channel i which is defined by Equation (12). 

( )2 2f f
j i ij→ = hè                                                                       (12)

, where f
ijh is ( )thi, j element of Hf. 

The normalized DTF is presented as Equation (13). 

( )
2

2

2

1

c

f
ijf

j i n
f
ij

j

→

=

=

∑
ã

h

h
                                                                        (13)

, whereby Hf is estimated using Equation (10). 

To estimate A, Equation (7) should be multiplied by 
n i−W  and after taking the expectation, the Yule Walker 

Equation is obtained as shown in Equation (14).

1

m
r i r i

r

−

=
∑A R = R                                                                       (14)

, where i n n i= E − 
 W WR  and 1 i m≤ ≤ , n i−W denotes 

the transpose of n i−W .

Note that  because the perturbation of the 
current time is unrelated to previous values of the pro-
cess and 

rA s are kept outside the expectance operator 
because they are deterministic rather than statistical 
quantities. Partial correlation estimation using unbiased 
covariance was applied in this study (Schlögl, 2006).

After the normalized DTF 
1 fn

j i iγ ×
→ ∈  is computed for 

all EEG channels, the feature vector 1vnt
s i ×∈v  is given 

by 1 1 2 1, , , , ,
c c

t
s j i n nγ γ γ γ→ → → → =  v   , where the total 

number of extracted features is 2
v f cn n n= × .

2.3. Generalized Partial directed coherence function

In multichannel EEG analysis, sometimes negative 
causality occurs at certain frequencies that has no physi-
cal interpretation. This problem can be overcome by 
using Partial Directed Coherence (PDC) function. The 
PDC describes the direction of information flow be-
tween multivariate data in frequency domain. The PDC 
is based on the decomposition of multivariate partial 
coherences computed using multivariate autoregressive 
models. It closely reflects Granger causality by parallel-
ing the definition of Granger causality test estimators. 
This method allows factoring the classical coherence 
function (the frequency domain counterpart of correla-
tion analysis) of a pair of structures into two directed co-
herences; one representing the feed-forward aspect and 
the other representing the feedback aspect of the interac-
tion (Baccald & de Medicina, 2007). In calculating cau-
sality between pairs of electrodes, a negative connection 
at a certain frequency may not convey any physical in-
formation. Therefore, Partial Directed Coherence (PDC) 
was used to avoid this by modeling of connectivity using 
a multivariate autoregressive model (Baccald & de Me-
dicina, 2007).  

The partial directed coherence from series j to series i, 
at frequency f can be defined using Equation (15).

2

1

c

f
ijf

j i n
f
ij

i

π →

=

=

∑

A

A
                                                                      (15)

, where f
ijA  has been defined in Equation (11). Also, 
1fn

j i iπ ×
→ ∈  takes values in the interval [0-1]. 

The main difference between DTF and PDC is related 
to normalization part as shown in Equations (13) and 
(15). DTF is normalized with respect to the structure that 
receives the signal whereas PDC is normalized with re-
spect to the structure that sends the signal. 
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After the normalized PDC f
j iπ →  is computed for all 

the EEG channels, the feature vector 1vnt
s

×∈v �  is given 
by 1 1 2 1, , , , ,

c c
t
s j i n nπ π π π→ → → → =  v   , where the total 

number of extracted features is 2
v f cn n n= × . 

2.4. Phase slope index 

The PSI estimates the direction of information flow be-
tween the multivariate data in the frequency domain. The 
time delay of τ is considered for information to be propa-
gated from the ith channel to the jth channel. The phase of 
cross spectrum between the ith channel and the jth channel is 
a factor of frequency and time delay (2πfτ). The PSI is the 
derivative of this phase with respect to f. In comparison to 
Granger causality, the PSI method is insensitive to instan-
taneous mixtures of independent sources. Furthermore, it 
gives meaningful results even if the phase spectrum is not 
linear since it has proper weights contributions from dif-
ferent frequencies (Nolte et al., 2008). 

The phase slope index presents directional connectiv-
ity between pairs of electrodes in the frequency domain. 
The propagation time of information flow between chan-
nel i and j is denoted as τ. The time delay of τ could be 
estimated from phase of cross spectrum between chan-
nel i and j. Derivative of this phase with respect to f is 
called PSI, which is not sensitive to transient mixture 
of sources more stable than Granger causality method 
(Nolte et al., 2008).

PSI is estimated by applying the cross spectrum of wi 
and wj. However, in an alternative approach, the whole 
data set, for instance wi is divided into k1 segments of 
duration LT as shown in Equation (16). 

1 1
1

1 ( 1)
, [ ,..., ,..., ]kT Tnk L k L

i k i i i
+ −=w w w w                         (16)

, where kn
iw  denotes the nkth sample of wi.

Then cross spectral density of Hanning-windowed 
1,i kw  and 1,j kw  is estimated for each frequency of f as 

defined in Equation (17). 
2

*
, ,

11

1 k
f f f

ij i l j l
lk =

′ = ∑s z z                                                                       (17)

, where ,
f
i lz  denotes the Fourier transform of the 

Hanning windowed 1,i kw  using Equation (4).

After the cross spectral density is estimated, the com-
plex coherency 3 1fn

ij R ×′ ∈c  is computed using Equation 
(18). 

f
ijf

ij f f
ii jj

=
′

′
′ ′
sc
s s

                                                                      (18)

Then PSI, ijØ  is computed using Equation (19).

*

p

f f f
ij ij ij

f F
= im δ+

∈

 
′ ′  

 
∑ c cØ                                                                       (19)

, where im denotes taking the imaginary part, äf  is 
the frequency resolution and Fp is the set of frequen-
cies over which the slope is summed. Typically, Fp 
contains all frequencies but restricted to a specified 
band in this study.

In order to see how ɸij corresponds to a meaningful es-
timate of the average slope it is convenient to rewrite 
Equation (19) as Equation (20). 

                         (20)

, where , and f f
ik ik= ′á c  are frequency de-

pendent weights.

For smooth phase spectra 

           (21)

Therefore, corresponds to a weighted average of the 
slope.

Finally, as for the Granger causality, it is convenient to 
normalize by an estimate of its standard deviation that 
is done using Equation (22). 

( )v e sn n ni ×∈ã .                                                                      (22)

The value of std( ) is estimated using the Jackknife 
method and is validated in simulations.

In this study, Fp denotes the EEG frequency bands. A 
filter bank of a number of 4 Hz bands was implemented. 

As shown in Figure 4, the frequency band of [4-32] Hz 
was divided to 7 parts as follows:

[4-8]|[8-12]|[12-16]|[16-20]|[20-24]|[24-28]|[28-32] 
Hz. 

PSI is computed for each part, as example in part b

( )v e sn n ni ×∈ã
( )v e sn n ni ×∈ã

( )v e sn n ni ×∈ã

, where bY
ã
ij=-bY

ã
ij . Also, bY

ã
ij denotes the information 

flow from channel i to channel j in frequency band of 
part b.
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In addition, allY
ã
ij=[1Y ãij,...,bY

ã
ij,...,7Y

ã
ij] denotes the PSI for 

all frequency bands and allY
ã
ij

1pnt
s,i i ×∈x i7×1 is ex tracted for all chan-

nels. The feature vector extracted is given by 1vnt
s i ×∈v  , 

where 27v cn n= ×  and 11, , ,...,
cc c

t
s all all ij all n nY Y Y =  v   

11,,,...,
ccc

t
sallallijallnn YYY  = v 

11, , ,...,
cc c

t
s all all ij all n nY Y Y =  v   

( )v e sn n ni ×∈ã ( )v e sn n ni ×∈ã ( )v e sn n ni ×∈ã .

After the feature vectors were extracted, some of the 
extracted features may be irrelevant or redundant and 
may have a negative effect on the accuracy of the classi-
fiers. Therefore, a number of significant features should 
be selected. Feature ranking was performed using the 
class separability criteria (Guyon & Elisseeff, 2003; 
Reyes-Aldasoro & Bhalerao, 2006). Afterward, the most 
significant features were labeled and classified.

According to Figure 5, the valence and arousal lev-
els are classified separately. The boundaries between 
different classes are determined from the subjects’ an-
swers to the SAM questionnaire. The SAM answers 
are 2 dimensional labels that one dimension denotes 
the valence level and another one the arousal level. The 
SAM answers have 1 level of uncertainty, for instance 

5 1Valence = ± denotes the neutral level (Valence=5). 
According to the SAM answers shown in Figure 6, 
emotion categories are formed using Valence≤3 (nega-
tive) or Valence≥7(positive), and Arousal≤3 (calm) or 

Arousal≥7 (excited). Therefore, binary labeling is done 
for valence and arousal levels detection. For example, 
the subjects with Valence≤3 or Valence≥7 are catego-
rized as valence groups where subjects with Valence≤3 
are considered as class 1 and subjects with Valence≥7 are 
labeled as class 2. The similar process was performed for 
labeling of arousal classes as well. Therefore the binary 
classes were configured as given by Equation (23). 

( )
1

2
1

sv
e s

sa

n
n n v

n
a

i
i

i

×
×

×

 ∈∈ ⇒ 
 ∈

c
ö

c
v sv

V

n n×∈ã �                                                                       (23)

, where cv denotes the valence groups labels and 
vsn  is 

the total number of subjects in this category. Similarly, ca 
denotes the arousal groups labels and 

asn  is the number 
of subjects in this category.

The extracted features, ã , were labeled using vc  for va-
lence detection as v sv

V

n ni ×∈ã  and using ac  for arousal 
detection as v sa

A

n ni ×∈ã  . The labeled input for valence 
classifier out svn n

V i ×∈I  and arousal classifier out san n
A i ×∈I  

are defined by Equation (24). 

                                                                      (24)

Figure 5. Structure of classifier
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, where t denotes the transpose of matrix, and 24outn =  
is the number of output features. 

2.5. Classification

A wide range of classifiers can be applied to derive 
the affective states. Since four classes of emotions are 
studied, various multiclass classification schemes can be 
used such as all-together, one-against-one, one versus 
rest, and hierarchical model. In this study, the Figure 5 
model was applied. 

The model is constructed using two binary classifiers 
of the same type: one classifier is trained to classify va-
lence and the other is trained to classify arousal. In this 
model, the four-class classification is decomposed into 
two-level nested binary classifiers based on arousal-
specific level and valence-specific level. Two types of 
classifiers are applied using the applied model on the 
extracted features: 1. K-Nearest Neighbor (KNN) and 
2. Support Vector Machine (SVM). The study classifier 
scheme is based on two similar binary classifiers, one for 

discrimination of valance level (positive, negative) and 
the other one for discrimination of arousal level (calm, 
excited). The classification accuracy of this scheme 
was calculated using either K-Nearest Neighbor classi-
fier (KNN) or the Support Vector Machine (SVM). The 
KNN classifier is a supervised learning algorithm to cat-
egorize objects based on the closest training examples in 
the feature space (Filipek et al., 1999). In contrast, the 
SVM classifier finds a separating hyperplane with the 
maximal margin between two classes of data (Shawe-
Taylor & Cristianini, 2000). In this study, the features 
were mapped using Gaussian radial basis function into 
the kernel space with the sigma of the RBF kernels set to 
3.5 for arousal and 6 for valence level detection.

3. Results

Four classes of emotions including negative and posi-
tive emotions from valence dimension and calm and 
highly exited emotions from arousal dimension were 
investigated. The classification accuracies using three 
different features and two classifiers are shown in Figure 
7 and Figure 8. The results of KNN and SVM classifiers 
are based on leave-one-out method. Programming was 
done using MATLAB and “BioSig” toolbox to extract 
the connectivity features (Schlögl & Brunner, 2008).

Among the three implied methods, PSI feature 
yields better classification accuracy. The results show 
a significant improvement in the classification accura-
cy ( 68.42µ = ) by removing the effect of the internal 
factor through categorizing the subjects to stressed 
( 90.62sµ = ) and stress-free ( 90.90nµ = ) groups. 
These results indicate that there are patterns of brain 
regions connectivity (wiring structures) during the 
perception of external stimuli that chronic stress can 
change them. To clarify the concept of connectivity 
between brain regions, the flux average of each EEG 
channel was evaluated using PSI. Sum of PSI of 2 s 
EEG signal in duration of 50 s was computed for each 
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Figure 6. Subjects’ SAM distribution
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channel. The patterns of the average PSI for all chan-
nels in positive and negative emotiTable 1. P-values 
of t test between stressed subjects vs. stress-free ones 
in positive and negative emotional stateshown in Fig-
ure 9 and Figure 10, respectively. 

Statistical analysis of the average PSI results using t 
test shows significant changes on C3, C4, F4, P4, T8 
for positive emotions and C3, F4, P3, P4, T8 for nega-
tive emotions. A 2-tailed unpaired t test considering un-
equal variance for the two groups was computed. Table 
1 shows the acquired P values from t test. The P values 
show changes in average PSI on C4 dominates during 
positive emotions while changes in channel P3 domi-
nates in negative emotions.

Regarding the present Table 1. P-values of t test be-
tween stressed subjects vs. stress-free ones in positive 
and negative emotional statesata in Figure 9 and Figure 
10, there is no consideration on the arousal levels and its 
effect on the valence levels. The same comparison was 
done for the resting state (eyes close condition). Figure 
11 shows the results of the averaged PSI for 5 minutes 
of EEG signals. Table 2 shows the P value of effective 
channels extracted using t test on unpaired data.

The results shown in Figure 11 indicate the possibil-
ity of using the connectivity features of EEG in the rest-
ing state for detection of chronic stress. To investigate 
such an idea, the subjects were classified to stressed and 
stress-free group based on these features. The classifi-

A B

Figure 9. Pattern of averaged PSI for stressed (a) and stress-free (b) subjects in positive emotional states (Valence≥7)

A B

Figure 10. Pattern of averaged PSI for stressed (a) and stress-free (b) subjects in negative emotional sates (Valence≤3)

Table 1. P-values of t test between stressed subjects vs. stress-free ones in positive and negative emotional states

Valence C3 C4 F4 P3 P4 T8

≥7 1.1e-13 0.03 1.3e-5 0.67 0.0006 0.002

≤3 5.8e-15 0.67 9.6e-5 0.003 0.04 0.0003
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cation accuracy of the system for stress level detection 
applying the SVM and the KNN is shown in Figure 12.

The results shown in Figures 7, 8, and 12 emphasize 
that either in resting state or emotional states the patterns 
of connectivity among the brain regions are changed in 
response to stress level. Note that this study was limited 
to adults aged from 18 to 30 years old, so such results 
cannot be generalized to a younger or older population. 
In addition, the EEG signals below 4 Hz or above 32 
Hz were not evaluated. The results are based on 8 brain 
regions that precision of results may be tolerated by ap-
plying more or less number of EEG electrodes.

4. Discussion

Chronic stress causes a series of chemical compounds 
releases and reactions in our bodies. Therefore, stress as an 
internal stimulus can potentially influence the responses to 
external stimulus. In this study changes in brain activity 

in response to external emotional stimuli considering the 
subject’s stress level was investigated. The effective con-
nectivity between eight brain regions based on the EEG 
signals were correlated to four emotional states. The clas-
sification accuracy of the emotion recognition system im-
proves by separating the subjects to two different levels of 
stress. The effect of stress on connectivity pattern of brain 
regions was also tested in resting state. The results show 
that stress can change connectivity patterns among differ-
ent brain regions either in resting state or emotional stimuli 
perception. However, impact of stress on changing the pat-
tern of connectivity is subject-dependent. 
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