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Research Paper: A Hybrid Approach Based on Higher Or-
der Spectra for Clinical Recognition of Seizure and Epilepsy 
Using Brain Activity

Introduction: This paper proposes a reliable and efficient technique to recognize different 
epilepsy states, including healthy, interictal, and ictal states, using Electroencephalogram (EEG) 
signals.

Methods: The proposed approach consists of pre-processing, feature extraction by higher order 
spectra, feature normalization, feature selection by genetic algorithm and ranking method, and 
classification by support vector machine with Gaussian and polynomial radial basis function 
kernels. The proposed approach is validated on a public benchmark dataset to compare it with 
previous studies.

Results: The results indicate that the combined use of above elements can effectively decipher the 
cognitive process of epilepsy and seizure recognition. There are several bispectrum and bicoherence 
peaks at every bi-frequency plane, which reveal the location of the quadratic phase coupling. The 
proposed approach can reach, in almost all of the experiments, up to 100% performance in terms 
of sensitivity, specificity, and accuracy.

Conclusion: Comparing between the obtained results and previous approaches approves the 
effectiveness of the proposed approach for seizure and epilepsy recognition.
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1. Introduction

pilepsy is a common nervous system 
disorder characterized by sudden and 
recurrent seizures (Chisci et al., 2010). 
The World Health Organization (2017) 
statistics show that approximately 50 

million people worldwide currently suffer from epi-
lepsy. Epileptic seizures are categorized into focal (also 
called partial or localization-related), generalized, and 
unclassified. In focal seizures, the abnormal electrical 
discharges start with a localized region, whereas in the 
generalized seizures, the abnormal electrical discharges 
start in both hemispheres of the brain simultaneously 
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(Dekker, 2002). Generalized seizures are usually divided 
into several main types, including absence typical (also 
known as petit mal), absence atypical, myoclonic, tonic, 
clonic, tonic-clonic (also known as grand mal), and aton-
ic (also known as astatic). Focal seizures are also divided 
into three main types; simple, complex, and secondarily 
generalized seizures (Engel, 2006). 

The recognition of epilepsy is usually achieved by vi-
sual viewing of Electroencephalogram (EEG) record-
ings, by an experienced neurologist or neurophysiolo-
gist. However, this approach is very time-consuming, 
especially in the case for long-term EEG recordings that 
may even last for several days. As a solution, analysis 
of brain signals such as EEG and Electrocorticogram 
(ECoG) have been used to recognize different epilepsy 
states. Brain signals are usually recorded in two essen-
tial ways; 1. Non-invasive recording, which is known as 
scalp EEG recordings; and 2. Invasive recording, which 
is often known as intra-cranial EEG (ECoG signal). 

Several research studies have been undertaken in epi-
lepsy recognition over the last few years (Berkovic & 
Crompton, 2010). They are usually classified into four 
major categories; including diagnosis, prediction, local-
ization, and recognition (Berkovic & Crompton, 2010). 
In most of the studies, choosing appropriate features is 
one of the most challenging task. Therefore, many fea-
tures have been investigated based on wavelet transfor-
mation analysis (Subasi, 2007; Güler & Übeyli, 2004; 
Ocak, 2009), Time-Frequency Analysis (TFA) (Sriniva-
san, Eswaran, & Sriraam, 2007; Nigam & Graupe 2004), 
Fourier transformation analysis (Ktonas, 1987), energy 
distribution in time-frequency plane (Tzallas, Tsipouras, 
& Fotiadis, 2007; Tzallas, Tsipouras, & Fotiadis, 2009), 
Higher Order Spectra (HOS) analysis (Hosseini, Khalil-
zadeh, Naghibi Sistani, & Niazmand, 2010; Chandran, 
Acharya, & Lim, 2007), and chaos theory based analysis 
(Ocak, 2009; Srinivasan, Eswaran, & Sriraam, 2007). 
Feature selection, classification, offline and online pro-
cessing in recognition of different epilepsy states are 
other challenging issues. 

The spectral analysis is a powerful tool for reconstruc-
tion of process properties from measured data (Hosseini 
et al., 2010; Hosseini, 2009). In the meantime, HOS 
analysis is a well-established signal analysis technique 
in communication with many applications in science 
(Hosseini et al., 2010; Hosseini, 2009; Abootalebi, 2000; 
Xiang & Tso, 2002; Shahid, Walker, Lyons, Byrne, & 
Nene, 2005). In this paper, after pre-processing, HOS 
features such as bispectrum, bicoherence, and Hinich’s 
test are extracted from brain signals with both quantita-

tive and qualitative perspectives. Then, a Genetic Algo-
rithm (GA) is used to select optimum features in order to 
recognize different epilepsy states. The analysis further 
confirms through the statistical analysis with value less 
than 0.001 for the extracting best feature. Best features 
are used with a Support Vector Machine (SVM) with 
Gaussian and polynomial Radial Basis Function (RBF) 
kernels in order to recognize different epilepsy states. 
The main contribution of the present study is propos-
ing a more reliable and efficient clinical technique based 
on HOS to classify different epilepsy states, including 
healthy, interictal, and ictal states, by EEG signals. 

This paper is organized as follows: The previous studies 
are presented in this section. The methods and materials are 
given in Section 2. The experimental results are illustrated 
in Section 3. The discussions are illustrated in Section 4. 

This section presents a detailed discussion of previous 
related studies on feature extraction using linear and non-
linear methods along with different machine-learning 
classifiers. To date, several methods have been proposed 
for recognizing of different epilepsy states using brain 
signals. Gotman (Gotman, 1982) was one of the first re-
searchers who recognized epileptic events in EEG signals 
and presented a method for seizure recognition. Murro 
et al. (1991) proposed a seizure recognition approach 
based on three features, including dominant frequency, 
relative amplitude, and rhythmicity of the ECoG signal. 
They achieved a recognition sensitivity of 91%-100%. 
Liang, Wang, and Chang (2010) designed a combination 
of complexity and spectrum analysis for recognition of 
different epilepsy states. They used Principal Component 
Analysis (PCA) and GA as two feature selection meth-
ods, which PCA provided better results than GA. 

Lima and Coelho (2011) used an SVM with different 
kernels, including the standard, least squares, Lagrangian, 
proximal, smooth, and relevance for epilepsy recognition. 
They concluded that all the mentioned kernels are in a 
competition in terms of accuracy. Tzallas, Tsipouras, and 
Fotiadis (2009) presented a TFA for detection of epileptic 
seizure. They used statistical analysis between the achieved 
accuracy from the Reduced Interference Distribution (RID) 
and the Short-Time Fourier Transform (STFT) for all clas-
sification problems. Their method can distinguish between 
healthy and ictal state up to 100% accuracy. Musselman 
and Djurdjanovic (2012) presented TFA for epilepsy rec-
ognition. Their results are able to outperform the accuracy 
of the previous research for epilepsy recognition. 

Alam and Bhuiyan (2013) provided a technique us-
ing statistical features, including variance, kurtosis, and 
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skewness, for epilepsy recognition. Their method is fast-
er in comparison with the TFA. Tezel and Ozbay (2009) 
proposed a method based on three types of Neural Net-
works (NNs) with adaptive activation function, includ-
ing “Morlet wavelet function”, “sigmoid function”, and 
“sum of sigmoid and sinusoidal function” with free pa-
rameters for epileptic seizure detection. They achieved 
approximately 100% sensitivity, specificity, and accura-
cy in all experiments. Karayiannis et al. (2006) proposed 
a seizure detection in the neonatal EEG signal using a 
rule-based method cascaded with an NN. Their results 
indicated that the trained NNs improved the performance 
of the rule-based methods acting by themselves. Nikna-
zar et al. (2013) presented two different approaches such 
as thresholding and classification for detection of sei-
zures in rats using ECoG signals. Their results showed 
that the best results are obtained by the coastline feature 
that led to a two second delay in its correct detections 
and the fuzzy similarity index that led to a value lower 
than 0.001. Fathima, Khan, Bedeeuzzaman, and Farooq 
(2011) used a method based on Higher Order Moments 
(HOMs) for automatic seizure detection in healthy and 
ictal classes. Their approach can distinguish two differ-
ent epilepsy states with 97.77% accuracy.

Rana et al. (2012) presented a seizure detection method 
based on the phase-slope index of direct influence, ap-
plied to multi-channel ECoG signals. Their approach 
detected all of the seizures in four of the five patients 
with a false detection rate less than two per hour using a 
common threshold procedure. Thomas et al.  (2013) pro-
posed a classification approach for automated neonatal 
seizure detection. Their approach is able to distinguish 
different seizure events with 75.4% accuracy. Zandi et 
al. (2010) presented an approach based on wavelet for 
real-time recognition of epileptic seizures in EEG sig-
nal. Their approach is able to obtain a high sensitivity of 
90.5%. Subasi (2007) used a method based on Wavelet 
Coefficients (WCs) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS) for epilepsy recognition. He concluded 
that the ANFIS obtained higher accuracies than the NN. 
Fu et al. (2015) proposed a Hilbert Marginal Spectrum 
(HMS) method for seizure and epilepsy detection in EEG 
signals. Their results indicated that the average accuracy 
is 99.85% for healthy versus ictal classes, and 99.8% for 
the entire data except ictal versus ictal classes. 

To date, several chaotic approaches have been proposed 
for recognition of different epilepsy states. In one study, 
Adeli, Ghosh Dastidar, and Dadmehr (2007) presented 
a combination of WCs, Correlation Dimension (CD), 
and Largest Lyapunov Exponent (LLE) for recognition 
of different epilepsy states using EEG signals. Ghosh 

Dastidar, Adeli, and Dadmehr (2007) used a combina-
tion of WCs, Standard Deviation (SD), CD, LLE, and 
Levenberg-Marquardt back propagation NN for recogni-
tion of different epilepsy states using EEG signals. Their 
technique can distinguish the different classes, with the 
highest accuracy of 96.7%. López-Cuevas et al. (2013) 
designed an approach based on Approximate Entropy 
(ApEn) and recurrent NNs for recognition of high-fre-
quency oscillations in EEG signals. Their results showed 
a correlation between the high-frequency oscillations 
and the transitions, from interictal to ictal.

More recently, Daliri (2013) proposed a kernel method 
based on the Earth Mover’s Distance (EMD) for epilepsy 
classification using EEG signals. He concluded that the 
kernel method is effective for epilepsy recognition. Hos-
seini, Akbarzadeh Totonchi, and Naghibi Sistani (2013)  
provided a combination of Hurst exponent (H), Petrosian 
Fractal Dimension (PFD), CD, LLE, and ANFIS for epi-
lepsy recognition. Their method can be applied to both 
interictal and ictal classes. In another study  Hosseini, 
Akbarzadeh Totonchi, and Naghibi Sistani (2015) pro-
posed a correct labeling process based on PFD, H, LLE, 
and Bayesian classifier for epilepsy recognition. Their 
results showed that the minimum embedded dimension 
and complexity reduced in ictal state. Their technique 
can also distinguish the different classes, with 99.2% 
accuracy for healthy versus pre-ictal states, 99.7% for 
the healthy versus ictal states, and 97.1% for the pre-
ictal versus ictal states. In another study, Hosseini et al. 
(2013)   proposed an approach based on H, LLE, and 
ANFIS for recognition of epileptic seizures. Their results 
indicated that the average accuracy is 97.4% for healthy 
versus pre-ictal states, 96.9% for the healthy versus ictal 
states, and 96.5% for the pre-ictal versus ictal states.

2. Methods 

This section provides details of the clinical epilepsy da-
tabase, feature extraction, feature normalization, feature 
selection, and classification of different epilepsy states 
using EEG signals. For sart, a general block diagram of 
the proposed approach for recognition of healthy versus 
ictal is shown in Figure 1. In the following, these steps 
are described in detail.

2.1. Database

The database was obtained from Bonn University, 
Germany (Andrzejak et al. 2001). The main reason for 
using the database is its widespread use in the previous 
research. The datasets consist of five sets (denoted A-E) 
that each of them contains 100-single channel EEG seg-
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ments of 23.6 seconds duration. All signals were sam-
pled at 173.61 Hz. Thus, the data point of each segment 
is 173.61×23.6≈4096. The data acquisition system has 
bandwidth between 0.5 and 85 Hz. Sets A and B have 
been recorded by surface electrodes from 5 healthy par-
ticipants in the wake and relax states with eyes open and 
closed, respectively (Hosseini et al., 2013). Sets C , D 
and E have been recorded by depth electrodes from 5 
patients in pre-surgical diagnosis (Hosseini et al., 2013). 
Sets C and D consist of intra-cranial EEG epochs re-
corded in interictal (seizure-free interval) state from the 
hippocampal formation of the opposite hemisphere of 
the brain and the epileptogenic zone of the brain (shows 
focal interictal activity), respectively. Set E has been re-
corded during seizure attack activity (ictal state). 

2.2. Brief description of higher order spectra

The power spectrum is one of the most used feature in 
signal processing. The spectral moments of order larger 
than two are referred to as HOS (Nikias & Mendel, 1993). 
HOS “contain information not present in the power spec-
trum” (Hosseini,  2009; Xiang & Tso, 2002). As an exam-
ple, traditional signal processing techniques based on the 
first and second order statistics are appropriate for the sig-
nals which are coming from the Gaussian and minimum 
phase systems, but for non-Gaussian and non-linear pro-
cesses such as EEG and ECoG signals, it has lost phase 
information. The bispectrum is a function of two indepen-
dent frequencies, f1 and f2, which could take both positive 
and negative values. The bispectrum is usually used due 

to the finite length signals and high computation and has 
a magnitude and a phase. Moreover, the amplitude of the 
bispectrum in the bi-frequency (f1 ,f2) plane measures the 
amount of coupling among the spectral components at the 
frequencies f1 , f2 , and f1+f2 (Xiang & Tso, 2002). 

In real processes, discrete bispectrum has twelve sym-
metric regions in the bi-frequency plane (Nikias & Men-
del, 1993; Swami, Mendel, & Nikias, 2003). Therefore, 
I extract features only in the triangular region, which in-
clude all the information of the bispectrum and bicoher-
ence. The normalized bispectrum is called bicoherence, 
where the bispectrum value ranges between 0 and 1. 
Hinich (1982) developed methods to test for Gaussianity 
and linearity. More details about the Hinich’s test can be 
found in related studies (Hosseini,  2009; Hinich, 1982). 
For a more detailed description of the HOS, please refer 
to the relevant studies (Hosseini,  2009; Nikias & Men-
del, 1993; Swami, Mendel, & Nikias, 2003).

2.3. Pre-processing 

Before pre-processing, visual inspection is applied to all 
5 sets for removing artifacts, including muscle activity and 
eye movement. The data are filtered using a zero phase 
band pass filters in the frequency band of 0.53~60 Hz, (us-
ing MATLAB’s filtfilt function) (Hosseini et al., 2010).

2.4. Feature calculation 

The simulations are implemented in MATLAB and 
HOSA toolbox (Swami, Mendel, & Nikias, 2003). EEG 

EEG

signals

Normalization Genetic 
Algorithm P-value < 0.001

LS-SVM
Gaussian and 

Polynomial RBF

Classification
Feature selection

Different

classes

Sum of the bispectrum magnitudes
Sum of the squares of the bispectrum magnitudes
Sum of the bicoherence magnitudes
Sum of the squares of the bicoherence magnitudes
Lambda
Chi-square value
Probability of false alarm

Feature extraction

HOS 
Computation

Band Pass Filter

(0.53-60Hz)

Pre-processing Higher Order Spectra

Features ranking

Optimum feature 
vectors

Best feature 
vectors

Figure 1. A block diagram of the proposed approach for recognition of different epilepsy sates using EEG signals
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segments are used corresponding to 23.6/11.8=2 seconds 
for feature extraction. The bispectrum is computed us-
ing direct-FFT and indirect methods. The bicoherence is 
also computed using the direct-FFT method. To define 
the features, I have 4 frequency intervals on each axis, 
leading to distinct regions as can be seen in Figure 2.

Four quantity indexes of “sum of the bispectrum mag-
nitudes: (∑|Bis|)”, “sum of the squares of the bispectrum 
magnitudes: (∑|Bis|2)”, “sum of the bicoherence magni-
tudes: (∑|Bic|)”, and “sum of the squares of the bicoherence 
magnitudes: (∑|Bic|2)” in each of 10 regions and also in the 
whole frequency range are calculated (Overall 11 features). 
Eleven features and three features achieved from Hinich’s 
tests for Gaussian and linearity, including Chi-squared (χ2), 
Lambda (λ), and probability of false alarm (Pfa) add up to 
make 11×4+3=47 features for each EEG segment.

2.5. Feature normalization

Features are standardized to zero mean and unit SD by 
the following equation.

' ,, .1 2, ,i
i iXX Nm

σ
−

= …=

Where N is the number of instances in a specific feature 
X, Xi and X'i are the feature vectors prior and after the 
standardization, m and σ are the mean value and SD of 
each feature, respectively. 

2.6. Feature selection 

2.6.1. Genetic algorithm

The feature space defined by the input signals contains 
overlapping features that should not affect classifier perfor-
mance. Hence, an efficient approach is needed to identify 
and remove the feature redundancy. Here, the GA (Haupt 
& Haupt, 2004) is used for optimum features selection. 
GA strategy is summarized up in seven steps (Harikumar, 

Raghavan, & Sukanesh, 2005): 1. Prepare a randomly gen-
erated individuals of chromosomes (With binary encod-
ing); 2. In each generation, calculate fitness of each chro-
mosome; 3. Choose a pair of parent chromosomes from the 
initial population; 4. Choose a crossover probability rate 
(Pcross=0.4), perform crossover to produce two offspring; 5. 
Mutate the two offspring with select a mutation probability 
rate (Pmutation=0.05); 6. Replace the offspring in the popula-
tion; and 7. Check for stopping criterion (a fixed number of 
generations, in here 100) or go to step 2.

The fitness of the chromosome is then updated based on 
the value of the classification accuracy of the trained net-
work. Finally, optimum features are used as input to the 
LS-SVM with Gaussian and polynomial RBF kernels. 
The optimum features for the recognition of different epi-
lepsy states in the first experiment are shown in Table 1.

2.6.2. Feature ranking 

The feature ranking method is used for identifying the best 
features for recognition of different epilepsy states. Here, 
the Student t test is used as the ranking method (Duda, Hart, 
& Stork, 2012). The analysis further confirms through the 
P values lower than 0.001 (i.e., with 99% confidence inter-
val), to be used as best features for classification. The su-
perior features in distinguishing the different classes in the 
experiment #1 using P value are shown in Table 1. As indi-
cated here, ∑|Bisα-β|

2 , ∑|Bisδ-δ|
2, ∑|Bicα-β|

2, ∑|Bicwhole|, Pfa, 
∑|Bicα-α|

2, λ, ∑|Bisβ-β| and ∑|Bicβ-θ|
2 provide better features.

2.7. Classification

A classifier utilizes diverse independent features as input 
to determine the corresponding class to which an indepen-
dent feature belongs. The LS-SVMs were originally imple-
mented for binary classification, but Suykens and Vande-
walle (2002) proposed an extended version of LS-SVMs to 
multi-class problems, using different output coding meth-
ods such as Minimum Output Codes (MOC), Error Cor-
recting Output Codes (ECOC), One-Versus-One (OVO), 
and One-Versus-All (OVA). Here, the multi-class LS-SVM 
is used with two different outputs coding methods of OVO 
and ECOC, using the Gaussian and polynomial RBF ker-
nels. I also utilized the binary and multi-class LS-SVM, 
using LS-SVMlab toolbox (Suykens et al., 2002).

3. Results

To evaluate the ability of the proposed approach, we 
executed several experiments for the 5 sets of EEG sig-
nals. For the sake of comparison, 5 independent binary 
or multi-class classifiers were developed. The experi-

Figure 2. The different frequency ranges used for analysis in 
bi-frequency plane
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ments were selected based on their clinical significance 
used in previous research studies. In the experiment #1, 
the EEG signals were classified into three classes; sets A 
and B were the healthy class, sets C and D the interictal 

class, and set E was the ictal class. In the experiment #2, 
sets, A, D and E classified into healthy, interictal, and ic-
tal classes, respectively. In the experiment #3, sets A and 
E classified into healthy and ictal classes, respectively. In 

Table 2. Distribution of the feature vectors randomly chosen for training, testing, and validation 

Experiments Class
Number of Feature Vector Randomly Chosen

Training Validation Testing Total

#1

Healthy (A,B) 1920 160 1120 3200

Interictal (C,D) 1920 160 1120 3200

Ictal (E) 960 80 560 1600

Total 4800 400 2800 8000

#2

Healthy (A) 960 80 560 1600

Interictal (D) 960 80 560 1600

Ictal (E) 960 80 560 1600

Total 2880 240 1680 4800

#3
Healthy (A) 960 80 560 1600

Ictal (E) 960 80 560 1600

Total 1920 160 1120 3200

#4
Non-seizure (A,B,C,D) 3840 320 2240 6400

Seizure (E) 960 80 560 1600

Total 4800 400 2800 8000

#5
Interictal (D) 960 80 560 1600

Ictal (E) 960 80 560 1600

Total 1920 160 1120 3200

Hosseini, S. A. (2017). A Hybrid Approach Based on Higher Order Spectra for Clinical Recognition of Seizure and Epilepsy Using Brain Activity. Basic and Clinical Neuroscience, 8(6), 479-492.

Table 1. P-values for the experiment #1 including sets A, B, C, D, and E

Row Optimum Features P

1 ∑|Bisa-β|
2 8.64 E-10

2 ∑|Bisδ-δ|
2 6.15 E-05

3 ∑|Bisa-β|
2 1.38 E-06

4 ∑|Bicwhole| 1.12 E-02

5 Pfa 1.78 E-04

6 ∑|Bisa-a|
2 4.22 E-07

7 ∑|Bis(θ-δ)| 0

8 ∑|Bis(a-δ)| 0

9 λ 2.61 E-09

10 ∑|Bisβ-β| 7.21 E-03

11 ∑|Bisβ-θ|
2 8.11 E-06

12 ∑|Bisa-a|
2 0

Sets A and B are the healthy class, sets C and D are the interictal class, and set E is the ictal class.
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the experiment #4, sets A, B, C and D were combined to-
gether as the non-seizure class, whereas set E the seizure 
class. In the experiment #5, sets D and E classified into 
the interictal and ictal classes, respectively.

After pre-processing, features of ∑|Bis|, ∑|Bis|2, ∑|Bic|, 
∑|Bic|2, λ, χ2, and Pfa were extracted. The direct and indi-
rect estimated bispectrum and direct estimated bicoherence 
on the bi-frequency plane are shown in Figures 3, 4, and 

5. A contour plot of the magnitude of the direct estimated 
bispectrum on the bi-frequency plane is displayed in Figure 
3. A contour plot of the magnitude of the indirect estimated 
bispectrum on the bi-frequency plane is displayed in Figure 
4. A contour plot of the magnitude of the direct estimated bi-
coherence on the bi-frequency plane is displayed in Figure 5. 

The comparison of the plots shows a strong correlation 
between some two independent frequencies in non-linear 
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Figure 3. A contour plot of the magnitude of the direct estimated bispectrum on the bi-frequency plane, for a segment of da-
tasets, “A”-“E”
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systems. There are several bispectrum and bicoherence 
peaks in contour plots of bispectrum and bicoherence at 
every two bi-frequency plane, which reveals the location 
of the quadratic phase coupling. In this research, accord-
ing to Table 2 around 60%, 35%, and 5% of the feature 
vectors were chosen randomly for training, testing, and 
validation, respectively.

Additionally, maximum, minimum, and average fitness 
were calculated for the population of each GA. I used a 
set of statistical measures such as specificity, sensitiv-
ity, and total classification accuracy in order to compare 

our results with previous research. The performance of 
the classifier was determined by the statistical measures, 
which are defined as follows:

Specificity= ×100%
TN

TN+FP

Sensitivity= ×100%
TP

TP+FN

Total accuracy= ×100%
TP+FN

TP+FN+FP+FN
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Figure 4. A contour plot of the magnitude of the indirect estimated bispectrum on the bi-frequency plane, for a segment of 
datasets, “A”-“E”
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The results of the binary or multi-class LS-SVM classifier 
with Gaussian and polynomial RBF kernels using two dif-
ferent output coding schemes are given in Tables 3 and 4. 

4. Discussion

Table 3 shows that, in almost all the results, the com-
binations between GA and multi-class LS-SVM yield 
higher accuracy in comparison with not using GA. Thus, 

due to better results using GA, it is used to for reports 
in this section. For the experiment #1, the best result is 
obtained from ECOC LS-SVM with Gaussian RBF ker-
nel, where the sensitivity for healthy, interictal, and ictal 
classes are 97.8%, 95.3%, and 100%, respectively. Also, 
the total accuracy has achieved 97.2%. For the experi-
ment #2, the best result was obtained from ECOC LS-
SVM with Gaussian RBF kernel, where the sensitivity 
for healthy, interictal, and ictal classes were all 100%, in-
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Figure 5. A contour plot of the magnitude of the direct estimated bicoherence on the bi-frequency plane, for a segment of 
datasets, “A”-“E”
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dicating a perfect classification of healthy, interictal, and 
ictal classes. Also, the total accuracy achieved 100%.

Also, Table 4 shows that, in almost all the results, the 
combinations of GA and LS-SVM yield higher accuracy 
in comparison with not using GA. Thus, due to the best 
results using GA, it is used to for reports in this section. 
For the experiment #3, the best result was obtained for 
LS-SVM with Gaussian and polynomial RBF kernels, 
where the sensitivity and specificity for healthy and ic-
tal classes were all 100%. For the experiment is closely 
related to epilepsy diagnosis based on the presence of 
seizure activity only. For the experiment #4, the best 
result was obtained for LS-SVM with the polynomial 
RBF kernel, where the sensitivity and specificity for all 

of the data except ictal and ictal classes were 100%. For 
the experiment #5, the best result was obtained for LS-
SVM with Gaussian RBF kernel, where the sensitivity 
and specificity for interictal and ictal classes were 100%. 
Finally, the best accuracies were obtained with the LS-
SVM with Gaussian RBF kernel, except the experiment 
#4, in order to recognize different epilepsy states.

To compare performance against other competing al-
gorithms, I performed a similar experimental procedure 
to theirs. Table 5 illustrates a comparison between the 
obtained results and previous studies results. For the ex-
periment #1, the best results were obtained from Ktonas, 
(1987) and the proposed approach. For the experiment 
#2, the best results were achieved by Tzallas et al. (2009) 

Table 3. The results of the multi-class LS-SVM classifier with Gaussian and polynomial RBF kernels using two different output 
coding schemes

Multi-Class
LS-SVM Classifier

Without GA With GA

Polynomial
RBF

Gaussian
RBF

Polynomial
RBF

Gaussian
RBF

OVO ECOC OVO ECOC OVO ECOC OVO ECOC

Experiment #1
(A,B), (C,D), E

Sensitivity AB 91.3 88.6 90.2 91.4 81.8 92.8 92.8 97.8

Sensitivity CD 62.5 57.7 43.1 72.7 87.7 89.7 93.5 95.3

Sensitivity E 87.8 71.7 80.1 84.3 91.6 98.2 94.1 100

Total accuracy 79.1 72.9 69.3 82.5 86.1 92.6 93.3 97.2

Experiment #2
A, D, E

Sensitivity A 82.4 86.5 81.7 98.5 100 100 75.6 100

Sensitivity D 76.7 66.7 74.1 94.1 97.5 96.7 94.3 100

Sensitivity E 91.7 82.6 86.9 97.5 100 98.6 91.9 100

Total accuracy 83.6 78.6 80.9 96.7 99.2 98.4 86.3 100

Table 4. The results of the binary LS-SVM classifier with polynomial and RBF kernels

Binary
LS-SVM Classifier

Without GA With GA

Polynomial
RBF

Gaussian
RBF

Polynomial
RBF

Gaussian
RBF

Experiment #3
A, E

Sensitivity 99.1 100 100 100

Specificity 96.4 99.5 100 100

Total accuracy 97.8 99.8 100 100

Experiment #4
(A, B, C, D) , E

Sensitivity 91.9 95.1 100 100

Specificity 90.6 90.4 100 99.8

Total accuracy 91.3 92.8 100 99.9

Experiment #5
D, E

Sensitivity 91.1 94.4 99.6 100

Specificity 89.8 91.6 96.1 100

Total accuracy 90.5 93 97.9 100
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and Alam & Bhuiyan (2013) and the proposed approach. 
For the experiment #3, the best results were obtained 
from Tzallas et al. (2009); Srinivasan et al., (2007) and 
Alam & Bhuiyan (2013) and the proposed approach. For 
the experiment #4, the best results were obtained from 

Alam & Bhuiyan (2013) and the proposed approach us-
ing LS-SVM with the polynomial RBF kernel. 

For the experiment #5, the best results were achieved 
for Alam & Bhuiyan (2013) and the proposed approach. 
Also, it is noteworthy that, in spite of 100% accuracy of 

Table 5. A comparison between the obtained results and previous studies

Experiments Reference Methods Accuracy (%)

Expriment #1
(A, B), (C, D), E

(Tzallas, Tsipouras, & Fotiadis, 
2007) TFA and NN 97.72

(Alam & Bhuiyan, 2013) EMD, HOM, and NN 80

The proposed approach HOS, GA, and SVM 97.24

Expriment #2
A, D, E

(Tzallas, Tsipouras, & Fotiadis, 
2007) TFA and NN 99.28

(Tzallas, Tsipouras, & Fotiadis, 
2009) RID and NN 100

(Liang, Wang, & Chang, 2010) TFA, ApEn, PCA, and SVM ~98.67

(Alam & Bhuiyan, 2013) EMD, HOM, and NN 100

The proposed approach HOS, GA, and SVM 100

(Subasi, 2007) WCs and ANFIS 94

(Tzallas, Tsipouras, & Fotiadis, 
2007) TFA and NN 100

(Srinivasan, Eswaran, & Sriraam, 
2007) Entropy and Elman NN 100

(Tzallas, Tsipouras, & Fotiadis, 
2009) RID and NN 100

(Tezel & özbay, 2009) NNAFF ~100

(Bedeeuzzaman, Farooq, & Khan, 
2010) Statistical distributions and Linear classifier 97.77

(Guo et al., 2010) WCs and NN 99.6

(Fathima et al., 2011) Statistical distributions and Linear classifier 96.9

(Fu et al., 2015) HMS and SVM 99.85

(Daliri, 2013) EMD and SVM 99.68

(Alam & Bhuiyan, 2013) EMD, HOM, and NN 100

The proposed approach HOS, GA, and SVM 100

Expriment #4
(A, B, C, D) , E

(Tzallas, Tsipouras, & Fotiadis, 
2007) TFA and NN 97.73

(Ocak, 2009) WCs and Entropy 96.65

(Liang, Wang, & Chang, 2010) TFA, ApEn, and PCA ~98.51

(Guo et al., 2010) WCs and NN 97.77

(Alam & Bhuiyan, 2013) EMD, HOM, and NN 100

The proposed approach HOS, GA, and SVM 99.9

Expriment #5
D, E

(Liang, Wang, & Chang, 2010) TFA, ApEn, PCA, and SVM 98.74

(Fu et al., 2015) HMS and SVM 98.8

(Alam & Bhuiyan, 2013) EMD, HOM, and NN 100

The proposed approach HOS, GA, and SVM 100
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Alam & Bhuiyan (2013) in the experiments #2-#5, it did 
not provide satisfactory accuracy as in the experiment 
#1. We see that, except the experiment #1, the best accu-
racy was always obtained from Alam & Bhuiyan (2013) 
and the proposed approach, and, in the experiment #1 
the accuracy of the proposed approach was very close 
(0.48%) to better accuracy, but far better (17.24%) than 
Alam & Bhuiyan (2013). The quantitative results show 
that the proposed approach can reach, in almost all of 
the experiments, up to 100% performance in terms of 
sensitivity, specificity, and accuracy.

This paper proposes a hybrid approach based on HOS for 
recognition of different epilepsy states using EEG signals. 
HOS provides valuable phase information that is not pre-
sented in the power spectrum. After pre-processing, HOS 
features such as bispectrum, bicoherence, and Hinich’s test 
are extracted from the EEG signals. Then, a GA is used 
to select optimum features. The analysis further confirms 
through the values lower than 0.001 for the extracting 
best features. These best features are used with a binary or 
multi-class LS-SVM with Gaussian and polynomial RBF 
kernels in order to recognize three different categories in-
cluding healthy, interictal, and ictal states. The proposed 
approach is validated on a publicly available benchmark 
dataset in order to compare with previous studies. 

The proposed approach is performed with bispectrum 
and bicoherence contour plots in both qualitative and quan-
titative perspectives. The qualitative results show several 
bispectrum and bicoherence peaks at every bi-frequency 
plane, which reveals the location of the quadratic phase 
coupling. An important contribution to the understanding 
of the dynamics of the epileptic brain may be found in 
Figures 3, 4, and 5. The quantitative results show that the 
proposed approach can reach, in almost all of the experi-
ments, up to 100% performance in terms of, sensitivity, 
specificity, and accuracy. A final comparison between the 
obtained results and previous studies on the same database 
is presented to show the effectiveness of the proposed ap-
proach for seizure and epilepsy recognition.

Finally, HOS is an accurate tool in recognition of EEG 
signals in different epilepsy states. In the future, I intend 
to further validate the proposed approach with high den-
sity using larger clinical EEG databases. The striking 
feature for this study can be the morphological similar-
ity of the plots of the different states (visual analysis of 
contour plots brings to mind the concepts of ‘self-simi-
larity’ and through it, the connotation of fractals) which 
if confirmed, would yield unexpected and enlightening 
insights into the various states of the epileptic brain and 
their transitions (attractor deformation). Admittedly this 

is a speculation, but one that this reviewer regards as 
worthy of intense scrutiny.
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