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Evaluation of Hemodynamic Response Function in Vision and 
Motor Brain Regions for the Young and Elderly Adults 

Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young 
and elderly adults based on fMRI data have reported inconsistent findings for brain vision and 
motor regions in healthy aging. It is shown that the averaging method employed in all previous 
works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, 
fMRI data are obscured with a major contribution of noise particularly in the elderly case. 

Methods: Deconvolution algorithm is here proposed for HRF extraction to achieve more 
robustness against noise. In spite of earlier works, proposed deconvolution algorithm yields 
compatible HRF results using either original or denoised fMRI data, though a large percentage 
of selected active voxels change in the latter case. In the current study, event-related fMRI 
data have been used for 18 subjects (8 young and 10 elderly adults) with a simple visual and 
motor task of pressing a key with index in response to the visual presentation of the word tap. 
Considering anatomically-defined vision and motor regions and preprocessing steps in FSL and 
SPM, the activated voxels have been selected according to t-test for which HRF is estimated 
using deconvolution method. 

Results: Experimental results demonstrate that HRF peak amplitudes do not differ significantly 
(P=0.8) in the vision region for the young and the elderly. In motor region, the HRF peak 
significantly increases for the young compared to the elderly (P<0.03). Repeating the procedure 
on the denoised fMRI data using MDL algorithm, the same results have been obtained. 

Discussion: In this study, a comparative study has been realized on the hemodynamic response 
properties associated with the young and the elderly adults on a simple visual and motor task. 
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1. Introduction

edical imaging is a fundamental area in 
modern medicine. Of the several MRI 
modalities, functional MRI (fMRI) rep-
resents a promising and exciting method 
that, among other purposes, may deter-

mine the involvement of brain regions regarding a par-
ticular task. The task includes any brief sensory or cogni-
tive stimulation such as sounds, visual images and gentle 
touching of the skin. 

Although MRI have been around since the 1980s 
for anatomical clinical purposes (e.g. for brain tumor 
stroke and multiple sclerosis analysis), it was only in 
1990 when Ogawa showed that the MRI water signals 
can be sensitized to cerebral oxygenation, using deoxy-
hemoglobin as an endogenous susceptibility contrast 
agent. Using gradient-echo imaging sensitivity to the lo-
cal inhomogeneity of the static magnetic field, Ogawa 
demonstrated (in an animal model) that the appearance 
of the brain blood vessels changed with blood oxygen-
ation. Within two years, his group and two others had 
published papers using this Blood-Oxygenation-Level-
Dependent (BOLD) contrast MRI to detect brain activa-
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tion in humans (Ogawa et al., 1993; Ogawa et al., 1992; 
Bandettini, Wong, Hinks, Tikofsky, & Hyde, 1992), and 
today, an explosion of studies is based on this so-called 
fMRI technique to map human brain function.

During functional magnetic resonance imaging, a brief 
focal neural activation evokes what is called a Hemo-
dynamic time-course Response Function (HRF) associ-
ated with age (Powers, 2000: 33-80) and that a BOLD 
time series data is modeled as the convolution between 
this invariant HRF and an impulse train of neural events 
(Boynton, Engel, Glover, & Heeger, 1996). However, 
how aging affects the fMRI signal has not been totally 
identified.

Several prior studies comparing hemodynamic re-
sponse properties in the young and elderly adults using 
fMRI have led to partially-opposite results (Gauthier et 
al., 2013; Mohtasib et al., 2012; Aizenstein et al., 2004; 
Huettel, Singerman, & McCarthy, 2001; Buckner, Sny-
der, Sanders, Raichle, & Morris, 2000; D’Esposito, 
Zarahn, Aguirre, & Rypma, 1999; Ross et al., 1997) 
(summarized in Table 2). Aizenstein et al., (2004) inves-
tigated hemodynamic responses in young and elderly 
adults using an event related sensory–motor paradigm. 
In their study, the HRF has been simply extracted by 
averaging procedure. They found the same HRF peak 
amplitudes for both the young and the elderly in either 
vision or motor Region-Of-Interests (ROIs). Huettel et 
al.m (2001) and D’Esposito et al., (1999) reported simi-
lar HRF amplitude peaks using averaging method as 
well, though showed also an evident decrease of Signal-
to-Noise Ratio (SNR) in the elderly case. 

In contrast to these results, Mohtasib et al., (2012) re-
ported, though Cerebral Blood Flow (CBF) response 
remains the same, but the BOLD response significantly 
intensifies for the aged adults compared to the young. 
Then, the increase of BOLD peak with aging was inter-
preted to associate with a significant reduction in either 
the oxygen metabolism response or the neural activity. 
The largest BOLD increase was reported to occur in the 
left and right medial frontal gyrus and the primary motor 
cortex. Using an event related sensory–motor paradigm 
and averaging scheme, Buckner et al., (2000) compared 
HRFs for the young and non-demented elderly adults as 
well. According to this study, HRF amplitude peaks ap-
pear to be different between the young and the elderly in 
vision ROI. 

The motor ROI was nevertheless reported to exhibit the 
similar amplitude peaks but with a subtle time shift be-
tween the young and the elderly. Considering a block de-

sign paradigm, Ross et al., (1997) reported a significant 
decrease in the HRF of the elderly subjects compared to 
the young vision ROI. On the opposite, Gauthier et al., 
(2013) also found a decrease HRF peak in the elderly in 
comparison to the young, though neuronal activity and 
hemodynamic response were assumed to remain un-
changed across the lifespan. 

Trying to interpret the discrepancy of the results, Ai-
zenstein et al., (2004) suppose the abnormality appears 
because of the negative deactivating voxels included in 
the HRF estimation and take the negative voxels out of 
their HRF estimation. They address the problem of the 
reduced activity, already reported for the elderly adults, 
to inclusion of these voxels. In this paper, the contradic-
tory results are analyzed and it is shown that the incon-
sistent findings have been originated from the simple 
HRF estimation algorithm of averaging shared by all 
previous works. 

Averaging method exhibits a large sensitivity to outli-
ers particularly in fMRI data because of small number of 
scans at each Time of Repetition (TR) period. Moreover, 
averaging on individual HRF scanning periods renders 
the noise so critical especially in the elderly case. It is 
reminded that noise contribution is very dominant par-
ticularly for the elderly adults (D’Esposito, Deouell, & 
Gazzaley, 2003; Huettel et al., 2001; D’Esposito et al., 
1999).

In fact, there is no absolute hypothesis in the literature 
in this regard that HRF peak exhibits an increase, a de-
crease or no significant change for the elderly. It is still a 
research challenge as there are contradictory findings in 
the literature. This work tries to deal with this challenge 
and to show some probable reasons for contradictory 
findings of earlier works. The proposed result should be 
justified through more clinical experimentations. More 
work is in progress on this challenge and justification 
procedure through applying the proposed method to 
other fMRI data bank to validate the results.

The current study exploits another method for extract-
ing HRF. BOLD time-series data are here modeled as 
the convolution between an invariant HRF and an im-
pulse train of neural events (Boynton, Engel, Glover, & 
Heeger, 1996) and the averaging is then replaced by de-
convolution. 

The selection of active voxels is here implemented by 
statistical t-test (positive t-value) as mentioned in Ai-
zenstein et al., (2004). Also, to avoid the noise effects, 
Minimum Description Length (MDL) methods are uti-
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lized for denosing based on powerful tools of wavelet 
(Mosheddost, Asemani, & Mirahadi, 2014; Roos, Myl-
lymaki, & Rissanen, 2009; Bazargani, & Nosratinia, 
2008; Rissanen, 2000). For experimental analysis, the 
fMRI data of 8 young and 10 elderly subjects partici-
pating in a simple finger-tapping fMRI study have been 
used in this paper like (Aizenstein et al., 2004).

2. Methods

2.1. Participants

Eighteen healthy right-handed subjects were analyzed 
in this study: 8 young healthy controls, 3 men, mean age 
=24.2 ± 4.37, and 10 healthy elderly subjects, 6 men, 
mean age=67.2 ± 4.83. Any subject with the following 
conditions has been excluded: alcoholism, depression, 
schizophrenia, bipolar affective disorder, prior history 
of stroke or significant head injury, Alzheimer’s, Par-
kinson’s, or Huntington’s disease or taking psychotropic 
medications. The mean Mini-Mental State Exam score 
for the elderly subjects was 28.9 ± 0.99. Informed con-
sent was obtained prior to scanning through procedures 
approved by the University of Pittsburgh Institutional 
Review Board. Each subject had been paid $75. 

2.2. Stimuli

First, subjects were taught to perform a key-press with 
both index fingers every time they saw the word tap ap-
pearing on the screen. The stimulus appeared every 12 
sec and remained on the screen for 1 sec. Subjects were 
instructed to fixate on a white cross-hair in the middle of 
the screen between the stimuli. There were 24 trials in 
a 5-min block. Stimulus presentation was performed by 
a Power Macintosh computer using the PsyScope soft-
ware package (Cohen, MacWhinney, Flatt, & Provost, 
1993). The stimuli were projected on a screen positioned 
above the subject’s chest and the subject saw the screen 
through a series of mirrors. The stimuli subtended ap-
proximately 30o of the visual field.

2.3. Image Acquisition

Imaging data were collected with a 1.5-T Signa scanner 
(GE Medical Systems), using one-shot spiral pulse se-
quence with TE=35 msec and T=2000 msec. High-reso-
lution anatomical images (SPGRs) were acquired for each 
subject. For the functional data, 26 oblique axial slices 
were acquired with an in-plane resolution of 3.75 mm2, a 
slice thickness of 3.8 mm, and a field of view of 240 mm2.

2.4. fMRI Data preprocessing

The preprocessing stages are standard and the same as 
mentioned in Aizenstein et al., 2004. Also, the prepro-
cessed fMRI data have been downloaded and used in 
this work from the data bank site. Motion correction was 
performed using MCFLIRT from the FSL package (Jen-
kinson, Bannister, Brady & Smith, 2002). To compen-
sate the linear trend, a linear detrending algorithm was 
performed on data only within 3 SD of the mean same as 
Aizenstein et al., (2004). An outlier-correction algorithm 
was performed to remove data extending more than 7 
SD from the mean. Global normalization was performed 
multiplicatively to give each subject a mean intensity of 
3000. All analyses were conducted on each individual 
data after having transformed into standard MNI space.
ROI selection of the vision and motor cortices was per-
formed, where visual cortex is defined as the occipital 
cortex, the cuneus, and the precuneus, and motor cortex 
is defined as the precentral gyrus and the supplementary 
motor area. These regions are from the aal map obtained 
from the MRIcro software package (Tzourio-Mazoyer et 
al., 2002). These regions were then used to define motor 
and vision cortices in MNI single-subject’s space.

To cross register each single subject data (anatomical 
and functional) onto standard MNI space, the following 
steps were performed. First, each subject’s low-reso-
lution mean functional image was registered to his/her 
high-resolution anatomical image. Then, each subject’s 

high-resolution anatomical image was aligned with the 
MNI single-subject high-resolution anatomical image. 
Finally, both transform function in previous steps were 
concatenated in order to calculate a transform function 
which can register each subject’s low-resolution func-

Figure 1. 	Automatic labeling of gray matter in (A) vision 
(occipital cortex, cuneus, and precuneus) and (B) motor 
(precentral gyrus and supplementary motor area) in a rep-
resentative young subject. Selected vision region is shown in 
yellow; Selected motor region is colored red.



61

Basic and Clinical
January 2015 . Volume 6. Number 1

tional images to the standard MNI space. The whole 
process was accomplished using the FLIRT algorithm in 
the FSL package with a 12-parameter affine option (Jen-
kinson, & Smith, 2001). Then, a gray matter mask was 
applied to each label using the FAST algorithm from the 
FSL package (Smith, 2002). The ROI selection of each 
subject was then visually inspected to assure an accurate 
ROI selection (see Figure 1 for a representative image).

2.5. fMRI Data analysis

2.5.1. Region-of-Interest Selection

First each subject’s time series was constrained to the 
particular anatomic ROI (i.e. vision or motor) and then 
a t-test analysis has been performed on each subject’s 
data, and contrasting the mean fMRI signal at the first 
scan in a trial with the signal at the third scan, that is, 
4–6 sec after the finger tap when the HRF is expected 
to peak, to detect the activated voxels. To be consistent 
with earlier work Aizenstein et al., (2004) for compari-
son purposes, only 32 voxels have been used here as well 
with the highest t-values. 

Also, the threshold value for thresholding t-values was 
independently chosen for each subject individual. The 
detection process has been applied to the fMRI time-se-
ries in two cases: original data and denoised data. Also, 
the results show that a considerable part of voxels (60 
percent of these 32 voxels (Table 1)) change after apply-
ing denoising procedure. 

2.5.2. HRF Extraction by Averaging

For each subject and for both ROIs, a time series was 
selected using only those voxels with a positive t-value. 
The HRF was generated by calculating the mean MR 
signal for each voxel at each of six time points (i.e. 
scans). Then, the mean of these HRFs was used as a fi-
nal HRF. The resulting values were transformed into a 
percent change from baseline (time point 1) for standard 
presentation.

2.5.3 HRF Extraction by Deconvolution

BOLD time-series data are here modeled as the convo-
lution between an invariant HRF and an impulse train of 
neural events (Boynton, Engel, Glover, & Heeger, 1996). 
For each subject and for both ROIs, a time series was 
selected using only those voxels with a positive t-value. 
The time series of selected voxel (BOLD signal) is imag-
ined as the result of convolution between the respective 
HRF and stimulus impulses. Then, the HRF was decon-
volved from BOLD time series by known stimulus train 
of impulses at the known onsets of the events (activity-
inducing signal time) supposing a fixed length for HRF 
(see Figure 2 for time series creation). A linear regres-
sion approach is used to deconvolve the function.

Deconvlolution algorithm is here implemented in five 
steps as follows:

1. Consider matrix X initialized at zero of the size: time 
series × length of HRF.

Figure 2. 	Hemodynamic system links neuronal activity to fMRI BOLD response, which is due to neurovascular cou-
pling and a complex interplay between various physiological parameters.
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2. Replace the diagonal elements with unity to associ-
ate with HRF elements. 

3. Add a column of ones at 7th column of X. It is consid-
ered as a regressor to estimate the baseline.

4. Estimate the HRF by calculating Moore-Penrose 
pseudoinverse of matrix X and multiplying with time 
series.

5. HRF is corrected with adding the baseline.

2.5.4. Time series denoising 

The time series of fMRI are often contaminated with 
noise which renders the data difficult for using informa-
tive parts in diagnosis. The noise contribution gets larger 
and more important through age increasing (D’Esposito, 
Deouell & Gazzaley, 2003; Huettel et al., 2001; & 
D’Esposito et al., 1999). The aim of denoising proce-
dure is to remove any noise from an observed signal 
while keeping its desired informative part unchanged. 
Wavelet transform as a powerful tool has been widely 
used for denoising purposes (Mallat, 1998; Donoho & 
Johnstone, 1994). The threshold value plays an impor-
tant role in the performance of denoising based on Dis-
crete Wavelet Transform (DWT) (Donoho & Johnstone, 
1994). There are many different methods for selecting 

the desired threshold such as VisuShrink (Donoho & 
Johnstone, 1994), SureShrink (Donoho & Johnstone, 
1995), Minimum Description Length (MDL) or Crude 
MDL (C-MDL) (Rissanen, 2000) and Refined MDL (R-
MDL) (Roos, Myllymaki, & Rissanen, 2009). R-MDL 
has been here used as optimized for fMRI data (Mor-
sheddost et al., 2014).

In MDL method, the complexity of thresholding model 
(or the number of retained DWT coefficients) is deter-
mined automatically. In this study, the focus of the de-
noising is devoted to fMRI applications in which Hemo-
dynamic Response Function (HRF) or activated voxels 
are looked for (Morsheddost et al., 2014; Bazargani, & 
Nosratinia 2008).

2.5.5. The Refined MDL Alghorithms

The observed time series, yn = (y1,…,yn)T, is supposed to 
be corrupted by additive noise (Consider the general linear 
model (GLM) at voxel), as following:

n n ny x ε= +  (1)

Where the noise term εn is often assumed to be Gauss-
ian and xn is the desired noiseless time series (e.g. the 
Blood Oxygenation Level Dependent (BOLD) re-
sponse). In fact, then the objective is to extract optimally 

Figure 3. 	Automatic labeling of gray matter in visual cortex (occipital cortex, cuneus, and precuneus) for the elderly (A) and 
the young (D) subjects. Activation detection of fMRI data of visual cortex before (middle) and after (right) denosing by R-MDL. 
The elderly and the young subjects have been shown in top (A-C) and bottom (D-F) respectively. 
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the uncorrupted original signal, xn. In GLM method, the 
original signal is supposed to be the activation coeffi-
cients multiplied by the design matrix. Since it is here 
tried to denoise the signal, therefore, the design matrix 
has been replaced and developed using impulses train 
(stimuli vector) to better apply the deconvolution algo-
rithm. In general GLM formulation, the convolution op-
eration appears in the matrix form (design matrix). Then, 
the GLM model is also here used but in the vectorial 
form not in matrix format. 

Given the orthonormal regression matrix W, the Dis-
crete Wavelet Transform (DWT) of the noisy data is de-
fined as:

n T nc W y=  (2)

Minimum Description Length (MDL) principle may be 
used to classify the coefficients into two categories: sig-
nal and noise. The MDL classification tries to achieve the 
minimum description of both data and the model itself 
simultaneously (Grünwald, 2007; Grünwald, Myung, & 
Pitt, 2005; Rissanen, 1996; Rissanen, 1978). The length 
of the description is defined by the negative logarithm of 
the so-called Normalized Maximum-Likelihood (NML) 
expression (Roos, Myllymaki, & Rissanen, 2009; Ris-
sanen, 2000). The NML represents a universal model 
supposing a parametric distribution profile with param-
eters ( )ˆ nyθ  as following (Hirai, & Yamanishi, 2011; 
Meena, & Annadurai; 2008; Rissanen, 2001):

( ) ( )( )
( )( )
ˆ;

ˆ;

n n
n

nml n n n

A

f y y
f y

f z y dz

θ

θ
=
∫  (3)

Where A stands for the set of coefficients with length 
n. ( )ˆ nyθ  is the maximum likelihood estimate of the pa-
rameters. The NML is used to evaluate the complexity of 
different model classes in order to select the one associ-
ated with the minimum cost.

In MDL-based denoising, k coefficients are retained 
and the remaining n-k are considered as pure noise and 
set to zero. In crude MDL (C-MDL), a subset γ including 

Table 1. Percent of voxels change.

Subjects group
region-of-interests (ROIs)

Vision motor

Elderly subjects 60.66 % 59.22 %

Young subjects 62.52 % 67.57 %

Figure 4. Automatic labeling of gray matter in motor cortex (occipital cortex, cuneus, and precuneus) for the elderly (A) and 
the young (D) subjects. Activation detection of fMRI data of motor cortex before (middle) and after (right) denosing by R-MDL. 
The elderly and the young subjects have been shown in top (A-C) and bottom (D-F) respectively.
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k wavelet coefficients with largest absolute values are 
selected to minimize the following cost function (Ris-
sanen, 

2000):

( ) ( ) ( ) ( )1ln ln ln
2 2 2

n n nS y S y S yn k k k n k
n k k

γ γ−−
+ + −

−  
(4)

Here, S (yn) and Sγ
 (yn) denote the sum squares of all 

wavelet coefficients and the coefficients belonging to γ 
respectively. The number of coefficients in γ is equal to 
k and n is the length of time series. The upper limit for k 
is held as k<0.95n (Roos, Myllymaki & Rissanen, 2009).

In refined MDL (R-MDL) as discussed in (Roos, 
Myllymaki, & Rissanen, 2009) the criterion has been 
changed to:

( ) ( )
( )

( )
3 3ln ln

2 2

n n nS y S y S yn k k
kn k

γ γ−−
+

−  (5)

Equation (4) is substituted by (5) as there are not so 
many classes in most cases. In the cases where the num-
ber of model classes is large, the selection of class index 
is vital. In the case of denoising, the number of different 
model classes increases up to 2n. Then, the encoding of 
the class index is crucial for fMRI data denoising (Roos, 
Myllymaki & Rissanen, 2009).

Figure 5. Mean HRF using Averaging (A-B) and Deconvoultion (C-D) methods without denoising process for the young (blue) 
and old (red) subjects. Avergaing: (A) vision ROI (Aizenstein et al., 2004), (B) motor ROI (Aizenstein et al., 2004), and Decon-
volution: (C) vision ROI and (D) motor ROI. Error bars represent ± 1 SEM.
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3. Results

3.1. Denoising Effects on Activation Detection

The effects of denoising fMRI data are here studied on 
the selection of activated voxels. The noise contribution 
gets larger and more important through age increasing 
(D’Esposito, Deouell, & Gazzaley, 2003; Huettel et al., 
2001; & D’Esposito et al., 1999). The anatomically-
identified ROIs for each subject were used to generate 
all time series associated with each trial in both the vi-
sion and motor regions. For both the vision and motor 
regions, all time series were firstly denoised by R-MDL 
for both the young and the elderly subjects (Morshed-
dost et al., 2014) followed by the t-test for selecting acti-
vated voxels. The activated voxels have been selected as 
shown in Figure 3 (vision) and Figure 4 (motor).

In both vision and motor regions, the initial connected 
regions of activated voxels (before denoising) have been 
extended either in the elderly or the young cases after 
denoising. In the elderly adults, new connected sub re-
gions or spots have been nonetheless, appeared as well. 
It may be referred to the lower SNR of fMRI data in the 
elderly (0.35) compared to the young (0.52) (D’Esposito 
et al., 2003; Huettel et al., (2001)). The correlation of 
fMRI data of different voxels may decrease because of 
independent noise elements. Hence, denoising leads to 
an extension of activated voxels sub regions. In the el-
derly, the large contribution of noise may have yield the 
disappearance of activated spots or little sub regions.

To better evaluate the denoising process, the activated 
voxels of the Top32 correlation are compared before and 
after denoising. Table 1 demonstrates the percent of acti-
vated voxels of Top32 correlation being not common be-
fore and after denoising. Accordingly, the noise appears 
to be dominant in the activation detection.

3.2. Mean HRF Extraction 

3.2.1. Before denoising

The data reported in this experiment have been down-
loaded from the fMRI Data Center (http://www.fmridc.
org) with accession number 2-2003-114FB. All qualifi-
cations (as paradigm and image acquisition) for all par-
ticipants are equal. The identified ROIs for each subject 
were used to generate a mean HRF associated with each 
trial in both the vision and motor regions. The voxels 
with negative t-values were not included in the genera-
tion of the mean HRF. The HRF from the positive t-val-
ues extracted by averaging are shown in Figure 5 (A, 
& B) (Aizenstein et al., 2004). Results for both regions 
are same as Aizenstein et al., (2004) because data and 
method of extracting are same (before denoising). For 
both the vision (P=0.39) and motor (P=0.91) regions, the 
HRF amplitude peaks were similar for both the young 
and the elderly subjects by averaging. In the proposed 
work like Aizenstein et al., (2004), the fMRI data bank 
used includes only 6 scans at each BOLD time series 
associated with each stimulus. 6 time points are so few 
for fitting HRF conventional (Gamma etc) models to ex-
tract timing information. In addition, all previous papers 
(Gauthier et al., 2013; Mohtasib et al., 2012; Aizenstein 
et al., 2004; Huettel, Singerman, & McCarthy, 2001; 
Buckner, Snyder, Sanders, Raichle, & Morris, 2000; 
D’Esposito, Zarahn, Aguirre, & Rypma, 1999; Ross et 
al., 1997) studied in this work, changes in amplitude 
have examined. Also Modulation of the amplitude of the 
HRF arising from a brief, temporally well-characterized 
stimulus would be consistent with neuronal mechanisms, 
e.g. altered firing rates and synaptic input (Muthukuma-
raswamy, Evans, Edden, Wise, & Singh, 2012). As ex-
pected, the HRF peaked between 4 and 6 sec. There was, 
nonetheless, a significant difference between the groups 
in the degree of sustained activation. The HRF of elderly 
adults was significantly larger than the young subjects’ 
HRF at scan 6 (10–12 sec) in the vision region (P<0.03) 
according to two-tailed test, and there was a trend for this 
difference in the motor region (P=0.11) at scan 6, two 
tailed test. The difference in the degree of sustained acti-
vation is consistent with the time series as Buckner et al., 
(2000) presents, but contrasts with the results of Huettel 
et al., (2001) and D’Esposito et al., (1999). 

Study Reference
region-of-interests (ROIs)

Vision motor

This work (2014) [E] = [Y] [E] < [Y]

Mohtasib et al., (2012) - [E] > [Y]

Aizenstein et al., (2004) [E] = [Y] [E] = [Y]

Huettel et al., (2001) [E] = [Y] [E] = [Y]

Buckner et al., (2000) [E] < [Y] [E] = [Y]

D’Esposito et al., (1999) - [E] = [Y]

Ross et al., (1997) [E] < [Y] -

Gauthier et al., (2013)
Grey matter of the whole brain

[E] < [Y]

Table 2. Finding on the comparison of HRF peak ampli-
tudes between the elderly and the young adults. 

[E]: HRF amplitude peak of elderly adults.
[Y]: HRF amplitude peak of young adults.
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Figure 5 (C, & D) illustrates mean HRF extracted by 
deconvolution for each subject at both ROIs. In vision 
region, the HRF amplitude peaks were similar (P=0.80) 
and at scan 6 (10–12 sec) the HRF of elderly subjects 
is not significantly higher than the young subjects’ HRF 
(P=0.13). But in motor ROI, the HRF amplitude peaks of 
young subjects were significantly higher than the HRF 
amplitude peaks of elderly subjects (P<0.03). 

3.2.2. After denoising

The effects of fMRI data noise are here studied on the 
HRF estimation to compare the HRF extraction methods 
of averaging (used in earlier works) and deconvolution 
(this work). 

Figure 6 demonstrates the HRF extracted after denois-
ing fMRI data for visual and motor cortices. Figures 
6-(A-B) and 6-(C-D) are associated with the averaging 
and the deconvolution techniques respectively. In the 
case of averaging algorithm, no significant difference, 
between the elderly and the young, is observed at the 
peak amplitude for vision (P=0.39) and motor (P=0.58) 
regions. 

Figures 6-C and 6-D demonstrate the mean HRF ex-
tracted by deconvolution after denoising for vision and 
motor ROIs respectively. A significant difference is only 
obtained for motor region in which the young subjects 
exhibit a significant increase in the HRF amplitude peak 
compared with the elderly ones (P<0.06). The result of 
deconvolution after denoising is the same as found in the 

Figure 6. Mean HRF using Averaging (A-B) and Deconvoultion (C-D) methods applied after denoising process for the young 
(blue) and old (red) subjects. Avergaing: (A) vision ROI, (B) motor ROI, and Deconvolution: (C) vision ROI and (D) motor ROI. 
Error bars represent ± 1 SEM.
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earlier subsection for the case of fMRI data without de-
noising.

4. Discussion

In this study, a comparative study has been realized on 
the hemodynamic response properties associated with 
the young and the elderly adults on a simple visual and 
motor task. It was shown that the earlier works led to in-
consistent findings on the HRF peak amplitudes because 
of averaging algorithm. In fact, fMRI data are heavily 
noisy particularly in the elderly case (e.g. D’Esposito et 
al., 2003; Huettel et al., 2001; D’Esposito et al., 1999). 
Accordingly, it is necessary to employ an HRF estima-
tion algorithm which is sufficiently robust against noise. 
Averaging algorithm, used in all earlier similar works, 
cannot account for the noise challenge because of the re-
lated large sensitivity to outliers. The averaging sensitiv-
ity to noise worsens when the samples of the estimated 
function are few, like fMRI case (only 6 samples in this 
study). Employing the robust MDL-based wavelet de-
noising, it was shown that a large percent of the selected 
voxels changed in the activation detection at both motor 
and visual cortices (Figures 3 and 4). According to the 
experimentation results, the area of activated voxels is 
extended for both the elderly and the young. Though, the 
extension of activated voxels zone is larger for the elder-
ly after denoising (Figures 3 and 4), but the amplitudes 
of time series appear to be more affected in the young 
case (Table 1). 

In the step of HRF estimation, deconvolution appears 
to be much more robust against noise contribution be-
cause the related hemodynamic function is, at the same 
time, optimized through the whole time series scans. 
Consequently, the averaging method yields opposing re-
sults for HRF peak amplitudes as described in the earlier 
works (Table 2). However, deconvolution method has 
provided a robust HRF result. Considering deconvolu-
tion method, it may be concluded that the HRF peak 
amplitudes exhibit no significant difference in the visual 
cortex between the elderly and the young adults. Also, it 
can be deduced that the HRF peak amplitude of motor 
cortex is significantly larger for the young adults com-
pared with the elderly ones. 

The findings of current study have been summarized 
in the Table 2 in comparison with the earlier works. The 
divergence of earlier works on the results concerning 
HRF peak amplitude may be easily observed. Gauthier 
et al., have reported the HRF peak amplitude to be signif-
icantly larger for the young in comparison to the elderly 
through the cortex of the whole brain. Though, this work 

has predicted the same result for motor cortex, a hypoth-
esis on HRF is better to be applied to limited functional 
zones in brain. More studies are required to be conducted 
for covering all functional regions on the brain cortex.
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