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Abstract

Introduction: Diffusion MRI combined with deterministic tractography enables the reconstruction of
whole-brain structural networks. However, the inherent noise in measurements and probabilistic nature of
fiber tracking generate an uncertain number of false white matter connections. Current limitations in
network-level anatomical data make it difficult to reliably separate real connections from artifactual ones.
While network thresholding methods are frequently used to filter out presumably spurious connections,
their varying effects on network characteristics and subsequent statistical analyses remain almostunclear.

Method: We analyzed data from 27 schizophrenia patients and 27 demographically matched healthy
controls. Five network weighting schemes (fiber density, streamline count, mean fiber length;.apparent
diffusion coefficient, and global fractional anisotropy) were examined under two systematic thresholding
approaches (absolute and proportional) across multiple threshold levels. Network properties were
quantified using three standard metrics: node degree, clustering coefficient, and global efficiency. Group
comparisons were performed using independent samples t-tests.

Results: We found that lower threshold values tended to yield more significant differences in graph metrics
compared to higher thresholds. Additionally, proportional thresholding produced more consistent patterns
of metric reduction across all weighting methods. Among the different weightings, fiber density exhibited
the greatest statistical differences between patients and healthy controls.

Conclusion: Our findings demonstrate that the choice of threshold significantly impacts graph metrics and
statistical outcomes, potentially influencing study conelusions, These results highlight the need for more
rigorous justification in selecting thresholding methodswand suggest that researchers should consider
adopting multiple analytical approaches to ensure robustness in network-based analyses.

Keywords: Brain network weighting, Diffusion' MRI, Thresholding, Schizophrenia, graph metric.



Highlights:

e Threshold level has a strong impact on the statistical analysis outcomes.

e Threshold level was a stronger driver of findings variations than threshold method.
e To find significant difference in group level, chosen threshold range is important.

e Density-based weighting has higher sensitivity of graph metrics to brain alterations.


https://www.sciencedirect.com/science/article/pii/S105381192030077X
https://www.sciencedirect.com/science/article/pii/S105381192030077X

Introduction

In recent years, there has been increasing interest in constructing structural brain networks—also referred
to as structural connectomes (Sporns et al., 2005) -which map the white matter pathways connecting
different brain regions. These networks can be noninvasively derived on a macroscopic scale using diffusion
magnetic resonance imaging (dMRI) in combination with whole-brain tractography techniques
(Sotiropoulos & Zalesky, 2017). This methodological framework has proven instrumental in examining
how individual differences in brain network architecture relate to behavioral outcomes and health.profiles.
Nevertheless, constructing a representative network model that supports both within-group and between-
group comparisons presents a significant challenge (de Reus & van den Heuvel, 2013).

One core issue arises from the inherent noise and indirect nature of dMRI measurements, which frequently
results in structural networks containing numerous false-positive connections (Jbabdi & Johansen-Berg,
2011; Thomas et al., 2014; Yeh et al., 2018; Zalesky & Fornito, 2009). Although substantial progress has
been made in mapping major white matter tracts using tractography (Mori et al., 2009), a complete and
precise anatomical reference that identifies all existing macroscale connections—encompassing thousands
of tracts and millions of streamlines—remains unrealized. In response to this gap‘and the demand for more
systematic denoising strategies (de Reus & van den Heuvel, 2013; Maier-Hein et al., 2017; van Wijk et al.,
2010), researchers have developed inferential approaches to isolate“and eliminate possibly spurious
connections.

Some researchers believe that topological network properties are not significantly altered by the discarding
of weak connections (Civier et al., 2019) and thercfore they utilized the unthresholded connectivity
matrices. Others have adopted thresholding techniques.to reduce the possible impact of low-weight edges
on the results. Absolute thresholding, which preserves-only connections exceeding a fixed weight
(Hagmann et al., 2007), is a commonly used approach. However, this method can lead to unequal edge
counts across subjects or groups, especially. problematic in clinical comparisons, as it introduces variation
in network density—the ratio of actual to-possible connections. This density variation is known to influence
many graph-theoretical metrics, potentially confounding findings (see Van Wijk et al., 2010 for a
comprehensive analysis). Despite.theseissues, absolute thresholding continues to be widely employed. To
mitigate network density effects, an alternative approach—proportional (density- based) thresholding—has
been proposed (Achard & Bullmore, 2007; Bassett et al., 2009; van den Heuvel et al., 2008). This method
maintains a consistentnumber of connections across participants by retaining only the top PT% of strongest
links, ensuring comparability across groups. In binary analyses, retained connections are set to 1 and all
others to 0. This fixed-density strategy, also termed “network cost” or “network (graph) density” control
(Ginestet et al.;-2011; Jalili, 2016), assumes that observed group differences in network properties reflect
true topologicaldisparities rather than density-induced artifacts.

A growing body of methodological research has emphasized that the choice of thresholding strategy can
substantially alter the topology of structural connectivity networks and the statistical inferences drawn from
them: A recent study (Buchanan et al., 2020) has demonstrated that both the thresholding rule and edge-
weighting scheme can markedly influence network density, hub structure, and group-level effects.
Foundational methodological work (Fornito et al., 2016) and the sensitivity—specificity framework
discussed by Zalesky et al. (Zalesky et al., 2016) further highlighted that threshold decisions can introduce
variability comparable to, or even greater than, the underlying biological effects of interest. More broadly,
several methodological analyses have emphasized that threshold choice can meaningfully influence
network stability, reproducibility, and the interpretation of group differences.



Another complicating factor in constructing a representative structural network is the uncertainty about
which connectivity weighting best explains biological structure. Structural networks derived from dMRI
have used various weighting schemes to quantify connection strength, including streamline counts or
densities (Hagmann et al., 2008a) and fractional anisotropy (FA) values (Robinson et al., 2010; Verstraete
et al., 2011). Additional metrics such as apparent diffusion coefficient (ADC) have also been utilized to
assess different characteristics of white matter microstructure (Agosta et al., 2013; Collin et al., 2014).
Considering several concepts in structural network metrics in addition to different thresholding approach,
motivate the present study’s comparison of absolute and proportional thresholding across-multiple
weighting schemes.

Schizophrenia (SZ), a chronic and disabling mental disorder, affects approximately affects about 0.45% of
the adult population worldwide! (Vos et al., 2017). It is characterized by hallucinations, delusions, and
disruptions in cognition and behavior, and ranks among the top causes of disabilityin people aged 15 to 44
(Hany et al., 2024). A leading hypothesis posits that white matter abnormalities contribute to disrupted
communication between brain regions—a hallmark of schizophrenia (Konrad & Winterer, 2007; Samartzis
et al., 2014; Wang et al., 2020). Such abnormalities can be investigated using diffusion tensor imaging
(DTI), which offers insight into microstructural features such as myelination and axonal density.

The present study explores the influence of two thresholding techniques—absolute and proportional—on
network metrics computed from various structural connectivity weightings, including fiber density,
streamline count, fiber length, ADC, and FA. We compare graph metrics across individuals diagnosed with
schizophrenia and healthy controls, focusing on three.commonly used measures: node degree, clustering
coefficient, and global efficiency. This investigation‘aims to clarify how thresholding choices and weighting
strategies affect the detection of network differences in'schizophrenia.

Material and Methods
Dataset

In this study, we utilized.structural connectivity data from 27 individuals diagnosed with schizophrenia
(mean age: 41 £ 9.6 years).and a control group consisting of 27 healthy participants (mean age: 35 + 6.8
years), matched across all relevant parameters. This dataset was previously published on Zenodo, with full
methodological details provided in (Vohryzek et al., 2020). Participants in the schizophrenia group were
recruited from the Service of General Psychiatry at Lausanne University Hospital and met the DSM-IV
diagnostic criteria for schizophrenia and schizoaffective disorders (American Psychiatric Association,
2000). Healthy controls were recruited via public advertisement and assessed using the Diagnostic
Interview. for Genetic Studies (DIGS) (Preisig et al., 1999).

Cortical“parcellation was performed using the Desikan-Killiany atlas (Desikan et al., 2006), along with
additional surface segmentation as described in (Cammoun et al., 2012), applied to each subject’s
MPRAGE volume. The gray matter was segmented into 128 regions of interest (ROIs), comprising 114
cortical areas, and 14 subcortical nuclei.

1 WHO report (https://www.who.int/news-room/fact-sheets/detail/schizophrenia).
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Network thresholding and network measures

Structural connectivity between brain regions was reconstructed using whole-brain deterministic
tractography. Networks were generated by identifying connections between all pairs of regions of interest
(ROIs). The strength of each connection was quantified using five different network weightings:

1. Density — the number of streamlines between two ROIs, normalized by the mean surface area of
the ROIs (Hagmann et al., 2008b);

2. Number of Tracts (NoT) — the total count of streamlines connecting two ROIs;
Length of Fibers (LoF) — the average length of all streamlines between a given pair of ROISs;

4. Apparent Diffusion Coefficient (ADC) — the mean diffusivity along the connecting streamlines,
indicating the magnitude of diffusion;

5. Global Fractional Anisotropy (gFA) — a diffusion-based metric that. reflects white matter
myelination and structural integrity (Porcu et al., 2021).

For each of these five network weightings (Density, NoT, LoF, ADC, and gFA), two thresholding methods
were applied: absolute thresholding and proportional (density-based) ‘thresholding. In the absolute
thresholding approach, only edges with values above a fixed threshold.- T (e.g., greater than 0.3) were
retained, while all other connections were set to zero.

In proportional thresholding, the structural connectivity matrices were thresholded by preserving the top
PT% of strongest connections, with the rest set to zero. This methodyielded weighted graphs with a global
network density corresponding to PT% (Buchanan et al.,"2020;'de Reus & van den Heuvel, 2013).

In this study we examined a range of levels T from 0.01.to 0.4 in steps of 0.02 for absolute thresholding
and range of PT in proportional thresholding from.70%to 1% in steps of 5%. It should be mentioned that
all five types of SC matrices were normalized to[0,1].to be able to apply similar value of thresholding.

In addition, three graph-theoretic metrics (Rubinov. & Sporns, 2010) were computed to quantify the brain
network variations in patients: node degree (quantifying the importance of each node), global efficiency;
and network clustering coefficient (refleeting the interconnectedness of each node’s neighbors).

The following formal definitions describe the graph topological characteristics used in this study for a
network of N nodes.

The Node Degree, typically denoted as k;, is a fundamental measure of connectivity for a node within a
network. It quantifies-the total number of direct connections (or edges) a node has to other nodes in the
network. For a nodei, the degree is defined as:

ki = Zj ai; (1)
where a;; is an element of the adjacency matrix.

Global efficiency (Egiobal) quantifies the degree of integration in brain networks, reflecting how efficiently
information is exchanged across the entire system (Achard & Bullmore, 2007; V. Latora & Marchiori,
2003; Vito Latora & Marchiori, 2001) defined as the inverse of the average shortest path length between
all pairs of nodes in the network. The formula for global efficiency is given by:

1 1
Eglobal T N(N-1) Ziij min{L; ;} ’




where N is the total number of nodes in the network and L; is the shortest path length between node
i and node j.

The absolute clustering coefficient of a node (C;) in a weighted network measures the likelihood that its
neighboring nodes are also connected to each other, taking into account the strength of the connections
(Onnela et al., 2005). For a weighted graph, it is defined as the geometric mean of the intensities of triangles
around a node i:
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where k; is the degree of node i and w;; is the connection weights between nodes i and j.

Statistical Analysis

We began by calculating the average connectivity matrices and summarizing the descriptive statistics for
the unthresholded networks across all five structural connectivity weightings. Subsequently, we examined
how three graph-theoretical metrics varied as a function of the two.thresholding methods and five types of
connectivity matrices. To evaluate group differences between individuals with schizophrenia (SZ) and
healthy controls (HC), independent t-tests were performed, across the full range of thresholds, with
statistical significance determined at p < 0.05.

Given the exploratory nature of this study and the strongly correlated structure of graph-theoretical
measures across adjacent thresholds, no formal multiple-comparison correction was applied across
threshold levels. Graph metrics at nearby thresholds.are not statistically independent, and applying standard
corrections (e.g., Bonferroni or FDR) wouldtherefore be overly conservative and potentially obscure
meaningful trends. Instead, we report uncorrected p-values across the full threshold range to provide a
transparent depiction of how group. differences evolve as a function of thresholding.

Results

The mean connectivity-matrices and corresponding histograms of edge weights computed for each network
weighting (Density,-NoT,-LoF, ADC and gFA) are shown in Fig.1. Before any thresholding, the mean
value of network density (the proportion of nonzero-weighted elements in a connectivity matrix) across
subjects was 0.238-(SD = 0.0078). We observed from the histograms of edge weights pooled across all
subjects (Fig: 1).that the distribution of all network weights approximately followed a power law and
involved many‘low weighted connections but very few high weighted connections.


https://www.sciencedirect.com/science/article/pii/S1053811919310341?via%3Dihub#fig1
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Fig. 1. Mean connectivity matrices and their distribution. Top: mean connectivity matrices (unthresholded) of connection weights
between 128 regions, averaged across all healthy individuals for five network weightings. Bottom: the corresponding histograms
of nonzero edge weights pooled across all healthy participants for each weighting (density and NoT is log-scaled). NoT = number
of tracts; LoF = length of fiber; ADC = apparent diffusion coefficient; gFA = global-fraction anisotropy.

Figures 2 and 3 present the threshold-dependent “trajectories of three graph-theoretical measures
under absolute and proportional thresholding schemes,respectively. In both figures, trajectories are shown
for healthy controls (HC, green lines) and schizophrenia patients (SZ, red lines), with error bars indicating
the standard error. For both thresholding approaches; it can be observed that the metric values of the
patients' graph are lower than HC. In absolute. thresholding, all graph metrics exhibit a decrease with
increasing threshold values. However, the rate of reduction varies across different network weighting
methods (see Fig. 2), as an instance, density-weighted networks show exponential like decay in node
degree, however, LoF-weighted networks demonstrate quasi-linear reductions.

For illustration of proportional ‘thresholding effect, the x-axis is inverted to maintain consistent
interpretation with absolute thresholding (left = denser networks). Notably, the trend of graph metric
reduction relative to decreasing density percentage (proportional thresholding) remains largely consistent
across different network weighting schemes (Fig. 3).
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Fig. 2. Graph metric variations under absolute thresholding. Five network weightings are displayed (top-to-bottom): Density, NoT, LoF, ADC, and
gFA. For each network weighting, three graph measures are shown (left-to-right): Node degree, Clustering Coefficient, global efficiency. The x-
axis represents the threshold values, where higher thresholds correspond to sparser networks. The green starred line and the red squared line indicate
the HC and SZ groups, respectively. Markers indicate mean and vertical error bars represent standard error.
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Fig. 3. Graph metric variations under proportional thresholding. Five network weightings are displayed (top-to-bottom): Density, NoT, LoF, ADC,
and gFA. For each network weighting, three graph measures are presented (left-to-right): Node degree, Clustering Coefficient, global efficiency.
The x-axis represents the network density (in percentage), where lower value corresponds to sparser networks. The green starred line and the red
squared line indicate the HC and SZ groups, respectively. Markers indicate mean and vertical error bars represent standard error.

Figures 4 and 5 present the results of statistical comparisons between schizophrenia patients and healthy
controls across threshold values for absolute and proportional thresholding, respectively. Significant
intergroup differences emerge at relatively low threshold values under absolute thresholding(Fig. 4),
particularly for node degree (p < 0.05), with a similar pattern under proportional thresholding (Fig. 5),
indicating robustness across thresholding approaches. The most pronounced group differences are seen'in
density-weighted networks, and node degree appears to be the graph metric most affected in schizophrenia.
(Fig. 4 and Fig. 5). Although mean global efficiency for NoT visually appears diffefent between groups
(Figure 3), this difference does not reach statistical significance (Figure 5), likely due to'high inter-subject
variability and the differing sensitivity of absolute versus proportional thresholding.
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Fig. 4. Statistical test analysis for absolute thresholding approach. The blue dots represent the significant difference between SZ
and HC (p-value <0.05), the black represents the non-significant difference (p-value >=0.05). Five network weightings are
presented in the following order (top-to-bottom): Density, NoT, LoF, ADC, and gFA. For each network weighting, three measures
are presented (left-to-right): Node degree, Clustering Coefficient, global efficiency.
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Fig. 5. Statistical test analysis for proportional thresholding approach. The blue dots represent the significant difference between
SZ and HC (p-value <0.05), the black represents the non-significant difference (p-value >=0.05). Five network weightings are
presented in the following order (top-to-bottom): Density, NoT,.LoF, ADC, and gFA. For each network weighting, three measures
are presented (left-to-right): Node degree, Clustering Coefficient, global efficiency.

Discussion

In this study, we investigated how different network thresholding strategies and edge-weighting schemes
influence variations in graph.metrics derived from structural connectivity matrices. Our findings indicate
that, in the absence ‘of thresholding, no statistically significant differences emerged between the
schizophrenia group‘and healthy controls. However, eliminating spurious connections substantially altered
the analytical outcomes.

Variations in network topology and graph-derived metrics across different threshold levels are particularly
relevant in~the context of the well-recognized reproducibility crisis in contemporary science, which
complicates the comparability of studies employing diverse analytical pipelines (Adamovich et al., 2022;
Buchanan et al., 2020). Our findings emphasize that threshold selection can substantially influence
experimental outcomes, as even two closely spaced thresholds may yield divergent results. More critically,
the network architecture derived at one threshold may lead to conclusions that differ from those obtained
at another. While the rationale behind thresholding—removing weak edges—suggests that stable effects
are most likely to be observed at higher thresholds where spurious connections are minimized, our results
demonstrate that detectable effects may also arise at considerably lower thresholds. These observations
highlight the necessity for a deliberate, evidence-based approach to threshold selection in network analyses.
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In addition to demonstrating the general methodological impact of thresholding, our study directly
examined how threshold choice influences the detection of schizophrenia-related alterations in structural
connectivity. This disease—threshold interaction has rarely been assessed explicitly in prior work, where
most schizophrenia connectome studies have relied on a single threshold or weighting scheme. Recent
schizophrenia connectome studies and meta-analyses have consistently reported widespread
dysconnectivity, including reduced global integration, altered segregation, and disruptions in large-scale
structural organization (Brandl et al., 2019; Drakesmith et al., 2015; Gao et al., 2023; Keyvanfard et al.,
2023; Zhu et al., 2022). Our findings are broadly aligned with prior literature in demonstrating lower.values
of graph-theoretical measures; such as node degree, clustering coefficient, and global efficiency; in patients
with Schizophrenia. Notably, reductions in node degree and density-weighted network measures suggest
impaired large-scale brain network integration, which may be clinically relevant given their established
links to cognitive and functional deficits in schizophrenia. However, our results“also reveal that the
detectability and magnitude of these group differences depend strongly on the chosen thresholding strategy.
This observation is consistent with methodological work demonstrating that_graph.metrics are highly
sensitive to network density, pruning decisions, and weighting choices (Buchanan et al., 2020; Smucny et
al., 2016; van Wijk et al., 2010; Wang et al., 2020; Zalesky et al., 2016). By integrating these two lines of
evidence, our study extends existing schizophrenia findings by explicitly showing that thresholding not
only shapes network topology in general but also modulates whether—and under which analytical
conditions—schizophrenia-related alterations become statistically observable. These findings highlight the
importance of considering threshold selection as a key analytical factor when interpreting group differences
in structural connectome studies.

Our results (Figs. 2 and 3) show that node degree and global efficiency generally exhibit a smooth, gradual
decline as the threshold increases. In contrast, the'clustering coefficient displays a more complex and, in
some cases, distinctly irregular pattern of change. Its relationship with threshold values is non-monotonic
and does not consistently follow a straightforward trend, reflecting the combined influence of factors such
as the underlying network topology, the specific threshold applied, and inherent random variability (Lacy
& Robinson, 2020). Previous studies have reported that the clustering coefficient may exhibit a plateau at
intermediate threshold levels (Adamevich et al., 2022) or present a peak within a specific range of similarity
thresholds before declining (Zahoranszky-Kéhalmi et al., 2016). Based on these observations, we
recommend avoiding reliance ‘on.the clustering coefficient as a sole metric for result interpretation, and
instead considering it-alongside other complementary network measures.

According to our results, the thresholding procedure leads to substantial variability in the data. And in
overall, we have found that:

1. Global graph metrics vary as a function of threshold level. Low and high threshold values do not
change these metrics in a similar way.

2. | The-chosen threshold may influence the outcome of the analysis (e.g., the presence or absence of
the effect of group comparisons). On the other words, identifying significant difference between
patient and healthy group is affected by network weighting and thresholding.

3. Finding significant difference has more robust manner in proportional thresholding.

4. Graph metric variation trend provides the evidence that proportional thresholding makes almost
similar reduction trend across different network weighting.

5. Construction of SC matrix based on density weighting led to observe more significant difference
between SZ and HC groups.

6. Threshold value has stronger effect on results compared to threshold approach.
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7. Proportional thresholding was associated with lower standard error compared to absolute
thresholding, indicating reduced variability in graph metrics.

Our study was mostly limited to the small size of dataset. Larger dataset may lead to more reliable results.
Furthermore, effect of other thresholding approaches such as consistency-thresholding (Roberts et al., 2017)
can also be investigated. This research can also be extended to investigate the correlation of different
network weighting (and thresholding method) and demographic information such as age or clinical measure
of cognitive function in a larger size of dataset.

We acknowledge that no correction for multiple comparisons across threshold levels was applied. Because
threshold-dependent graph metrics are highly correlated and reflect variations of the same underlying
connectivity structure, applying conventional corrections would severely reduce sensitivity. Future studies
with larger samples may benefit from approaches specifically designed for dependence across thresholds
(e.g., cluster-based or functional data analysis methods).

Conclusion

In conclusion, this study underscores the pivotal role of threshold selection'in determining the outcomes of
network-based analyses. Our results reveal that the threshold levelhas a more pronounced impact on graph-
theoretical metrics than the specific thresholding algorithm employed. Given that threshold selection is
often arbitrary and lacks strong theoretical justification, it.introduces an additional layer of uncertainty into
results—particularly in a field that is already characterized by considerable variability. Importantly, we also
show that applying density-based network weighting enhances the sensitivity of graph metrics to alterations
in brain network organization, thereby offering a more robust means of detecting connectivity changes in
neuropsychiatric disorders such as schizophrenia. These insights highlight the necessity for rigorous
methodological standardization and transparent.reporting of thresholding parameters to improve the
reproducibility and interpretability of connectome studies.

Funding None

Conflicts of interest/Competing interests the author declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as potential conflicts of
interest.

15



References

Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks.
PLoS Computational Biology, 3(2), 0174-0183. https://doi.org/10.1371/journal.pcbi.0030017

Adamovich, T., Zakharov, 1., Tabueva, A., & Malykh, S. (2022). The thresholding problem and
variability in the EEG graph network parameters. Scientific Reports, 12(1), 1-18.
https://doi.org/10.1038/S41598-022-22079-
2;SUBJMETA=378,477,631;KWRD=NEUROSCIENCE,PSYCHOLOGY

Agosta, F., Galantucci, S., Riva, N., Chio, A., Messina, S., lannaccone, S., Calvo, A., Silani,\V.,
Copetti, M., Falini, A., Comi, G., & Filippi, M. (2013). Intrahemispheric and interhemispheric
structural network abnormalities in PLS and ALS. Human Brain Mapping; " 35(4), 1710.
https://doi.org/10.1002/HBM.22286

Bassett, D. S., Bullmore, E. T., Meyer-Lindenberg, A., Apud, J. A., Weinberger, D. R., & Coppola,
R. (2009). Cognitive fitness of cost-efficient brain functional networks. Proceedings of the National
Academy of Sciences of the United States of America,. 106(28), 11747-11752.
https://doi.org/10.1073/PNAS.0903641106/SUPPL_FILE/0903641106SI.PDF

Brandl, F., Avram, M., Weise, B., Shang, J., Simdes, B., Bertram, T+, Hoffmann Ayala, D., Penzel,
N., Giirsel, D. A., Bauml, J., Wohlschldger, A. M., Vukadinovie, Z:, Koutsouleris, N., Leucht, S., &
Sorg, C. (2019). Specific Substantial Dysconnectivity “in ' Schizophrenia: A Transdiagnostic
Multimodal Meta-analysis of Resting-State Functional-and Structural Magnetic Resonance Imaging
Studies. Biological Psychiatry, 85(7), 573—-583. https://doi.org/10.1016/j.biopsych.2018.12.003

Buchanan, C. R., Bastin, M. E., Ritchie, S. J., Liewald, D. C., Madole, J. W., Tucker-Drob, E. M.,
Deary, . J., & Cox, S. R. (2020). The effect of network thresholding and weighting on structural brain
networks in the UK Biobank. Neurolmage, 211, 116443.
https://doi.org/10.1016/J.NEUROIMAGE.2019.116443

Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do, K. Q., Maeder, P., Meuli,
R., & Hagmann, P. (2012). Mapping the human connectome at multiple scales with diffusion spectrum
MRI. Journal of Neuroscience Methods, 203(2), 386-397.
https://doi.org/10.1016/j.jneumeth.2011.09.031

Civier, O., Smith, R.\E}; Yeh, C. H., Connelly, A., & Calamante, F. (2019). Is removal of weak
connections necessary for graph-theoretical analysis of dense weighted structural connectomes from
diffusion MRI? Neurolmage, 194, 68—81. https://doi.org/10.1016/J.NEUROIMAGE.2019.02.039

Collin, G., Sporns, O., Mandl, R. C. W., & Van Den Heuvel, M. P. (2014). Structural and
functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex.
Cerebral Cortex, 24(9), 2258-2267. https://doi.org/10.1093/cercor/bht064

de'Reus, M. A., & van den Heuvel, M. P. (2013). Estimating false positives and negatives in brain
networks. Neurolmage, 70, 402—409. https://doi.org/10.1016/j.neuroimage.2012.12.066

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R.
L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated
labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of
interest. Neurolmage, 31(3), 968-980. https://doi.org/10.1016/j.neuroimage.2006.01.021

Drakesmith, M., Caeyenberghs, K., Dutt, A., Zammit, S., Evans, C. J., Reichenberg, A., Lewis,
G., David, A. S., & Jones, D. K. (2015). Schizophrenia-like topological changes in the structural
connectome of individuals with subclinical psychotic experiences. Human Brain Mapping, 36(7),

16



2629-2643. https://doi.org/10.1002/HBM.22796
Fornito, A., Zalesky, A., & Bullmore, E. (2016). Fundamentals of Brain Network Analysis.

Gao, Z., Xiao, Y., Zhu, F., Tao, B., Yu, W., & Lui, S. (2023). The whole-brain connectome
landscape in patients with schizophrenia: A systematic review and meta-analysis of graph theoretical
characteristics. Neuroscience & Biobehavioral Reviews, 148, 105144.
https://doi.org/10.1016/J.NEUBIOREV.2023.105144

Ginestet, C. E., Nichols, T. E., Bullmore, E. T., & Simmons, A. (2011). Brain Network Analysis:
Separating Cost from Topology Using Cost-Integration. PLOS ONE, 6(7),. e21570.
https://doi.org/10.1371/JOURNAL.PONE.0021570

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Van Wedeen; J., & Sporns, O.
(2008a). Mapping the structural core of human cerebral cortex. PLoS Biology; 6(7), 1479-1493.
https://doi.org/10.1371/journal.pbio.0060159

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Van Wedeen, J., & Sporns, O.
(2008b). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), 1479—-1493.
https://doi.org/10.1371/journal.pbio.0060159

Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen,.V. J., Meuli, R., & Thiran, J. P.
(2007). Mapping human whole-brain structural networks (withudiffusion MRI. PLoS ONE, 2(7).
https://doi.org/10.1371/journal.pone.0000597

Hany, M., Rehman, B., Azhar, Y., & Chapman," J. (2024). Schizophrenia. StatPearls.
https://www.ncbi.nlm.nih.gov/books/NBK 539864/

Jalili, M. (2016). Functional Brain Networks: Doees the Choice of Dependency Estimator and
Binarization Method Matter? Scientific Reports, o(1), 1-12.
https://doi.org/10.1038/SREP29780; TECHMETA=129;SUBJIMETA=378,631,639,705;KWRD=M
ATHEMATICS+AND+COMPUTING,NEUROSCIENCE

Jbabdi, S., & Johansen-Berg, H.«(2011). Tractography: Where Do We Go from Here? Brain
Connectivity, 1(3), 169—183+https://doi.org/10.1089/brain.2011.0033

Keyvanfard, F., Schmid, A: K., & Moghaddam, A. N. (2023). Functional Connectivity Alterations
of Within and Between Networks in Schizophrenia: A Retrospective Study. Basic and Clinical
Neuroscience, 14(3), 397—410. https://doi.org/10.32598/bcn.2022.3928.2

Konrad, A, & Winterer, G. (2007). Disturbed Structural Connectivity in Schizophrenia—Primary
Factor .in“_ Pathology or Epiphenomenon?  Schizophrenia  Bulletin, 34(1), 72.
https://doi.org/10.1093/SCHBUL/SBM034

Lacy;,T. C., & Robinson, P. A. (2020). Effects of parcellation and threshold on brainconnectivity
measures. PLoS ONE, 15(10), ¢0239717. https://doi.org/10.1371/JOURNAL.PONE.0239717

Latora, V., & Marchiori, M. (2003). Economic small-world behavior in weighted networks. The
European Physical Journal B - Condensed Matter and Complex Systems 2003 32:2, 32(2), 249-263.
https://doi.org/10.1140/EPJB/E2003-00095-5

Latora, Vito, & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical
Review Letters, 87(19), 198701-1-198701-198704.
https://doi.org/10.1103/PHYSREVLETT.87.198701

Li, Y., Gao, X., Tang, X., Lin, S., & Pang, H. (2023). Research on automatic classification

17



technology of kidney tumor and normal kidney tissue based on computed tomography radiomics.
Frontiers in Oncology, 13, 1013085. https://doi.org/10.3389/FONC.2023.1013085/BIBTEX

Maier-Hein, K. H., Neher, P. F., Houde, J. C., Coté, M. A., Garyfallidis, E., Zhong, J.,
Chamberland, M., Yeh, F. C,, Lin, Y. C., Ji, Q., Reddick, W. E., Glass, J. O., Chen, D. Q., Feng, Y.,
Gao, C., Wu, Y., Ma, J., Renjie, H., Li, Q., ... Descoteaux, M. (2017). The challenge of mapping the
human connectome based on diffusion tractography. Nature Communications , 8(1), 1-13.
https://doi.org/10.1038/S41467-017-01285-

X;SUBIMETA=114,1688,308,378,631,692,698; KWRD=COMPUTATIONAL+BIOLOGY+AND+
BIOINFORMATICS,MEDICAL+RESEARCH,NERVOUS+SYSTEM,NEUROSCIENCE

Mori, S., Oishi, K., & Faria, A. V. (2009). White matter atlases based on diffusion tensor imaging.
Current Opinion in Neurology, 22(4), 362-369. https://doi.org/10.1097/WCO.0B013E32832D954B

Onnela, J.-P., Saraméki, J., Kertész, J., & Kaski, K. (2005). Intensity and.coherence of motifs in
weighted complex networks. Physical Review E, 71(6), 065103.
https://doi.org/10.1103/PhysRevE.71.065103

Porcu, M., Cocco, L., Puig, J., Mannelli, L., Yang, Q., Suri, J. S., Defazio, G., & Saba, L. (2021).
Global Fractional Anisotropy: Effect on Resting-state Neural Activity and Brain Networking in
Healthy Participants. Neuroscience, 472, 103-115.
https://doi.org/10.1016/J.NEUROSCIENCE.2021.07.021,

Preisig, M., Fenton, B. T., Matthey, M. L., Berney, A., & Ferrero, F. (1999). Diagnostic interview
for genetic studies (DIGS): Inter-rater and test-retest.reliability of the French version. European
Archives of Psychiatry and Clinical Neuroscience, 249(4), 174-179.
https://doi.org/10.1007/S004060050084/METRICS

Roberts, J. A., Perry, A., Roberts, G.;Mitchell; P. B., & Breakspear, M. (2017). Consistency-based
thresholding of the human connectome. Neurolmage, 143, 118-129.
https://doi.org/10.1016/J.NEUROIMAGE.2016.09.053

Robinson, E. C., Hammers, A Ericsson, A., Edwards, A. D., & Rueckert, D. (2010). Identifying
population differences in (whole-brain structural networks: A machine learning approach.
Neurolmage, 50(3), 910-919. https://doi.org/10.1016/J. NEUROIMAGE.2010.01.019

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and
interpretations. Neurolmage, 52(3), 1059-1069.
https://doi.org/10.1016/J.NEUROIMAGE.2009.10.003

Samartzis, L., Dima, D., Fusar-Poli, P., & Kyriakopoulos, M. (2014). White Matter Alterations in
Early Stages,of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. Journal
of Neuroimaging, 24(2), 101-110. https://doi.org/10.1111/J.1552-6569.2012.00779.X

Smucny, J., Olincy, A., & Tregellas, J. R. (2016). Nicotine restores functional connectivity of the
ventral  attention network in  schizophrenia.  Neuropharmacology, 108, 144-151.
https://doi.org/10.1016/J.NEUROPHARM.2016.04.015

Sotiropoulos, S. N., & Zalesky, A. (2017). Building connectomes using diffusion MRI: why, how
and but. Nmr in Biomedicine, 32(4), €3752. https://doi.org/10.1002/NBM.3752

Sporns, O., Tononi, G., & Kétter, R. (2005). The human connectome: A structural description of
the human brain. PLoS Computational Biology, 1(4), 0245-0251.
https://doi.org/10.1371/journal.pcbi.0010042

Thomas, C., Ye, F. Q., Irfanoglu, M. O., Modi, P., Saleem, K. S., Leopold, D. A., & Pierpaoli, C.

18



(2014). Anatomical accuracy of brain connections derived from diffusion MRI tractography is
inherently limited. Proceedings of the National Academy of Sciences of the United States of America,
111(46), 16574—16579. https://doi.org/10.1073/PNAS.1405672111/-/DCSUPPLEMENTAL

van den Heuvel, M. P., Stam, C. J., Boersma, M., & Hulshoff Pol, H. E. (2008). Small-world and
scale-free organization of voxel-based resting-state functional connectivity in the human brain.
Neurolmage, 43(3), 528-539. https://doi.org/10.1016/JNEUROIMAGE.2008.08.010,

van Wijk, B. C. M., Stam, C. J., & Daffertshofer, A. (2010). Comparing Brain Networks of
Different Size and Connectivity Density Using Graph Theory. PLOS ONE, 5(10),.e13701.
https://doi.org/10.1371/JOURNAL.PONE.0013701

Verstraete, E., Veldink, J. H., Mandl, R. C. W., van den Berg, L. H., & van den Heuvel, M. P.
(2011). Impaired Structural Motor Connectome in Amyotrophic Lateral Sclerosis. 'PLOS ONE, 6(9),
€24239. https://doi.org/10.1371/JOURNAL.PONE.0024239

Vohryzek, J., Aleman-Gomez, Y., Griffa, A., Raoul, J., Cleusix, M., Baumann, P. S., Conus, P.,
Cuenod, K. Do, & Hagmann, P. (2020). Structural and functional connectomes/from 27 schizophrenic
patients and 27 matched healthy adults. https://doi.org/10.5281/ZENQDO.3758534

Vos, T., Abajobir, A. A., Abbafati, C., Abbas, K. M., Abate, K. H., Abd-Allah, F., Abdulle, A. M.,
Abebo, T. A., Abera, S. F., Aboyans, V., Abu-Raddad, L. J., Ackerman, I. N., Adamu, A. A.,
Adetokunboh, O., Afarideh, M., Afshin, A., Agarwal, S. K., Aggarwal, R., Agrawal, A., ... Murray,
C. J. L. (2017). Global, regional, and national incidence, prevalence, and years lived with disability
for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the Global
Burden of Disease Study 2016. The Lancet, 390(10100), 1211-1259. https://doi.org/10.1016/S0140-
6736(17)32154-2

Wang, Y., Wei, Y., Edmiston, E. K.; Womer,F. Y., Zhang, X., Duan, J., Zhu, Y., Zhang, R., Yin,
Z.,Zhang, Y., Jiang, X., Wei, S., Liu, Z:, Zhang, Y., Tang, Y., & Wang, F. (2020). Altered structural
connectivity and cytokine levels in Schizophrenia and Genetic high-risk individuals: Associations
with  disease states and _ “vulnerability.  Schizophrenia  Research, 223, 158-165.
https://doi.org/10.1016/J.SCHRES:2020.05.044

Yeh, F. C., Panesar, S.;Fernandes, D., Meola, A., Yoshino, M., Fernandez-Miranda, J. C., Vettel,
J. M., & Verstynen, T.(2018). Population-Averaged Atlas of the Macroscale Human Structural
Connectome and Its Network Topology. Neurolmage, 178, 57.
https://doi.org/10.1016/J.NEUROIMAGE.2018.05.027

Zahoranszky-Kéhalmi, G., Bologa, C. G., & Oprea, T. 1. (2016). Impact of similarity threshold on
the topology of molecular similarity networks and clustering outcomes. Journal of Cheminformatics,
8, 16. https://doi.org/10.1186/s13321-016-0127-5

Zalesky, A., & Fornito, A. (2009). A DTI-derived measure of cortico-cortical connectivity. /[EEE
Transactions on Medical Imaging, 28(7), 1023—-1036. https://doi.org/10.1109/TM1.2008.2012113,

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., van den Heuvel, M. P., & Breakspear, M. (2016).
Connectome sensitivity or specificity: which is more important? Neurolmage, 142, 407-420.
https://doi.org/10.1016/j.neuroimage.2016.06.035

Zhu, T., Wang, Z., Zhou, C., Fang, X., Huang, C., Xie, C., Ge, H., Yan, Z., Zhang, X., & Chen, J.
(2022). Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent
negative symptoms using activation likelihood estimation. Frontiers in Psychiatry, 13, 957685.
https://doi.org/10.3389/FPSYT.2022.957685/FULL

19



