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Where frequencies of poles and zeros are given by:

o, =\, 0, =0,an=1.N

zn

a:(wh/wl )%: n:(wh/wl )I%

@, =0,nn=1..N-1

®)

the approximation (4) is valid in the frequency range
[ ,®,]; gain k is adjusted so as (3) to be satisfied; the
number of poles and zeros N is chosen arbitrarily. This
technique distinguishes itself from existing realization of
fractional-order FHN model in being a continuous time
implementation (Moaddy et al., 2012).
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Figure 7. The error response curves before and after applying the controller when system and

controller parameters are chosen to be a = #=0.95, p=0.01, k=0, and k,=0.
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Figure 8. The error response curves before and after applying the controller when system and

controller parameters are chosen tobe a = #=0.95, p=0.01, k, =1,and k, =1.
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2.2. The Nonlinear Fractional-order Model of
Neuron

There are many models that are presented to study the
chaotic response and synchronization of coupled virtual
neurons in simulation studies (Ibarz et al., 2011; Izhikev-
ich, 2003). One of the simplified forms of the Hodgkin
and Huxley model was the one presented by FitzHugh
and Nagumo in which the membrane conductance of
cell is expected to be a nonlinear function of the mem-
brane voltage, activation and inactivation of ionic chan-
nels such as Potassium and Sodium. The space-clamped
model of the FHN neuron based on fractional-order is
described as (Maeda & Makino, 2000):

ddt)f =X (X -1)(1-X )-Y +I,

A
Y _x (©)
dt’

where X and v are rescaled the membrane voltage and

recovery variable, respectively. Z, is the EES in form of
I,= gcos (ot) with 4,0=27/ the amplitude (A) and frequen-
cy (HZ), respectively, and b,r are bifurcation parameters
and in complete synchronization of two coupled neurons
without control were fixed, while in control process con-
sidered unknown and will be estimated adaptively. «, g
denote non-integer orders of the system. Throughout this

paper, the parameter 4 was fixed at value of 0.1. If the

parameter f is chosen 0.1245 < 1 <0.131, the system exhib-
its a chaotic behavior (Che et al., 2011). In this paper, we
fixed this parameter in a value of 0.128 Hz. The model of
two gap junction coupled FHN neurons is considered by:

d’X

dz”l =X, (X, -1)(1-rX )Y, —g, (X, -X,)+1,+d,

d’y

dtﬂl =bX,

d’X

dz“z =X,(X,-1)(1-1X,)-Y,—g, (X, -X )+, +d,

d’y

dtﬂz =bX, (7)

Where X, and Y,(i=1,2) are state variables of two neu-
rons in (6), respectively and &, =&, = & is the coupling
strength of gap junction. In order to evaluate the effec-
tiveness and robustness of the proposed control scheme
(see section 3.2), we add the perturbation ¢, and d, to

ra+p)

the controlled coupled system, i.e. d,=Dsin(27z /) and
d, = Dsin(2zf,t) for all the time. The Sinusoidal noise as
a source of high-frequency time-varying external dis-
turbances is usually used to simulate the ionic channel
noise of neurons, which is actually the most common
disturbance in neuroscience (Aqil et al., 2012; Rehan et
al., 2011). If the coupling strength of the gap junction in
non-fractional order , the synchronization occurs (H. Yu
etal., 2012).

2.3. MRAS Controller Design for a Fractional-or-
der Model of Electrically Coupled Neurons

Herein, fractional-order of differentiating FHN model
equations is chosen to model a natural state of neurons
in terms of action potential. It is assumed that 1. In (9), r
and b are unknown parameters, 2. For fractional-orders,
a = and 3. Two control signals «, and u, are applied
to the second neuron’s membrane voltage and recovery
variable, respectively. Hence, the differential equation of
coupled system is rewritten as:

d° X, .

dtal =X, (X, -1)(1-7X,)~¥, - g, (X, - X, )+ I, + Dsin (27 ft)

d’y,

dTﬂ':le

ddtf; :XZ(XZ—1)(1—VXZ)—Y2—glz(Xz_X1)+10+D5i“(2”f2t)+ux
d’y,

dtﬁz =bX, +u,

©
The error dynamic system can be got as:

- e = X, _d°X =X - X —e +(FF) (X, - X - X, 4 X )—e, +u,
dr” di* dr ’
—2ge, +2D[cos(7r(fl + fy)t)sin(7(f, —fl)t)]

=X, =X —e +(FHF) (X, - X - X+ X )—e, +u, ~2ge, +d

a, _d’, _d’y,
dar*”dt’ a’

(bA+l;)ex+uy, F=r—r, b=b-b
(10)

The Lyaponuv function candidate is chosen as:
V(ex,ey):[ex ey][zx}+;72+l;2:e"e+?2+5z (11)
»

Hence, the fractional derivative of V of order o with
respect to time, along the trajectories of Eq. (10) is

Dy e 4 7@ 155 1+ 3 Olp0

dt” ST+ hC(A-k+p8) ~

+i rd+p) o0 ) +i rd+p) PP N rd+p) ACIXVEN) (12)
STA+kA-k+p) " 7 S+ (1-k+p) STA+rA-k+p)

=e'e® + 7% +hb® + R
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Where R consists of the remainder of fractional-order
derivative. Since the sign of R is unknown (M. O. Efe,
2008; M. O. Efe & Kasnakoglu, 2008), let the following
bound conditions hold:

(13)

|R|< B,

d|< B,

Where d is the disturbance or noise in ionic channels giv-
en in (10). It is worth mentioning that d has such a small
value that its effect can be neglected in control system
design (Wang & Ren, 2011). Thus, it is reasonable to put

an upper boundary on d. By choosing control laws (u,

and u,) and update laws (hand #) to be:

u ==X =X =X+ X)X+ X e,

u,= —l;ex -e,
t‘i) =ee, tk sgn(b)

daf = (X, =X =X, + X)) +k, sgn(F)

dt (14)

And using these laws in (12), following equation will
be obtained:

d°
dt”

V=-(1+2g)e’ —e —kbsgn(b)—k,7sgn(F) +de, + R
(15)

If and are chosen so as to , the fractional derivative of
V will be negative and the convergence will be achieved.

3. Results

3.1. Complete Synchronization of Two Coupled
Neurons without Control

In this section, numerical simulations using MATLAB
Simulink (THE MATHWORKS, R2012), and a solver
ode45 (Dormand-Prince) with relative tolerance le-3
carried out for synchronization of the coupled FHN
neuron systems with the coupling strength of and initial
conditions as:
X,(0)=021, ¥(0)=021

X,(0)=0.1, ¥(0)=0.1
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Figure 9. Control signals when system and controller parameters are chosen to be o = =095

, D=001, k, =1,and k, =1.




w Spring 2014, Volume 5, Number 2

x1
x2

x1 & x2

f [
/\ K{ﬂ‘ (’/r»]v \ / 7 /}/

20 40 60 80 100 120 140 160 180 200

Time(sec)

ex=x1-x2
=)

0 20 40 60 80 100 120 140 160 180 200
Time(sec)
NEURSSCIENCE

Figure 10. The error response curves before and after applying the controller when system and

controller parameters are chosen to bea = =095, p=0.01, k, =100, and &, =100.
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Figure 11. Control signals when system and controller parameters are chosen to be ¢ = = 0.95
, D=0.01, k, =100, and k, =100.
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Figure 12. The state of X, (i=1,2) and its error response curves with the decreament of parameters b
and r, when system and controller parameters are chosen to be a = =095, D =0.01 , k, =0 ,and &k, =0.

Since the dynamics of individual FHN neuron without
coupling should be chaotic (H. Yu et al., 2012), we fixed
parameters 4.f,r, and b at values 0.1, 0.1271, 10 and
1 (without control), respectively. The simulation results
are depicted in Figures 1 and 2. Figure 1 shows the state
error signal responses. With a=£=0.85 the exact syn-
chronization is got. When the fractional-order decreases,
the synchronization becomes faster. Figure 2 shows the
phase portraits of the system on planes of x,-¥(i=1,2).
With decrement of «, 8 to a value of 0.85 phase locking
of the states imply identical behaviors of the two neurons

(x-x, and 1-1,).
3.2. MRAS Controller Design

Simulation results were obtained based on the following
assumptions 1. The total time range is chosen to be 200
seconds, 2. In time instance 50 control signals were ap-
plied, 3. Gap junction value is , 4. Amplitude of the ionic
channel disturbances were D=0.01 and f, =1, f,=1.1 Hz
, and 6. With trial and error &, and k, were selected to
be zero for the case study. When fractional order val-
ues were fixed in «=£=0.95, State response curves il-
lustrated in figure 3. The respective error curves of the
system before and after adopting controller are displayed

in figure 4. Figure 4 demonstrates that after almost 61
seconds, the controller (14) can synchronize two neurons
and resist the random disturbance efficiently. Referring
to the magnified transient response of the stabilizing er-
ror in figure 4, the state errors rapidly converge to zero
in finite time, once the control signal is bring to func-
tion. Figure 5 depicts the phase diagram of the system
in the time interval 50 <t <200 sec. As shown in figure
5, by applying controller, the fractional-order neurons
are synchronized profoundly. If amplitude of ionic can-
nel disturbances become 10 times greater (D =0.1) and
fractional-orders @=8=09 are selected, by applying
the controller, simulation results will be that of shown in
figures 6 and 7. By decreasing the values of fractional-
orders from 0.95 to 0.9, e.g., by introducing more mem-
ory to system, the amplitude of state decreases. Never-
theless, increasing the amount of disturbances 10 times
greater, two neurons are synchronized by applying con-
troller due to the fact of capable of having more memory.
When parameters & and %, are selected to be nonzero
numbers for instance, 1, simulation results shown in fig-
ures (8) and (9) demonstrate that error signal would be
approximately zero and control signal chattering will not
occur. However, since function sign (.) exists in (14), by
increasing the value of these parameters, the influence of
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sign function will be dominant and in turn error signals
will reach to zero at the cost of control signal chattering.
For instance, chattering phenomenon seen in figure 11,
using k, =k, =100, while there are slight improvements
in error signals as shown in figure 10. If the parameters
b and r decrease from their nominal values to 0.8 and 8,
respectively (or 20% decrement) at time ~ 100sec , as
shown in figure 12, the synchronization of the system
will not be influenced.

4. Discussion And Conclusions

In this paper, to synchronize two coupled FHN neurons
with weakly gap junction, an adaptive control was pro-
vided. One of the simplified forms of the Hodgkin and
Huxley model was the one presented by FitzHugh and
Nagumo. In this model, the membrane potential and ac-
tivation or inactivation of ionic channels were replaced
with fast and slow variables as a two-dimensional non-
linear system. In order to transmit information among
coupled neurons, the behavior of a neuron relies on its
past behavior. To consider this memory, a fractional-or-
der approach was applied to memorize the coupled sys-
tem. Moaddy (Moaddy et al., 2012) and his colleagues
implemented fractional-order systems by discrete-time
Griinwald—Letnikov definition. This discretization meth-
odology may slightly increase the complexity of system
calculation. Herein, in contrast with existing works, a
continuous-time approximation of fractional-order sys-
tems named Crone was performed. Crone is a frequency
domain implementation of FOS in which there is no re-
quirement to discretize of system differential equations.
In our work, the fractional-order of the model was kept
a suitable constant fraction. This gives rise to maintain
chaotic dynamics and fast variable (or action potential)
peak does not decrease suddenly.

Over the past ten years, several authors developed
many different control methods to synchronize electri-
cally coupled neurons (Aqil et al., 2012; Che et al., 2011;
Motallebzadeh et al., 2012; Rehan et al., 2011; Xiao-Li,
2011; H. Yu et al., 2012). In this research, we designed
an adaptive control methodology to synchronize the state
variables of chaotic nonlinear systems, given a fraction-
al-order model of neurons. An adaptive fractional-order
controller, is capable to synchronize two neurons electri-
cally uncoupled in EES effectively, considering that the
membrane voltage and recovery variable of the coupled
system can be controlled with only one controller. This
kind of control system uses a Lyaponuv function candi-
date which is fractional-order differentiated with respect
time. Moreover, (Moaddy et al., 2012) authors in their
models did not consider the disturbances of ionic chan-

nels of simulated neuron membrane and used the fixed
parameters to study the performance and robust analy-
sis of their control methodologies. Since the bifurcation
parameters of the model (b & r) are unknown, so with
adaptive estimating of these parameters, our proposed
controller is robust to the inevitable random noise such
as disturbances of ionic channels and uncertainties of
the dynamic of the model. Moreover, by increasing the
values of parameters k,,k,, the chattering phenomenon
occurred, while the magnitude of error signals decreased
very slightly.
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