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Introduction: Studies have repeatedly stated the importance of individual differences 
in the problem of emotion recognition. The primary focus of this study is to predict Heart 
Rate Variability (HRV) changes due to affective stimuli from the individual characteristics. 
These features include age (A), gender (G), linguality (L), and sleep (S). In addition, the best 
combination of individual variables was explored to estimate emotional HRV.

Methods: To this end, HRV indices of 47 college students exposed to images with four 
emotional categories of happiness, sadness, fear, and relaxation were analyzed. Then, a novel 
predictive model was introduced based on the regression equation.

Results: The results show that different emotional situations provoke the importance of 
different individual variable combinations. The best variables arrangements to predict HRV 
changes due to emotional provocations are LS, GL, GA, ALS, and GALS. However, these 
combinations were changed according to each subject separately.

Conclusion: The suggested simple model effectively offers new insight into emotion studies 
regarding subject characteristics and autonomic parameters.
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1. Introduction

motions play a crucial role in health, so-
cial relationships, and daily functions. 
Concerning the importance of emotions, 
the emotion recognition via physiological 
parameters (including Galvanic Skin Re-
sponse (GSR), respiration, Electrocardio-

gram (ECG), blood pressure, or Electroencephalogram 
(EEG)) has been fascinated by several researchers in 
the field of affective computing (Frantzidis et al., 2010; 
Goshvarpour et al., 2015; Nardelli et al., 2015; Valenza 
et al., 2014). Among these, Autonomic Nervous System 
(ANS) activity is a fundamental component in many re-
cent theories of emotion. Overall autonomic measures, 
Heart Rate (HR) (and also Heart Rate Variability (HRV)) 
is the most often reported measure (Kreibig, 2010). Nu-
merous approaches such as standard features and nonlin-
ear indices have been used in the literature to analyze the 
HRV signal quantitatively. However, the main focus was 
on the simple standard features (Chang, Zheng, & Wang, 
2010; Choi & Woo, 2005; Greco, Valenza, Lanata, Rota, 
& Scilingo, 2014; Haag, Goronzy, Schaich,& Williams 
2004; Jang, Park,  Park, Kim, & Sohn, 2015; Katsis, Kat-
ertsidis, Ganiatsas, & Fotiadis, 2008; Katsis, Katertsidis, 
& Fotiadis, 2011; Kim, Bang, & Kim, 2004; Li & Chen, 
2006; Liu, Conn, Sarkar, & Stone, 2008; Niu, Chen, & 
Chen, 2011; Picard, Vyzas, & Healey, 2001; Rainville, 
Bechara, Naqvi, & Damasio, 2006; Rani, Liu, Sarkar, & 
Vanman, 2006; Yannakakis & Hallam, 2008; Yoo, Lee, 
Park, Kim,  Lee, & Jeong, 2005; Zhai & Barreto, 2006).

Also, different HRV patterns have been reported in the 
context of different emotion-related autonomic respons-
es (Kreibig, 2010). Many studies have analyzed these dif-
ferences in the physiological mechanism of emotional 
reactions as a function of individual variables such as 
age, gender, and linguality, as well as other factors like 
sleep duration (Bayrami et al., 2012; Chen,  Liu, Z.- Wu, 
Ding, Dong, & Hirota 2015; Franzen, Buysse,  Dahl, 
Thompson, & Siegle, 2009; Yoo, Gujar, Peter,  Jolesz, 
& Walker, 2007). The appendix presents a short review 
of the literature. They mainly tended to evaluate one or 
two parameters separately, and the relation and interac-
tion between these factors on emotional reactions were 
not simultaneously considered. For example, 1) Are the 
emotional responses of two genders with insufficient 
sleep the same? 2) If the subject’s age is also consid-
ered, what changes have been made in the emotional re-
sponses? 3) Which one has the maximum effect on the 
emotional autonomic changes? It is supposed that the 
individual information can jointly affect emotional con-
formation. Therefore, this relationship and interaction 
should be considered in the affect analytic system. 

The present study aimed to evaluate the effects of age, 
gender, linguality, and sleep duration on the autonomic 
responses associated with emotional inductions simulta-
neously, and it attempted to offer a predictive model for 
these interactions. The rest of this manuscript is prepared 
as follows. Section 2 offers the material and methods 
used in this work. Section 3 reports the experimental re-

Highlights 

● HRV affective states was predicted using the individual characteristics.

● A novel predictive model was proposed utilizing the regression.

● Distinctive emotional situations provoke the importance of different individual variable combinations.

● The close association exists between gender and physiological changes in emotional states.

Plain Language Summary 

In everyday life, emotions play a critical role in health, social relationships, and daily functions. Among physiologi-
calmeasures, the ANS activity, especially Heart Rate Variability (HRV), plays an important role in many recent theories of 
emotion. Many studies have analyzed HRV differences in the physiological mechanism of emotional reactions as a function 
of individual variables such as age, gender, and linguality, as well as other factors like sleep duration. It is the first study that 
explored the importance of individual characteristic’s involvements and combinations was explored in the problem of emo-
tion prediction based on an HRV parameter. To this effect, an emotion predictive model was proposed based on the linear 
combinations of individual differences with acceptable performance.
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sults of the proposed procedure. Finally, section 4 pres-
ents the study’s conclusion.

2. Materials and Methods

Data collection

The ECG of 47 college students attending the Sahand 
University of Technology was collected. All participants 
were Iranian students. To elicit emotions in the partici-
pants, images from the International Affective Picture 
System (IAPS) were used (Lang, Bradley, & Cuthbert, 
2005). Based on the dimensional structure of the emo-
tional space, the images of the IAPS were chosen to cor-
respond to the four classes of emotions (Goshvarpour 
et al., 2015): relaxation, happiness, sadness, and fear. 
Upon arrival in the laboratory, all participants were re-
quested to read and sign a consent form, to participate 
in the experiment. All participants reported no history of 
neurological disease, cardiovascular, epileptic, or hyper-
tension diseases. The subjects were asked not to eat caf-
feine, salt, or fat foods two hours before data recording 
and remained still during the experiment, particularly 
avoiding movements of their fingers, hands, and legs.

The procedure took about 15 minutes, and images were 
represented after two minutes of rest. In the initial base-
line measurement, subjects were instructed to keep their 
eyes open and watch a blank screen. Then, 28 blocks of 
pictorial stimuli were randomly shown on the screen to 
prevent habituation in subjects. Furthermore, they were 
balanced among subjects. Each block consisted of five 
pictures from the same emotional class displayed for 
about 15 s with a 10-s blank screen period at the end. 
This process was done to ensure the stability of the emo-
tion over time. The blank screen period was applied 
to allow the return of physiological fluctuations to the 
baseline and assure the regularity in the demonstration 
of different emotional images. The blank screen is fol-
lowed by a white plus (for 3 s) to prompt the subjects 
to concentrate and look at the center of the screen and 
prepare them for the next block. They were also asked to 
self-assess their emotional states. Figure 1 demonstrates 
the protocol description. All signals were recorded in 
the computational neuroscience laboratory of the Sah-
and University of Technology. A 16-channel PowerLab 
(manufactured by AD Instruments) with a sampling rate 
of 400 Hz and a digital notch filter was used to remove 
current line noise.

The emotional model

Finding a linear relationship between variables usually 
describes the observed data. In addition, it makes pos-
sible a reasonable prediction of new observations. In the 
previous studies, changes in HRV can serve as a valu-
able and effective tool to analyze affective states. Con-
sequently, in the current study, the ratio of HRV changes 
during rest to each emotional state is considered a depen-
dent (or response) variable to model the affective states. 

It has been shown that (refer to appendix): first, women 
intensely experience emotions. Second, the older apply 
different strategies in emotion regulation and heightened 
positive emotions. Third, different brain functions are 
activated in bilinguals during emotional stimuli presen-
tation. In addition, an augmented reactivity to negative 
emotions has been reported. Therefore, stronger emo-
tional weights should be considered for women, older, 
bilinguals, and sleep-deprived participants. 

Based on the results of individual characteristics and 
the HRV index, the evaluative model for emotion rec-
ognition can be recognized with a regression equation. 
Consequently, the evaluation index of affective auto-
nomic changes can be calculated by Equation 1.

1. f=ax1+bx2+cx3+dx4+E

In this Equation, x1 represents the gender G) character-
istics: 1 for men and 2 for women. x2 is the subjects’ age 
(A) range: 1 for subjects in the age range 19-22 years and 
2 for subjects in the age range 22-25 years. x3 carries the 
linguality (L) information which is coded 1 if the subject 
is monolingual and 2 if the subject is bilingual. Sleep (S) 
is coded by x4: 1 for subjects with normal sleeping and 2 
for sleep deprivation. The ratios of HRV changes during 
rest to each affective state are captured by f. Therefore, 
f1, f2, f3, and f4 are formed for happiness, relaxation, sad-
ness, and fear affective states, respectively.

3. Results

Eighty percent of recording data were randomly nomi-
nated to calculate the coefficients of a, b, c, d, and e by a 
linear fitting of HRV data, and the rest (20%) for testing. 
Different combinations of individual characteristics are 
also considered in the model. To this end, the coefficients 
play an essential role. For instance, if we want to evalu-
ate the role of age and gender (GA) on the model, the 
coefficients of c and d should be set to zero. As a result, 
the following conditions are considered in the model 
evaluation (Equation 2):
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2 . 

GA: →c=d=0   GL:→b=d=0   GS:→b=c=0   Al:→a=d=0 

AS: →c=c=0   LS:→a=b=0   GAL:→d=0   GAS:→c=0

GLS: →b=0   ALS:→a=0   GALS:all Coffs are exist

To evaluate the performance of the model, the mean 
error (difference between the real data and the estimated 
one) and the Root Mean Square Error (RMSE) are cal-
culated. Table 1 outlines the results. 

Different combinations of individual characteristics 
can serve to predict the HRV indices in different affec-
tive states (Table 1). Based on the mean error results, LS 
and GL combinations can track the HRV changes due 
to happy stimuli. While GA outperforms the others for 
relaxation and fear. In addition, ALS and GALS result 
in the best prediction of HRV indices for sad incentives. 
Different individual parameters are involved in the emo-
tional state prediction. Different results are obtained con-
sidering subjects exclusively. The results of subject 2 are 
accurate in all emotional conditions. 

4. Discussion

In the current study, a simple predictive model of emo-
tion was presented based on an autonomic feature. For 
the first time, the importance of individual characteris-
tics involvements and combinations was examined in 
the problem of emotion prediction based on an HRV 
parameter. For a two-dimensional emotion theory, four 
categories of affective states were introduced: happiness, 
relaxation, sadness, and fear. The HRV changes in the 
rest in relation to each affective state are considered a 
dependent variable. An affect predictive model was pro-
posed based on the linear combinations of individual dif-
ferences with acceptable performance.

The results of this study showed that different subjec-
tive characteristics are involved in predicting HRV in-
dices of affective states. LS, GL, GA, ALS, and GALS 
are desired arrangements to predict HRV changes due 
to emotional provocations. Researchers can conclude 
that a close association is observed between gender and 
physiological changes in emotional states. This result 
was consistent with published articles extensively where 
the role of gender in emotion recognition was stated 
(Chen et al., 2015). However, the role of some indices 

Figure 1. Protocol description
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Table 1. The performance of the proposed model

Individual Considerations

Model 
Evaluations Subjects GA GL GS AL AS LS GAL GAS GLS ALS GALS

f1

E

1 0.5747 0.4099 0.2742 0.394 0.2298 0.1486 0.5599 0.4189 0.2525 0.2282 0.3991

2 0.0716 0.0623 0.2289 0.1118 0.2733 0.3423 0.0834 0.0842 0.2118 0.2726 0.0695

3 0.3959 0.2619 0.0954 0.2124 0.051 0.0181 0.4077 0.24 0.1124 0.0517 0.2548

4 0.2217 0.0575 0.2427 0.1251 0.2675 0.1799 0.2134 0.3802 0.2319 0.2667 0.3702

5 0.0754 0.174 0.0074 0.0512 0.1936 0.106 0.0877 0.0653 0.0245 0.1928 0.0499

6 0.6026 0.4384 0.6236 0.506 0.6484 0.5608 0.5944 0.7612 0.6128 0.6476 0.7511

7 0.1726 0.1042 0.1987 0.2123 0.306 0.2489 0.1804 0.2668 0.2105 0.3067 0.2772

8 0.0535 0.1107 0.0745 0.0431 0.0993 0.0117 0.0453 0.2121 0.0637 0.0985 0.202

9 0.1674 0.0996 0.0443 0.2912 0.1813 0.0939 0.1817 0.04 0.0236 0.1827 0.0582

ME 0.2595    0.1910    0.1989    0.2163    0.2500    0.1900    0.2615    0.2743    0.1938 0.2497    0.2702

RMSE 0.9853    0.7066    0.7947    0.7867    0.8922    0.7541    0.9802    1.0422    0.7747 0.8910    1.0265

f2

E 

1 0.1737 0.0569 0.2354 0.2036 0.3259 0.2734 0.1031 0.2794 0.1694 0.306 0.2048

2 0.0218 0.1211 0.0168 0.0957 0.2008 0.1453 0.0566 0.0714 0.0169 0.1939 0.0349

3 0.3454 0.4844 0.5478 0.5367 0.6386 0.7009 0.3942 0.4597 0.5969 0.6585 0.5126

4 0.389 0.342 0.1635 0.3132 0.1661 0.1254 0.4663 0.2621 0.2294 0.1866 0.3436

5 0.3864 0.5078 0.3554 0.4902 0.3851 0.4406 0.3994 0.2684 0.3703 0.392 0.2815

6 0.0234 0.0236 0.2021 0.0524 0.1995 0.2401 0.1007 0.1035 0.1361 0.1789 0.0219

7 0.0237 0.0187 0.0854 0.0817 0.1759 0.1481 0.0434 0.1294 0.1022 0.1834 0.1511

8 0.3786 0.3141 0.4326 0.2153 0.3095 0.2817 0.4201 0.5091 0.4683 0.317 0.5543

9 0.2561 0.2809 0.4739 0.1106 0.2577 0.2983 0.2006 0.4077 0.4268 0.2371 0.3497

ME 0.2220    0.2388    0.2792    0.2333    0.2955    0.2949    0.2427    0.2767    0.2796 0.2948    0.2727

RMSE 0.8127    0.8977    0.9842    0.8632    0.9814    1.0222    0.8803    0.9424    1.0027 0.9877    0.9778

f3

E 

1 0.4276 0.3521 0.3035 0.3775 0.3437 0.2654 0.3864 0.3357 0.2715 0.2998 0.3028

2 0.0072 0.0111 0.0375 0.0571 0.0661 0.0756 0.0441 0.0759 0.0695 0.11 0.1062

3 0.1569 0.0814 0.197 0.1068 0.2235 0.1518 0.1157 0.2186 0.1551 0.1747 0.1763

4 0.0555 0.0738 0.1893 0.0056 0.147 0.1442 0.0186 0.1403 0.1475 0.0983 0.1007

5 0.0462 0.1217 0.0061 0.0963 0.0204 0.0513 0.0874 0.0155 0.048 0.0284 0.0268

6 0.1416 0.0379 0.0078 0.0398 0.0501 0.0933 0.0202 0.0568 0.0997 0.0474 0.0515

7 0.1961 0.0571 0.0437 0.0886 0.0988 0.0445 0.1034 0.0858 0.0353 0.0014 0.006

8 0.5607 0.475 0.5206 0.4591 0.4941 0.4196 0.4436 0.499 0.4132 0.3966 0.3933

9 0.6447 0.6669 0.4923 0.6889 0.5475 0.5504 0.7104 0.5345 0.5627 0.5962 0.6026

ME 0.2485    0.2086    0.1998    0.2133    0.2213    0.1996    0.2144    0.2180    0.2003 0.1948    0.1962

RMSE 1.0006    0.9089    0.8268    0.9281    0.8664    0.7825    0.9408    0.8552    0.7907 0.8112    0.8157
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like sleep quantity or linguality on autonomic indices af-
fected by visual affective states has not been explored 
so far. Different results were obtained according to each 
subject. Different combinations of individual charac-
teristics incorporate into the affect prediction. Previous 
studies confirm the role of subject differences in emotion 
perception (Donges, Kersting, & Suslow, 2012; Martin, 
Berry, Dobranski, Horne, & Dodgson, 1996). Different 
emotion perceptions are because of various individual 
characteristics, as well as the past experiences of emo-
tions (Barrett, Mesquita, Ochsner, & Gross, 2007). 
Based on the role of several individual characteristics, 
a new perspective of the emotion predictive model was 
presented in the current study. However, more data are 
required to establish the role of individual characteristics 
in predicting autonomic emotional states.

Appendix

Gender differences and emotions

A review of articles on emotion suggests that men and 
women employ different strategies to control and express 
their emotions. Compared to men, women experience 
positive and negative emotions more intensely (Gross-
man & Wood, 1993), and they are more emotional (Gre-
wal & Salovey, 2005). Dealing with frightening situa-
tions, women have reported more fear (Gordon & Riger, 
1991). Also, some studies have found different emotion-
al valence and arousal ratings between the two genders 

(Murnen & Stockton, 1997): more emotional arousal 
in men and higher rates of valence in women. Recent 
evidence has suggested higher brain activity in females 
compared to males in some Electroencephalogram 
(EEG) studies. Guntekin and Basar (2007) perceived a 
larger beta response in women when observing facial 
expression; however, it was independent of the type of 
emotion. In women, the greater electrodermal responses 
(Kring & Gordon, 1998), the more facial electromyo-
graphic reactions, and the higher heart rates (Bradley, 
Codispoti, Sabatinelli, & Lang, 2001) have been realized 
during unpleasant stimuli compared to men.

Age and emotional reactions

In previous works, there are some confirmations about 
the existence of close relations between age and the type 
of emotion that should be recognized. Specifically, anger, 
sadness, fear, happiness, and surprise are hardly identi-
fied in older adults compared to younger participants 
(Isaacowitz et al., 2007; Ruffman, Henry, Livingstone, 
& Phillips, 2008). However, they could correctly recog-
nize positive stimuli. In contrast, despite higher recogni-
tion rates of negative motivations in younger adults, they 
are easily distracted by these types of emotions (Thomas 
& Hasher, 2006). Low arousal positive affect increased, 
and negative affect across both low- and high-arousal lev-
els decreased in older adults; however, no age differences 
were observed in high arousal positive affect (Kessler & 
Staudinger, 2009). To explain the reason for such posi-

Individual Considerations

Model 
Evaluations Subjects GA GL GS AL AS LS GAL GAS GLS ALS GALS

f4

E

1 0.1898 0.2176 0.3582 0.1491 0.3115 0.3431 0.1534 0.3015 0.333 0.2748 0.2701

2 0.0706 0.0428 0.0978 0.1113 0.0511 0.0827 0.107 0.0411 0.0726 0.0144 0.0097

3 0.125 0.1529 0.3521 0.0844 0.2468 0.2784 0.0722 0.2812 0.3153 0.2101 0.2359

4 0.3448 0.2466 0.1458 0.3098 0.2351 0.148 0.316 0.2128 0.1291 0.211 0.197

5 0.2245 0.355 0.3929 0.2942 0.3462 0.4584 0.3009 0.3362 0.4408 0.3979 0.388

6 0.1695 0.1742 0.2707 0.2452 0.2914 0.2777 0.2373 0.3211 0.307 0.3477 0.3649

7 0.0979 0.0701 0.0705 0.1386 0.0238 0.0554 0.1343 0.0138 0.0453 0.0129 0.0176

8 0.2356 0.2633 0.1625 0.1948 0.126 0.1647 0.1992 0.1083 0.1458 0.0971 0.0866

9 0.2749 0.2471 0.1065 0.3156 0.1532 0.1216 0.3113 0.1632 0.1318 0.1899 0.1947

ME 0.1925    0.1966    0.2174    0.2048    0.1983    0.2145    0.2035    0.1977    0.2134 0.1951    0.1961

RMSE 0.6287    0.6520    0.7440    0.6642    0.6786    0.7458    0.6645    0.6868    0.7493 0.6994    0.7049

E: error; ME: mean error; RMSE: root mean square error.
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tive affections in elders, some scientists examined brain 
activities. They claimed that the changes in the functional 
organization of the brain are the main reason (Cacioppo, 
Bernston, Bechara, Tranel, & Hawkley, 2011). Howev-
er, the literature suggests different strategies to regulate 
emotional reactions (Urry & Gross, 2010).

Bilingualism and emotion

There is a great interest in emotional information pro-
cessing in bilinguals. It was believed that the first language 
is an emotional expressiveness language, whereas the 
second one is an emotional distance language (Dewaele, 
2008; Pavlenko, 2002). Recalling emotional stimuli, the 
native language (Spanish) was compared with the second 
language (English) (Anooshian & Hertel, 1994). Results 
showed that emotional motivations were better recalled 
than the neutrals in the first language. However, consid-
ering the valence dimension, the authors reported altered 
emotional recalling in the native language (Aycicegi & 
Harris, 2004). The negative ones (except for taboo) were 
less recalled than the neutrals. Shorter reaction time in 
monolinguals (Altarriba, 2006) and stronger emotional 
weight in the first language of bilinguals (Dewaele, 2008; 
Pavlenko, 2002) have been reported.

There is evidence that different structures and func-
tions of the brain (Kim, Relkin, Lee, & Hirsch, 1997) 
are activated in bilinguals during the presentation of 
emotional stimuli. From the perspective of physiological 
responses, the most attention is devoted to the skin con-
ductivity (SC) responses of bilinguals (Caldwell–Harris 
& Aycicegi–Dinn, 2009; Harris, Aycicegi, & Gleason, 
2003). Greater SC has appeared in monolinguals to the 
emotional stimuli (Harris, et al, 2003). However, the 
heart rates of Turkish-Persian and Kurdish-Persian bilin-
guals are evaluated (Bayrami et al., 2012). The authors 
found that in both groups of bilinguals, negative motiva-
tions triggered a greater heart rate in the native language 
than that of the second language.

Sleep duration and emotional responses

Short or long sleep duration causes undesirable effects 
on mood, cognition, physiological function, alertness, 
and memory (Taub, 1980; Taub et al., 1971). Accord-
ing to evidence, a close relationship is observed between 
emotions and sleep (Berger, Miller, Seifer, Cares, & 
Lebourgeois, 2012; Walker & Harvey, 2010). Disrupt-
ing emotional memories, decreasing emotion reactivity, 
weakening sensitivity to positive stimuli, and consoli-
dating sensitivity to negative ones are some outcomes 
of sleep deficiency (Franzen et al., 2009; Gujar et al., 

2011; Pilcher & Huffcutt, 1996; Sterpenich et al., 2007). 
To have optimal processing and evaluation of emotion, 
enough sleep is needed. Insufficient sleep may cause bi-
ases in processing the negative valence stimuli (Gujar et 
al., 2011). Notably, an augmented reactivity to negative 
emotions, including anger and fear, has been document-
ed throughout the day without sleep (Gujar et al., 2011). 
Using functional magnetic resonance imaging, different 
functions of the brain (augmentation in amygdala reac-
tivity) to negative emotional stimuli have been reported 
for a night of sleep deprivation (Yoo et al., 2007). By 
evaluating autonomic reactivity, researchers demon-
strated a larger pupillary response to negative pictures in 
sleep deficiency (Franzen et al., 2009).

5. Conclusion

A new perspective of the emotion predictive model was 
presented based on the role of several individual charac-
teristics, in the current study. For modeling, we evaluated 
different models as well as different values of parameters. 
However, it was desirable to choose the simplest and at 
the same time the most efficient model. Based on this, the 
proposed model was selected. However, this model may 
not work well for other HRV parameters. However, to es-
tablish the role of individual characteristics in the predic-
tion of autonomic emotional states more data are needed. 
The number of participants should be greatly increased 
so that this model can be used more confidently. More 
samples (larger population) should have enough variety 
in terms of gender, age, bilingualism, and sleep quantity.
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