
Basic and Clinical

1081

November & December 2025, Vol 16, No. 6

Research Paper
DCM-ML: An Electroencephalography-based Classifier 
for Early Diagnosis of Schizophrenia Based on Dynamic 
Connectivity Matrices and Machine Learning Algorithms

Seyed Abolfazl Valizadeh1 , Marcus Cheetham2 , Alireza Mohammadi3*  

1. Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.
2. Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
3. Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

* Corresponding Author: 
Alireza Mohammadi, PhD.
Address: Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Tel: +98 (21) 87554490
E-mail: ar.mohammadi@bmsu.ac.ir

Introduction: Early diagnosis of schizophrenia (SZ) remains challenging due to the subjective 
nature of clinical assessments and the heterogeneity of symptoms. There is a pressing need for 
objective, scalable, and non-invasive diagnostic tools to complement traditional methods. This 
study aimed to propose a machine learning (ML) framework that utilizes dynamic connectivity 
matrices (DCMs) derived from event-related potentials (ERPs) for SZ classification.

Methods: ERP data from 81 participants, including 49 patients with SZ and 32 healthy 
controls, were sourced from a publicly accessible and anonymized dataset. Granger causality 
was employed to compute 64×64 directional connectivity matrices, capturing inter-electrode 
information flow. Feature selection through t-tests identified 2,777 significant connectivity 
differences (P<0.05), which were subsequently used to train a random forest (RF) classifier. 
To address class imbalance, balanced training subsets were created. Additionally, the model’s 
robustness was evaluated across varying levels of white Gaussian noise (0% to 45%).

Results: The RF classifier demonstrated high diagnostic accuracy (99.24%), sensitivity 
(98.34%), specificity (99.73%), and an F1-score of 98.91% across 100 iterations, effectively 
minimizing the risks of overfitting. Its performance remained robust across various train-test 
splits and substantial noise levels, with an F1-score of 92% even with 45% white Gaussian 
noise. Feature selection significantly enhanced noise resilience and classification stability. 
Connectivity analysis revealed that central (Cz, FCz), occipito-parietal (PO3, Oz), and 
inferior (Iz) regions were key discriminators, indicating disrupted fronto-temporal and sensory 
integration networks in individuals with SZ.

Conclusion: This study highlights the feasibility of ML-driven ERP connectivity analysis 
as a non-invasive tool for early SZ detection. Achieving near-perfect accuracy, the model 
demonstrates strong generalizability, interpretability, and clinical scalability, outperforming 
deep learning counterparts while relying on a minimal, targeted feature set. These findings 
underscore the diagnostic relevance of fronto-central and occipito-parietal connectivity 
patterns. While promising as a non-invasive diagnostic adjunct, future validation on larger, 
demographically diverse cohorts is essential.
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Introduction

chizophrenia (SZ) is a chronic mental disor-
der with a polygenic basis and an 80% heri-
tability rate. It is characterized by symp-
toms, such as hallucinations, delusions, 
disorganized behavior, and progressive 
cognitive impairments (Mohammadi et al., 
2018). It affects approximately 20 million 

individuals worldwide (James et al., 2018). Early diag-
nosis and intervention can have a profound impact on 
the lives of individuals affected. Early diagnosis allows 
for prompt intervention of psychotic symptoms (e.g. hal-
lucinations, delusions, and disorganized thinking) before 
they become more severe, improves outcomes and long-
term prognosis (e.g. daily life functioning, stability in so-
cial, academic, or work life), and prevents or delays re-
lapses and lessens the likelihood of hospital admissions 
(Correll et al., 2018; Jääskeläinen et al., 2013; Mcgrath 
et al., 2008; Millier et al., 2014). Early diagnosis can also 
help to lessen the disabling aspects of the disorder (e.g. 
cognitive impairments or social isolation) and improve 
the quality of life (QoL) for patients and their families 
(Hor & Taylor, 2010).

Although the timely detection of SZ is crucial, it relies 
heavily on manual evaluation during clinical assessment 

(Nieuwenhuis et al., 2012). This conventional approach 
to clinical diagnosis is challenging due to the high het-
erogeneity of SZ (Orsolini et al., 2022). SZ can manifest 
differently across individual patients and throughout the 
disease, with some patients predominantly presenting 
positive and others negative and cognitive symptoms 
(Krauss et al., 2022). SZ can also show symptom over-
lap with other psychiatric disorders (e.g. depression), 
making differential diagnosis difficult without a compre-
hensive understanding of the patient’s medical history 
(Krauss et al., 2022). The subjective nature of manual 
evaluation is prone to human error and time-consuming 
(Devries & Delespaul, 1989).

Symptom onset in SZ typically occurs during adoles-
cence and early adulthood (ages 14-30). The time be-
tween symptom onset and diagnosis and treatment is 
consistently one of the best predictors of later prognosis 
(McGlashan, 1999). The prodromal stage, during which 
initial symptoms may manifest, is a critical period for 
identifying and intervening in the progression of SZ. 
While cognitive symptoms can be apparent even before 
this stage, their detection for diagnostic purposes is es-
pecially challenging due to their ambiguity, as they are 
often mild or nonspecific.

Highlights 

● A machine learning framework with ERP-based dynamic connectivity was used to classify SZ.

● Granger causality-derived connectivity at electrode level captured altered neural flow in SZ patients.

● Random forest classifier achieved 99% accuracy and maintained noise robustness.

● Single-trial ERP analysis preserved variability, enhancing SZ diagnostic sensitivity.

● Key discriminative features involved fronto-temporal and sensory integration hubs.

Plain Language Summary 

Although the timely detection of schizophrenia (SZ) is crucial, it relies heavily on manual evaluation during clinical 
assessment. However, the manual evaluation is prone to human error and is a time-consuming process. In this study, 
we explored the feasibility of a novel approach to electroencephalography (EEG) dynamic analysis based on estimates 
of functional or practical brain connectivity, combined with machine learning techniques, to aid early diagnosis of 
schizophrenia. Using EEG and event-related potential (ERP) data, we assessed whether this approach can accurately 
distinguish individuals with schizophrenia from those without schizophrenia. The results highlighted the feasibility of 
machine learning-driven ERP connectivity analysis as a non-invasive tool for early schizophrenia detection. The model 
demonstrated strong generalizability, interpretability, and clinical scalability, outperforming deep learning counterparts 
while relying on a minimal, targeted feature set.

S

Valizadeh., et al. (2025). DCM-ML: An Electroencephalography-based Classifier. BCN, 16(6), 1081-1096.

http://bcn.iums.ac.ir/


Basic and Clinical

1083

November & December 2025, Vol 16, No. 6

When symptoms are ambiguous, individuals at risk of 
SZ may show irregularities in resting-state and task-re-
lated electroencephalography (EEG) activity (De Bock 
et al., 2020; Narayanan et al., 2014). These can include 
alterations in the temporal dynamics, coordination, 
and functional connectivity between different brain re-
gions (e.g. instability in dynamic functional connectiv-
ity, hypo- and hyper-connectivity) compared to healthy 
individuals (Aubonnet et al., 2024; Cinelli et al., 2018; 
Koshiyama et al., 2020; de O. Toutain, et al., 2023; Yeh 
et al., 2023). Altered brain activity patterns may provide 
valuable insights into the likelihood of developing SZ.

We explored the feasibility of a novel approach to 
EEG dynamic analysis based on estimates of functional 
or practical brain connectivity, combined with machine 
learning (ML) techniques, to aid early diagnosis of SZ. 
The rationale for applying EEG dynamic analysis for 
SZ detection is that SZ may be considered as a disorder 
of brain network organization (Rubinov & Bullmore, 
2013). In the present study, we reapplied a novel fea-
ture extraction approach, dynamic connectivity matrices 
(DCM), and utilized the generated features in combina-
tion with an ML algorithm previously developed to iden-
tify, based on their unique patterns of dynamic functional 
connectivity in EEG (Valizadeh et al., 2019). Standard 
EEG data were acquired from a clinically well-charac-
terized cohort of adult patients. Using EEG and event-re-
lated potential (ERP) data, the expectation was that this 
approach to EEG dynamic analysis would accurately 
distinguish individuals with SZ from those without. To 
inform further development of this approach, we asked 
which combination of metrics is most informative for ac-
curately classifying SZ. The evaluation criteria were the 
accuracy, sensitivity, and specificity of ML-based clas-
sification of clinically diagnosed patients with SZ and 
healthy individuals.

Materials and Methods

Dataset 

We conducted a retrospective analysis of EEG data 
from 81 participants, sourced from a publicly accessible, 
Kaggle dataset. The EEG dataset used in this study was 
obtained from a publicly Kaggle dataset. According to 
the dataset description, informed consent was obtained 
from all participants for further use, and the data were 
fully anonymized. Therefore, no additional ethical ap-
proval or consent was required for its use in this study. 
However, all methods and analyses were conducted in 
accordance with the relevant guidelines and regulations, 
and the study protocol was approved by the Research 

Ethics Committee of Baqiyatallah University of Medi-
cal Sciences. This dataset includes EEG signals acquired 
from 49 SZ patients (41 males, between 22 and 63 years, 
Mean±SD 40±13.5) (17 in early stages and 32 in chron-
ic stages of the disorder) and 32 healthy controls (26 
males, between 22 and 63 years, Mean±SD 38.2±13). 
Data were acquired while participants performed a pas-
sive (auditory-only) condition of a basic auditory listen-
ing task. All patients were clinically diagnosed using the 
structured clinical interview for the diagnostic and statis-
tical manual of mental disorders, fourth edition (DSM-
IV) (SCID). Patients and healthy controls had no other 
diagnoses.

Data acquisition

EEG data were captured with a 64-channel ActiveTwo 
Biosemi system (Metting van Rijn et al., 1990) and cap, 
using the 10-10 international system, while participants 
engaged in the auditory listening task. This task entailed 
the presentation of 100 auditory stimuli (1000 Hz tones 
at 80 dB SPL for 50 ms.) with inter-stimulus intervals 
varying between 1000 and 2000 ms. EEG signals were 
recorded continuously and divided into separate ERP ep-
ochs of 3000 ms. Those were synchronized with the on-
set of each tone. The dataset also includes data acquired 
from an auditory-motor task (Ford et al., 2014; Pinheiro 
et al., 2020), which was not used in the present study. 
The data were collected at a sampling frequency of 1024 
Hz and down-sampled to 512 Hz.

EEG preprocessing and epoching

The EEG dataset was originally preprocessed and 
cleaned for a previously published study (Barros et 
al., 2022; Ford et al., 2014) and further processed and 
cleaned by the same authors prior to public release. Uti-
lizing a publicly available dataset promotes research 
transparency, facilitates reproducibility, and supports 
further investigation by other researchers.

The preprocessing steps included re-referencing to av-
eraged earlobe electrodes, band-pass filtering between 
0.5 and 15 Hz, and independent component analysis to 
identify and remove ocular and muscular artifacts. A 
regression-based algorithm was applied to correct for 
eye movement and blink activity across all scalp chan-
nels. Artifact rejection was performed using a ±100 µV 
threshold at each electrode, and non-physiological chan-
nels were interpolated based on established spatial crite-
ria. These procedures ensured high-quality, artifact-free 
EEG data suitable for connectivity analysis.
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For this study, the preprocessed EEG signals were seg-
mented into 3000-ms epochs, each time-locked to the 
onset of the auditory stimulus. Baseline correction was 
applied using the window beginning 600 ms to 500 ms 
before tone onset.

Signal processing and epochs

Unlike traditional ERP analysis, which relies on aver-
aging epochs to extract features, our approach treated 
each epoch as an independent sample. This single-trial 
analysis significantly expanded the dataset size, enabling 
the model to capture subtle inter-trial variability in neural 
activity. This is advantageous for studying complex neu-
rological disorders, such as SZ, where subtle differences 
in neural responses may be obscured by averaging. By 
analyzing each epoch individually, finer-grained neural 
patterns were sought in line with recent advancements 
that emphasize the importance of trial-to-trial variabil-
ity for capturing brain function (Huang et al., 2018; Ho, 
1998; Valizadeh et al., 2018).

The epochs were 3000 ms in length and time-locked to 
the onset of the auditory stimulus (i.e. the tone). Granger 
causality was computed for the 3000-ms epoch, yielding 
64×64 matrices for each epoch. The workflow illustrates 
the processing of EEG, including cleaning and epoching 
into stable segments representing event-related potentials 
(ERPs) for both training and testing. Coherence Granger 
causality was applied to each epoch to assess directional 
information flow between 64 EEG electrodes in the time 
domain, producing a 64×64 coherence matrix indicative 
of pairwise electrode connectivity. These matrices served 
as features for a random forest (RF) classifier. Classifica-
tion assessment involved a voting process across partici-
pants, trained on the training participants, and evaluated 
on each event in the test participant separately.

Feature extractor

Our classification framework is based on a novel and 
previously validated subject identification method (Val-
izadeh et al., 2019). This method uses surface-level (elec-
trode-based) functional connectivity in the time domain, 
computed over short, overlapping temporal windows, 
and generates temporal DCMs that capture the evolving 
patterns of interaction among EEG electrodes. Within 
each temporal window, the statistical relationship, wheth-
er correlational or causal, is quantified between pairs of 
EEG time series. This dynamic representation enables 
fine-grained tracking of brain network changes over time 
and has been adopted in the present study as input fea-
tures for classifying SZ-related neural activity.

The clean EEG data were divided into epochs, each 
deemed sufficiently stable for connectivity analysis. 
Within each epoch, coherence Granger causality was 
used to assess interactions between EEG signals from 
different electrodes in the time domain (Figure 1). Cau-
sation, or directional connectivity, was used to evaluate 
the extent to which the activity in one EEG electrode 
could predict the activity in another. All analyses were 
performed in the time domain, except for the initial fil-
tering stage. An iterative method was employed to de-
termine the interaction between each seed electrode and 
every other electrode, producing a 64×64 matrix that il-
lustrates the pairwise connectivity among all electrode 
pairs.

Granger causality is a statistical method used to assess 
whether one time series can predict another. If past val-
ues of variable X significantly improve the prediction 
of variable Y— beyond what is possible using Y’s own 
history—X is said to “Granger-cause” Y. This is typi-
cally evaluated using a linear regression model, where 
the target time series is regressed on its own past values 
and those of another series; statistical significance of the 
latter indicates predictive influence.

In EEG analysis, Granger causality is applied to iden-
tify directional interactions between brain regions, pro-
viding insight into neural connectivity associated with 
cognitive processes and disorders such as SZ (Gao et al., 
2020; Huang et al., 2018). Importantly, Granger causal-
ity reflects predictive, not necessarily direct, causal re-
lationships, suggesting information flow from one elec-
trode to another.

Granger Causality is computed as follows: 

Model specification:

Two time series, X and Y, are examined.

A regression model is constructed for Y based on its 
previous values in conjunction with the past values of Y.

Lag selection: Identify the appropriate lags for the time 
series. This can be achieved using metrics, such as the 
Akaike information criterion (AIC) or the Bayesian in-
formation criterion (BIC).

Regression analysis: Conduct two regression analyses:

Model 1:

𝑌𝑡=𝑎0+𝑎1𝑌𝑡−1+𝑎2𝑌𝑡−2+....+𝑎𝑛𝑌𝑡−𝑛
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Model 2: Model 2 includes past values of X.

𝑌 𝑡 = 𝑎 0 + 𝑎 1 𝑌 𝑡 − 1 + 𝑎 2 𝑌 𝑡 − 2 + . . . . + 𝑎 𝑛 𝑌 𝑡 −
𝑛+𝑐1𝑋𝑡−1+𝑐2𝑋𝑡−2+...+𝑐𝑛𝑋𝑡−𝑛

Hypothesis testing: The null hypothesis 𝐻0 posits that 
X does not Granger-cause Y (i.e. the coefficients 𝑐1, 2, 
... are equal to zero).

Implement an F-test to compare the two models. If the 
inclusion of X substantively enhances the predictive ca-
pacity for Y, the null hypothesis is rejected, indicating 
that X Granger-causes Y.

To ensure consistency and avoid model complexity 
or overfitting, we did not perform individual model se-
lection using information criteria, such as the Bayesian 
Information Criterion (BIC) or the Akaike Information 
Criterion (AIC). Instead, we set the model lag order to 
a fixed value of 10 across all participants and condi-
tions. This approach simplifies the analysis pipeline and 
ensures cross-subject comparability while remaining 
within a range adequate to capture relevant temporal de-
pendencies in EEG time series data.

ML procedures

The number of participants in each group is unbal-
anced, with 32 healthy individuals and 49 individuals 
with SZ. To prevent unbalanced learning, we used the 
healthy control (HC) sample, selected half for training, 
and matched the SZ group with an equal number of par-
ticipants. This led to 16 participants from each group 
being randomly selected for training. We subsequently 
categorized the remaining healthy participants and indi-
viduals with SZ. This approach reduces the classifier’s 
performance but improves its reliability when evaluat-
ing each additional participant. The classifiers are fed di-
rectly by the connectivity matrices. Every training step, 
along with the classifiers, was performed on the training 
set. The number of epochs for each participant remains 
the same.

To mitigate the potential for overfitting, a particular 
concern in smaller datasets with k-fold cross-validation, 
we employed a 50/50 train-test split. This approach 
aimed to maximize data utilization while minimizing the 
risk of overfitting. Prior to classification, a feature se-
lection phase was conducted to refine the feature space 
and potentially enhance model performance. Indepen-

Figure 1. Time-domain electroencephalography (EEG) connectivity analysis using coherence granger causality for EERP clas-
sification
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dent two-sample t-tests were performed on the train-
ing datasets to identify connectivity features exhibiting 
statistically significant differences (P<0.05) between the 
defined groups: HC and individuals with SZ. Only these 
features were retained AS input features for the classifi-
cation algorithms.

This feature selection approach was designed to reduce 
dimensionality, minimize noise, and improve model 
performance by focusing on the most salient and dis-
criminatory features. This enhances the model’s ability 
to accurately categorize individuals into their respective 
diagnostic groups and its interpretability by highlighting 
neural connectivity patterns associated with SZ.

The feature set comprised 64×64×100 epochs, indicat-
ing that each participant contributed 100 samples, each 
with 64×64 features. Consequently, the training set for 
each class consisted of 16×100 samples, each with 1 * 
4096 elements (i.e. a 1×4096 feature vector). The final 
training set was structured as a matrix with 3200 rows 
(samples) and 4096 columns (connections). An addition-
al column was appended to the data as the class label, in-
dicating group membership (SZ or non-SZ). A t-test was 
conducted based on this class label. The classification of 
each epoch within the test set was performed indepen-
dently. A participant was classified as SZ if a majority 
of epochs (at least 51 out of 100) were labeled as SZ; 
otherwise, they were classified as non-SZ.

Classification

The classification process was performed on all test 
epochs. The classification set was determined according 
to the following criteria: Participants were labeled SZ 
or non-SZ based on the majority classification of their 
epochs. Those with an equal number of SZ and non-SZ 
epochs would have been designated as unknown; how-
ever, no participants fell into this category in the current 
dataset.

Classifier

The RF algorithm (Ho, 1998) is a robust ML algorithm 
and particularly effective for classification tasks, includ-
ing medical diagnosis prediction. It operates by con-
structing an ensemble of decision trees, each trained on a 
random subset of the data. This bootstrapping approach 
ensures that each tree learns diverse aspects of the data, 
mitigating overfitting and improving generalization. In 
predicting, every tree in the forest votes, and the most 
common class or the average prediction is selected as the 

result. This collective characteristic provides multiple 
benefits (Valizadeh et al., 2019):

Great precision: The combined knowledge of several 
trees frequently results in exact predictions.

Resilience to noise: The algorithm remains strong 
against noisy data and outliers because of the ensemble’s 
averaging impact.

Evaluation of feature importance: RF offers insights 
into the significance of various features, assisting in fea-
ture selection and aiding in comprehending the funda-
mental patterns present in the data.

Managing absent data: It efficiently manages absent 
data in the dataset.

Scalability: RF effectively manages extensive datasets, 
rendering it appropriate for practical applications.

Classification assessment

Accuracy assesses the overall correctness of a model’s 
predictions, i.e. the ratio of correctly classified cases to 
the total number of instances. Although high accuracy 
often suggests strong performance, it can be deceptive 
in imbalanced datasets where one class greatly exceeds 
the other. Sensitivity, also known as recall, measures 
the model’s ability to accurately identify positive cases, 
which is essential when the penalty for failing to detect a 
positive instance is significant. On the other hand, speci-
ficity measures the model’s ability to accurately identify 
negative instances, which is essential when misclassify-
ing a negative instance can lead to serious outcomes. 
The F1-score, the harmonic mean of precision and re-
call, provides a single metric that balances both factors, 
especially useful for imbalanced datasets.

Selecting the appropriate metric is related to accurately 
detecting both positive and negative cases. Note that 
there is frequently a compromise between sensitivity and 
specificity; enhancing one usually results in a decline of 
the other. In addition, accuracy may be misleading in im-
balanced datasets, as metrics such as sensitivity, speci-
ficity, and F1-score provide a more nuanced assessment 
of model effectiveness.

An additional strategy was implemented to evaluate 
the robustness of the classification outcomes. This strat-
egy is based on the following considerations. If a neural 
network is trained to recognize stimuli, its performance 
should remain consistent when identifying stimuli, such 
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as faces, from various angles, under different lighting 
conditions, or when presented with partial facial fea-
tures (Valizadeh et al., 2018, Valizadeh et al., 2019). 
This means that the classifier must retain accuracy even 
when target stimuli are altered or degraded. To replicate 
these scenarios, white Gaussian noise was incrementally 
added to the test dataset’s connectivity matrices. Initially, 
the classification analysis was conducted without noise 
(0% noise level). Subsequently, noise was linearly added 
to all features in increments of 5% and progressing to 
45%. This process resulted in nine distinct ten conditions 
(0%, 5%, 10%, 15%, …, 45%), each subjected to sepa-
rate classification evaluations.

Results

The RF model showed very high overall performance 
through various assessment metrics, evaluated over 100 
iterations to reduce the impact of overfitting and ran-
dom effects (Table 1). Sensitivity, a metric reflecting the 
model’s ability to correctly identify positive instances, 
reached 0.98, with a 95% confidence interval (CI) of 
98.34±0.04%. This indicates that the model was highly 
accurate in detecting the target condition when present. 
Similarly, specificity, which evaluates the model’s abil-
ity to correctly identify negative instances, achieved a 
perfect score of 1.00 with 99.73±0.01% CI, demonstrat-
ing that the model did not mislabel any negative cases. 
The F1 score, balancing precision and recall, was also 
high at 0.99 with 98.91±0.02% CI, emphasizing the 
model’s strong predictive capacity. Finally, the overall 
accuracy of the model, determined as the proportion of 
accurate predictions, was 0.99 (99.24±0.02%), indicat-

ing that the model generated highly accurate predictions 
on the dataset.

Test train rate

Figure 2 shows the impact of the test rate on classifica-
tion performance. Notably, the RF classifier shows very 
high performance even with relatively limited training 
sample sizes. This is consistent with previous studies 
that highlighted the effectiveness of RF classifiers in 
handling imbalanced datasets and in generalizing well to 
unseen data (Fawagreh et al., 2014). However, when the 
testing rate approaches very high levels (0.09 and 0.95), 
classification accuracy declines. This trend shows that 
while RF classifiers are robust against data distribution, 
significant imbalances can still negatively influence their 
performance. This finding aligns with current research, 
suggesting that imbalanced datasets pose challenges 
for ML models, potentially leading to biased results. To 
confirm that the observed performance trends were not 
due to random factors, we systematically adjusted the 
test rate from 5% to 95% of the overall epochs (Table 
2). This method enabled us to evaluate the classifier’s 
strength across various data distributions. Despite a test 
rate of 95%, the RF classifier obtained an F1-score of 
92%, indicating its ability to handle imbalanced datasets.

Noise stability

Figure 3 shows how rising levels of white Gaussian 
noise affect the classification performance of two sets of 
features: “All features” and “selected features noise was 
progressively introduced to the connectivity matrices 

Table 1. Overall result for 100 runs

Feature Selection Metrics Mean±SD
95% CI 

Lower Upper

All features

Sensitivity 67.78±1.79 67.42 68.14

Specificity 98.73±0.29 98.67 98.73

F1 Score 87.67±0.79 86.88 87.22

Accuracy 87.05±0.86 87.51 87.84

Selected feature

Sensitivity 98.34±0.16 98.3 98.38

Specificity 99.73±0.05 99.72 99.74

F1 Score 98.91±0.1 98.89 98.93

Accuracy 99.24±0.07 99.23 99.26
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Figure 3. Noise stability and classification performance

Figure 2. Impact of the test/train rate on classification performance
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of the test dataset, simulating scenarios in which target 
stimuli are modified or compromised. The x-axis shows 
the percentage of introduced noise, ranging from 0% (no 
noise) to 45%, while the y-axis displays the F1-score, a 
metric of classification accuracy. As the noise percent-
age increases, both feature sets exhibit a decline in F1-
score, indicating reduced classification effectiveness. 
However, the “selected features” (blue line) demonstrate 
greater resilience to noise, consistently achieving higher 
F1 Scores than the “all features” set (red line) across all 
noise levels. This suggests that the “selected features” 
are more robust against the detrimental effects of noise 
and provide more reliable classification, even when the 
data is compromised.

This figure shows, for all (blue line) and selected fea-
tures (red line), the percentage of added noise, (ranging 
from 0% [no noise] to 45%) on the x-axis, against the 
F1-score (i.e. classification accuracy) on the y-axis. Er-
ror bars represent CIs of the F1-score calculated over 
100 runs or folds.

Electrode contribution to classification

Through a comprehensive analysis of Granger cau-
sality across all 64×64 electrode pair combinations, we 
identified 2,777 connections that exhibited statistically 
significant differences between the HC and SZ groups (P 
values ranging from 0.049 to 10-74) based on trained da-
tasets. Table 3 presents the most discriminatory Granger 
causality combinations, characterized by particularly 

Table 2. Impact of different test/train rates on random forrest classification performance

Test Rate
F1 Score

Mean±SD F1 Score SD Lower CI Upper CI

0.05 1±0 1 1

0.10 0.99±0 0.99 1

0.15 0.99±0 0.99 0.99

0.20 0.99±0 0.99 0.99

0.25 0.99±0 0.99 0.99

0.30 0.99±0 0.99 0.99

0.35 0.99±0 0.99 0.99

0.40 0.99±0 0.99 0.99

0.45 0.99±0 0.99 0.99

0.50 0.99±0 0.99 0.99

0.55 0.99±0 0.99 0.99

0.60 0.98±0 0.98 0.98

0.65 0.98±0 0.98 0.98

0.70 0.97±0 0.97 0.97

0.75 0.98±0 0.98 0.98

0.80 0.98±0 0.98 0.98

0.85 0.97±0 0.97 0.97

0.90 0.94±0 0.94 0.94

0.95 0.92±0.01 0.92 0.92
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robust statistical significance (P<10-30). To further in-
vestigate the regional brain areas most implicated in 
these group differences, we created a frequency table. 
This table is based on all Granger causality combinations 
that demonstrate significant group separation (P<0.05). 
It counts how often each electrode appears as either a 
predictor or a predicted region across these significant 
connections. The most frequently identified electrodes 
from this process are presented in a subsequent table to 
highlight key regions involved in connectivity altera-
tions in SZ.

Following the identification of the 2,777 statistically 
significant Granger causality combinations that differ-
entiated the HC and SZ groups (P<0.05), a frequency 
analysis was performed to determine the most relevant 
electrode regions (Table 4). This table reports the top ten 
electrodes ranked by their total frequency of appearance 

in significant connections. For each electrode (column 
1), the table shows its frequency as a predictor electrode 
(column 2), its frequency as a predicted electrode (col-
umn 3), and the summed total frequency (column 4). A 
higher total frequency indicates greater involvement in 
group-discriminating Granger-causality relationships.

Discussion

The present study was guided by two primary research 
questions: Is it possible to identify SZ using our novel 
EEG-based ML classifier based on DCM, and which 
combination of metrics is most informative for classify-
ing SZ? The DCM-ML approach identified SZ with a 
very high degree of accuracy, approaching 100%. Our 
findings indicate that only a subset of metrics is required 
to achieve effective classification of individual partici-
pants, highlighting the efficiency and specificity of the 

Table 3. Granger causality combinations significantly differentiating the healthy and SZ groups (E=Power of ten)

Rank Independent Dependent P Rank Independent Dependent P

1 PO3 Cz 4.61E-74 20 P7 FC3 1.05E-33

2 Fz Cz 5.81E-55 21 PO7 C1 1.82E-33

3 TP7 PO3 2.24E-54 22 Oz TP10 5.76E-33

4 PO3 FCz 7.41E-54 23 P7 C1 7.30E-33

5 TP7 C1 8.85E-51 24 C1 CP3 1.01E-32

6 T7 PO3 3.04E-48 25 PO3 FC3 2.33E-32

7 C5 PO3 3.41E-45 26 T7 C1 6.63E-32

8 PO3 FC1 6.17E-43 27 Fz PO3 6.95E-32

9 P3 FC1 4.51E-41 28 Oz C2 7.05E-32

10 FC5 PO3 1.00E-40 29 Iz FCz 1.82E-31

11 P3 Cz 2.67E-40 30 Oz FC2 4.72E-31

12 PO3 C2 2.98E-39 31 Cz CP4 4.96E-31

13 C3 POz 1.36E-37 32 P5 FC1 5.46E-31

14 Oz Cz 1.34E-35 33 P4 P2 1.50E-30

15 AF3 FC5 4.70E-35 34 Fz FCz 2.99E-30

16 O1 C2 1.35E-34 35 PO3 FC2 3.77E-30

17 O1 FCz 2.14E-34 36 POz FCz 3.87E-30

18 P3 FCz 3.70E-34 37 AF3 F5 6.32E-30

19 PO7 FCz 1.00E-33 38 Cz CP3 7.04E-30
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selected features. These results underscore the potential 
of using targeted metrics to enhance the precision of SZ 
detection.

The RF model demonstrated very high performance 
across various metrics. It achieved a sensitivity of 0.98 
(98.34±0.04%), indicating its proficiency in accurately 
identifying positive cases. In addition, it exhibited a 
perfect specificity of 1.00 (99.73±0.01%), demonstrat-
ing its ability to correctly classify negative instances 
without mislabeling. The model also achieved a high 
F1 score of 0.99 (98.91±0.02%), indicating a strong 
balance between precision and recall. Furthermore, the 
overall accuracy was 0.99 (99.24±0.02%), which is 
consistent with the model’s ability to generate highly 

accurate predictions on the dataset. These results under-
score the potential of targeted metrics to enhance the 
precision of SZ diagnosis.

This study also assessed the stability of the proposed 
classification method under different conditions. The 
introduction of white Gaussian noise led to a gradual, 
but predictable, decline in classification performance. 
At noise levels up to 10% of the data, the accuracy re-
mained above 95%, demonstrating considerable resil-
ience. However, beyond 10%, the accuracy decreased 
more rapidly, highlighting the sensitivity of ERP-based 
connectivity measures to excessive noise. This under-
scores the importance of stringent data-acquisition pro-
tocols and noise-reduction techniques in ERP studies.

Table 5. Comparative summary of studies using the button-tone-SZ dataset 

Ref. Model and Features Performance

Mazroa et al. (2025) Cascaded Atrous Conv. network (CA-AWFM); multi-scale adaptive 
fusion 99.5% accuracy

Barros et al. (2022) Deep CNN (SzNet), single-trial ERP, five midline electrodes (Fz, FCz, 
Cz, CPz, Pz) 78% accuracy 

Shaffi et al. (2023) 
Srinivasan et al. (2024)

Rani et al. (2023)
Huang et al. (2018) 

CNNs, classical ML (RF, SVM, LDA) Variable (75–85%)

Shen et al. (2023) Cross-mutual information in the alpha band and a 3D CNN 97.44% accuracy

Chen et al. (2024) Resting-state EEG and dynamic functional connectivity 73.1% accuracy

Abbreviations: ML: Machine learning; ERP: Event-related potentials; RF: Random forest; CA-AWFM: Cascaded Atrous convo-
lutional network; CNN: Convolutional neural network; EEG: Electroencephalography; SVM: Support vector machine; LDA: 
Linear discriminant analysis.

Table 4. Frequency of electrode involvement in significant granger causality differences

Electrode Name Predictor Predicted

Cz 51 58

FCz 47 59

Iz 50 55

PO3 49 55

CP4 42 61

AF3 47 54

C1 45 56

O1 48 53

POz 54 46
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The RF classifier exhibited strong performance across 
different training sample sizes, demonstrating its abil-
ity to generalize effectively even with limited data. This 
finding is consistent with prior research, which has em-
phasized the robustness of RF classifiers in handling im-
balanced datasets and their capacity to maintain high ac-
curacy under constrained conditions. However, when the 
testing rate approached extreme values (0.09 and 0.95), 
classification accuracy declined. This suggests that while 
RF classifiers are generally resilient to variations in data 
distribution, significant imbalances can still adversely 
affect their performance (Luan et al., 2020; Valizadeh et 
al., 2018, 2019; Wang et al., 2016; Zhang et al., 2009).

Our findings on specific ERP components and inter-
electrode connectivity patterns offer valuable insights 
into the neurophysiological underpinnings of SZ. No-
tably, our analysis revealed that a subset of electrodes 
(Cz, FCz, Iz, PO3, CP4, AF3, C1, O1, and POz) was 
particularly influential in distinguishing individuals with 
SZ from HC. This emphasis on a targeted set of elec-
trodes strikes a balance between diagnostic accuracy and 
the practical considerations of clinical EEG procedures.

The prominence of central midline electrodes, particu-
larly Cz and FCz, in our findings aligns with the existing 
literature, which emphasizes the role of these regions in 
SZ pathophysiology. As highlighted in the literature, Cz 
is consistently identified as a core component in optimal 
electrode subsets for SZ detection, likely due to its sensi-
tivity to global neural dynamics and altered connectivity 
patterns in resting-state paradigms (Becske et al., 2024; 
Mahato et al., 2021). The involvement of FCz, while 
sometimes represented by the functionally proximal Fz 
in standard montages, further supports the importance 
of frontocentral activity in capturing auditory-evoked 
anomalies and deficits related to auditory steady-state 
responses in SZ (Hirano et al., 2020). These findings 
suggest that disruptions in information processing and 
sensory integration, often observed in SZ, are reflected 
in the altered activity and connectivity of these central 
and frontocentral regions.

The present study also identified other key electrodes, 
including those in occipital (O1, POz), parietal (CP4), 
and frontal (AF3) regions, as contributing to accurate 
classification. The involvement of O1 aligns with evi-
dence of visual processing abnormalities and disruptions 
of the default mode network in SZ (Becske et al., 2024; 
Zeltser et al., 2024). While POz, CP4, and AF3 may not 
have been as extensively studied in classification frame-
works, their inclusion in our model and their presence in 
network analyses suggest their potential role in captur-

ing specific aspects of the disorder, such as visuospatial 
integration deficits (POz), right-lateralized connectivity 
abnormalities (CP4), and prefrontal cortex dysfunction 
(AF3). The inclusion of C1, near the primary somato-
sensory cortex, points towards possible sensorimotor in-
tegration abnormalities in SZ, though further research is 
needed to validate its specific contribution to classifica-
tion models. The relative lack of direct evidence for Iz in 
the literature suggests that it has limited diagnostic value 
within current paradigms (Srinivasan et al., 2024). Taken 
together, these results indicate that a distributed network 
of brain regions, extending beyond the frontal cortex, 
contributes to the neurophysiological signature of SZ.

Imbalanced datasets pose challenges in ML. The pres-
ent results align with existing literature in this regard 
(Paraschiv et al., 2024). The observed decline in accu-
racy at very high testing rates highlights the potential for 
biased outcomes when data distributions are significant-
ly skewed. This emphasizes the need to carefully consid-
er dataset composition and to apply strategies to mitigate 
imbalance, such as resampling techniques or algorithmic 
adjustments, to ensure the reliability and generalizability 
of classification models.

Comparison of the model with other models

The dataset used in this study has been previously ana-
lyzed, using both traditional ML algorithms (Rani et al., 
2023; Shaffi et al., 2023; Srinivasan et al., 2024) and re-
cent deep learning methods (Paraschiv et al., 2024; Rao 
et al., 2025; Sahu et al., 2023; Stunnenberg et al., 2024; 
Swastika, 2022). These studies established performance 
benchmarks and demonstrated the dataset’s value for de-
tecting neuropsychiatric disorders, such as SZ.

Although deep learning techniques have achieved high 
accuracy (up to 97%), their complexity, large model siz-
es, and high computational demands often limit their ap-
plicability in time-sensitive, real-world clinical settings.

To address this limitation, this present study presents 
a novel, computationally efficient ML model applied to 
the same dataset. This approach achieves extremely high 
classification accuracy (99.24%, 98.34%, and 99.73%) 
without requiring deep hierarchical networks or dense 
feature engineering. By extracting ERPs from a cogni-
tive auditory task, we observe task-related brain dynam-
ics and construct directional DCMs based on Granger 
causality. This approach also accurately maps inter-elec-
trode information flow while preserving single-trial vari-
ability —an essential dimension usually lost to average-
based or resting-state methods.
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Compared to existing methods, our approach has sev-
eral advantages. For instance, Chen et al. (2024) used 
resting-state EEG and dynamic functional connectivity 
to achieve multi-class classification of various psychiat-
ric disorders with moderate accuracy (73.1%). However, 
their method is based on averaged DFC states and does 
not account for signal variability or noise resistance. In 
contrast, our method relies on single-trial ERP data, re-
taining inter-epoch variability and exhibiting significant 
robustness to noise with an F1-score of 92% even in the 
presence of 45% Gaussian noise—a point entirely unex-
plored in their work.

Similarly, Shen et al. (2023) employ cross-mutual in-
formation in the alpha band and a 3D CNN to discrimi-
nate SZ from resting-state EEG with 97.74% accuracy. 
Their approach is practical but relies on undirected, 
frequency-specific connectivity rather than the temporal 
specificity our ERP-based paradigm enables. Our model 
not only improves accuracy but also offers greater inter-
pretability and clinical utility by selecting directionality 
patterns of connectivity and electrode-level biomarkers, 
particularly in fronto-central and occipito-parietal re-
gions that are critical to SZ pathology.

A recent study (Ciprian et al., 2021) utilizing symbolic 
transfer entropy on resting-state EEG also achieved high 
performance (96.92%) with minimal features. In the 
absence of task engagement, however, their approach 
may fail to capture critical neurocognitive signatures 
of SZ. Our DCM-based model, with direction-aware 
task-evoked P300 responses, can extract functional 
impairments in challenging cognitive conditions and is 
facilitated by direction-aware DCMs, offering a more 
comprehensive description of inter-regional interactions. 
Again, our model’s noise resistance and ability to main-
tain subtle pathological signals through single-trial anal-
ysis position it as a more clinically viable instrument.

Compared to a range of recent studies that have em-
ployed both deep learning and classical ML techniques 
for SZ detection using EEG or ERP data, the present 
study offers a unique combination of interpretability, ro-
bustness, and clinical relevance. While several approach-
es report high classification accuracies, for example, 
99.5% using a cascaded Atrous convolutional network 
(CA-AWFM) (Mazroa et al., 2025) with multi-scale fea-
ture fusion and 99.9% via ERP feature integration and 
demographics, these methods often rely on black-box ar-
chitectures or require multimodal data inputs, which can 
limit clinical transparency and scalability. In contrast, 
our study achieves comparably high accuracy (99.24%) 
using a single-modality ERP dataset and a RF classifier 

trained on features derived from directional DCMs com-
puted with Granger causality. This approach emphasizes 
inter-regional information flow, a critical neural marker 
often overlooked in frequency-domain or undirected 
methods.

While methods, such as SchizoGoogLeNet and multi-
ple kernel learning, also achieve strong results (Castro et 
al., 2014; Siuly et al., 2022), they typically depend on ei-
ther large-scale automated feature extraction or fusion of 
multiple ERP components (e.g. P300, MMN), requiring 
extensive preprocessing pipelines. In contrast, our model 
is noise-resilient, maintaining a 92% F1-score even with 
45% added Gaussian noise, and uses single-trial data to 
preserve the subtle inter-epoch variability vital for iden-
tifying SZ-related deficits. In addition, our identification 
of clinically relevant electrode-level patterns in fronto-
central and occipito-parietal regions makes the findings 
more explainable and suitable for integration into real-
time or portable diagnostic tools.

While deep learning models, such as those of Mazroa 
et al. (2025), demonstrate impressive levels of accuracy, 
their complexity, limited interpretability, and reliance on 
resting-state signals or black-box convolutional layers 
hinder real-world deployment. In contrast, our method 
balances accuracy, interpretability, and practicality, mak-
ing it well-suited for scalable clinical translation, espe-
cially for early SZ detection n settings with limited com-
putational resources and variable signal quality.

In summary, the present approach overcomes the limi-
tations of existing methods by combining interpretable 
directionality features with a high-performance yet light-
weight classifier into a practical, scalable, and highly ac-
curate method for early SZ diagnosis. 

This approach has the potential to bridge algorithmic 
performance with real-world clinical usability.

Limitations and future work

From a clinical perspective, this approach shows prom-
ise as a complementary tool for early diagnosis of SZ. 
At this stage, our study serves as a proof-of-concept of 
our ML approach and the results should be interpreted 
in terms of the feasibility of this ML-based classifier 
for clinical application. The findings suggest that the 
ML-based classifier may detect early-phase EEG abnor-
malities associated with SZ. However, predictive models 
must also account for the variability in individual dis-
ease progression. Additionally, the current dataset does 
not allow for an assessment of whether these abnormali-
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ties overlap with other mental health conditions. Future 
development of the current approach should consider 
disease progression and comorbidities within a demo-
graphically and clinically broader and more diverse data-
set than that used in this study to verify the method’s reli-
ability and clinical applicability. This could be supported 
by acquiring longitudinal data to identify consistent pat-
terns of EEG abnormalities (and changes in these pat-
terns) prior to the prodromal phase, throughout the pro-
dromal transition, and after the onset of psychosis. These 
data can serve as a foundation for developing reliable 
predictive markers. Although the model’s high accuracy 
is promising, understanding the specific features or pat-
terns that influence its predictions is crucial. Integrating 
this approach with multimodal data (e.g. biomarkers and 
clinical evaluations) may enhance diagnostic accuracy. 
Further efforts to improve the model’s interpretability 
will be essential for its integration into clinical practice.

Conclusion

The tested approach, using a novel EEG-based classi-
fier based on DCM and ML algorithms, marks a consid-
erable improvement in the use of dynamic EEG analysis 
for SZ detection. The very high F1-score demonstrates 
the capability of computational methods to support psy-
chiatric diagnostics, providing an objective and non-in-
vasive instrument for early detection and intervention. 
This approach requires additional refinement and valida-
tion based on broader demographic and clinical datasets 
to verify its reliability and applicability.

Ethical Considerations

Compliance with ethical guidelines

All methods and analyses were conducted in accor-
dance with the relevant guidelines and regulations, 
and the study protocol was approved by the Research 
Ethics Committee of Baqiyatallah University of Medi-
cal Sciences, Tehran, Iran (Code: IR.BMSU.BAQ.
REC.1403.147).

Funding

This research did not receive any specific grants from 
funding agencies in the public, commercial, or not-for-
profit sectors.

Authors' contributions

Study design: Marcus Cheetham and Alireza Moham-
madi; Data interpretation: All authors; Writing the Py-

thon code and analyses: Seyed Abolfazl Valizadeh; Proj-
ect administration, supervision, review, editing, and final 
approval: Alireza Mohammadi.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

The authors express their deep gratitude to the Neu-
roscience Research Center at Baqiyatallah University of 
Medical Sciences for their valuable support and resourc-
es, with contributed significantly to the success of this 
study. The authors are extremely grateful to the Kaggle 
website for providing access to the data for the scientific 
community.

References

Al Mazroa, A., Eltahir, M. M., Ebad, S. A., Alotaibi, F. A., K, V., 
& Cho, J. (2025). EEG-based schizophrenia diagnosis using 
deep learning with multi-scale and adaptive feature selection. 
PeerJ. Computer Science, 11, e2811 [DOI:10.7717/peerj-cs.2811] 
[PMID] 

Aubonnet, R., Hassan, M., Gargiulo, P., Seri, S., & Di Lor-
enzo, G. (2024). Resting-state electroencephalography al-
pha dynamic connectivity: Quantifying brain network 
state evolution in individuals with psychosis. bioRxiv. 
[DOI:10.1101/2024.06.04.597416]

Barros, C., Roach, B., Ford, J. M., Pinheiro, A. P., & Silva, C. 
A. (2022). From sound perception to automatic detection of 
schizophrenia: An EEG-based deep learning approach. Fron-
tiers in Psychiatry, 12, 813460. [DOI:10.3389/fpsyt.2021.813460] 
[PMID] 

Becske, M., Marosi, C., Molnár, H., Fodor, Z., Farkas, K., & Rácz, 
F. S., et al. (2024). Minimum spanning tree analysis of EEG 
resting-state functional networks in schizophrenia. Scien-
tific Reports, 14(1), 10495. [DOI:10.1038/s41598-024-61316-8] 
[PMID] 

Castro, E., Gómez-Verdejo, V., Martínez-Ramón, M., Kiehl, K. A., 
& Calhoun, V. D. (2014). A multiple kernel learning approach 
to perform classification of groups from complex-valued fMRI 
data analysis: Application to schizophrenia. NeuroImage, 87, 
1–17. [DOI:10.1016/j.neuroimage.2013.10.065] [PMID] 

Chen, H., Lei, Y., Li, R., Xia, X., Cui, N., & Chen, X., et al. (2024). 
Resting-state EEG dynamic functional connectivity distin-
guishes non-psychotic major depression, psychotic major 
depression and schizophrenia. Molecular Psychiatry, 29(4), 
1088–1098. [DOI:10.1038/s41380-023-02395-3] [PMID]

Cinelli, M., Echegoyen, I., Oliveira, M., Orellana, S., & Gili, T. 
(2018). Altered modularity and disproportional integration in 
functional networks are markers of abnormal brain organiza-
tion in schizophrenia [Unpublishrd]. [Link]

Valizadeh., et al. (2025). DCM-ML: An Electroencephalography-based Classifier. BCN, 16(6), 1081-1096.

http://bcn.iums.ac.ir/
https://www.bmsu.ac.ir/portal/home/
https://www.bmsu.ac.ir/portal/home/
https://www.bmsu.ac.ir/portal/home/
https://www.bmsu.ac.ir/portal/home/
https://doi.org/10.7717/peerj-cs.2811
https://www.ncbi.nlm.nih.gov/pubmed/40567744
https://doi.org/10.1101/2024.06.04.597416
https://doi.org/10.3389/fpsyt.2021.813460
https://www.ncbi.nlm.nih.gov/pubmed/35250651
https://doi.org/10.1038/s41598-024-61316-8
https://www.ncbi.nlm.nih.gov/pubmed/38714807
https://doi.org/10.1016/j.neuroimage.2013.10.065
https://www.ncbi.nlm.nih.gov/pubmed/24225489
https://doi.org/10.1038/s41380-023-02395-3
https://www.ncbi.nlm.nih.gov/pubmed/38267620
https://arxiv.org/abs/1805.04329


Basic and Clinical

1095

November & December 2025, Vol 16, No. 6

Ciprian, C., Masychev, K., Ravan, M., Manimaran, A., & Desh-
mukh, A. (2021). Diagnosing schizophrenia using effective 
connectivity of resting-state EEG data. Algorithms, 14(5), 139. 
[DOI:10.3390/a14050139]

Correll, C. U., Galling, B., Pawar, A., Krivko, A., Bonetto, C., & 
Ruggeri, M., et al. (2018). Comparison of early intervention 
services vs treatment as usual for early-phase psychosis: 
a systematic review, meta-analysis, and meta-regression. 
JAMA Psychiatry, 75(6), 555–565. [DOI:10.1001/jamapsychia-
try.2018.0623] [PMID] 

de Bock, R., Mackintosh, A. J., Maier, F., Borgwardt, S., Riech-
er-Rössler, A., & Andreou, C. (2020). EEG microstates as 
biomarker for psychosis in ultra-high-risk patients. Transla-
tional Psychiatry, 10(1), 300. [DOI:10.1038/s41398-020-00963-7] 
[PMID] 

de Vries, M. W., & Delespaul, P. A. (1989). Time, context, and 
subjective experiences in schizophrenia. Schizophrenia Bulle-
tin, 15(2), 233-244. [DOI:10.1093/schbul/15.2.233] [PMID]

Fawagreh, K., Gaber, M. M., & Elyan, E. (2014). Random forests: 
From early developments to recent advancements. Systems 
Science & Control Engineering, 2(1), 602-609. [DOI:10.1080/21
642583.2014.956265]

Ford, J. M., Palzes, V. A., Roach, B. J., & Mathalon, D. H. (2014). 
Did I do that? Abnormal predictive processes in schizophre-
nia when button pressing to deliver a tone. Schizophrenia Bul-
letin, 40(4), 804–812. [DOI:10.1093/schbul/sbt072] [PMID] 

Gao, J., Zhang, D., Wang, L., Wang, W., Fan, Y., & Tang, M., et 
al. (2020). Altered effective connectivity in schizophrenic pa-
tients with auditory verbal hallucinations. Frontiers in Psychia-
try, 11, 575. [DOI:10.3389/fpsyt.2020.00575] [PMID] 

Hirano, Y., Nakamura, I., Tamura, S., & Onitsuka, T. (2020). 
Long-term test-retest reliability of auditory gamma oscilla-
tions between different clinical EEG systems. Frontiers in Psy-
chiatry, 11, 876. [DOI:10.3389/fpsyt.2020.00876] [PMID] 

Ho, T. K. (1998). The random subspace method for construct-
ing decision forests. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 20(8), 832-844. [DOI:10.1109/34.709601]

Hor, K., & Taylor, M. (2010). Suicide and schizophrenia: A sys-
tematic review of rates and risk factors. Journal of Psychopharma-
cology, 24(4_suppl), 81-90. [DOI:10.1177/1359786810385490] 
[PMID] 

Huang, H., Shu, C., Chen, J., Zou, J., Chen, C., & Wu, S., et al. 
(2018). Altered corticostriatal pathway in first-episode para-
noid schizophrenia. Psychiatry Research. Neuroimaging, 272, 
38-45. [DOI:10.1016/j.pscychresns.2017.08.003] [PMID]

GBD 2017 Disease and Injury Incidence and Prevalence Col-
laborators. (2018). Global, regional, and national incidence, 
prevalence, and years lived with disability for 354 diseases 
and injuries for 195 countries and territories, 1990-2017: A 
systematic analysis for the Global Burden of Disease Study 
2017. Lancet, 392(10159), 1789-1858. [DOI:10.1016/S0140-
6736(18)32279-7] [PMID]

Jääskeläinen, E., Juola, P., Hirvonen, N., McGrath, J. J., Saha, S., 
& Isohanni, M., et al. (2013). A systematic review and meta-
analysis of recovery in schizophrenia. Schizophrenia Bulletin, 
39(6), 1296–1306. [DOI:10.1093/schbul/sbs130] [PMID] 

Koshiyama, D., Miyakoshi, M., Tanaka-Koshiyama, K., Joshi, Y. 
B., Molina, J. L., & Sprock, J., et al. (2020). Neurophysiologic 
characterization of resting state connectivity abnormalities 
in schizophrenia patients. Frontiers in Psychiatry, 11, 608154. 
[DOI:10.3389/fpsyt.2020.608154] [PMID] 

Krauss, A., Bernard, J., & Okusaga, O. O. (2022). Challenges and 
considerations in treating negative and cognitive symptoms 
of schizophrenia spectrum disorders. Federal Practitioner, 
39(11), 448-454. [DOI:10.12788/fp.0338] [PMID] 

Luan, J., Zhang, C., Xu, B., Xue, Y., & Ren, Y. (2020). The pre-
dictive performances of random forest models with limited 
sample size and different species traits. Fisheries Research, 227, 
105534. [DOI:10.1016/j.fishres.2020.105534]

Mahato, S., Pathak, L. K., & Kumari, K. (2021). Detection of schiz-
ophrenia using EEG signals. In R. Satpathy, T. Choudhury, S. 
Satpathy, S. Nandan Mohanty & X. Zhang (Eds.), Data Ana-
lytics in Bioinformatics (pp. 359-390). Massachusetts: Scrivener 
Publishing LLC. [DOI:10.1002/9781119785620.ch15]

McGlashan, T. H. (1999). Duration of untreated psychosis 
in first-episode schizophrenia: Marker or determinant of 
course? Biological Psychiatry, 46(7), 899-907. [DOI:10.1016/
S0006-3223(99)00084-0] [PMID]

McGrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizo-
phrenia: A concise overview of incidence, prevalence, and 
mortality. Epidemiologic Reviews, 30, 67-76. [DOI:10.1093/epi-
rev/mxn001] [PMID]

Metting van Rijn, A. C., Peper, A., & Grimbergen, C. A. (1990). 
High-quality recording of bioelectric events: Part 1. Inter-
ference reduction, theory and practice. Medical & Biologi-
cal Engineering & Computing, 28(5), 389–397. [DOI:10.1007/
BF02441961] [PMID]

Millier, A., Schmidt, U., Angermeyer, M. C., Chauhan, D., Mur-
thy, V., & Toumi, M., et al. (2014). Humanistic burden in schiz-
ophrenia: a literature review. Journal of Psychiatric Research, 54, 
85–93. [DOI:10.1016/j.jpsychires.2014.03.021] [PMID]

Mohammadi, A., Amooeian, V. G., & Rashidi, E. (2018). Dys-
function in brain-derived neurotrophic factor signaling path-
way and susceptibility to schizophrenia, Parkinson’s, and 
Alzheimer’s diseases. Current Gene Therapy, 18(1), 45-63. [DOI
:10.2174/1566523218666180302163029] [PMID]

Narayanan, B., O'Neil, K., Berwise, C., Stevens, M. C., Calhoun, 
V. D., & Clementz, B. A., et al. (2014). Resting state electroen-
cephalogram oscillatory abnormalities in schizophrenia and 
psychotic bipolar patients and their relatives from the bipo-
lar and schizophrenia network on intermediate phenotypes 
study. Biological Psychiatry, 76(6), 456–465. [DOI:10.1016/j.
biopsych.2013.12.008] [PMID] 

Nieuwenhuis, M., van Haren, N. E., Hulshoff Pol, H. E., Cahn, 
W., Kahn, R. S., & Schnack, H. G. (2012). Classification of 
schizophrenia patients and healthy controls from structural 
MRI scans in two large independent samples. NeuroIm-
age, 61(3), 606–612. [DOI:10.1016/j.neuroimage.2012.03.079] 
[PMID]

Orsolini, L., Pompili, S., & Volpe, U. (2022). Schizophrenia: 
A narrative review of etiopathogenetic, diagnostic and 
treatment aspects. Journal of Clinical Medicine, 11(17), 5040. 
[DOI:10.3390/jcm11175040] [PMID] 

Valizadeh., et al. (2025). DCM-ML: An Electroencephalography-based Classifier. BCN, 16(6), 1081-1096.

http://bcn.iums.ac.ir/
https://doi.org/10.3390/a14050139
https://doi.org/10.1001/jamapsychiatry.2018.0623
https://doi.org/10.1001/jamapsychiatry.2018.0623
https://www.ncbi.nlm.nih.gov/pubmed/29800949
https://doi.org/10.1038/s41398-020-00963-7
https://www.ncbi.nlm.nih.gov/pubmed/32839449
https://doi.org/10.1093/schbul/15.2.233
https://www.ncbi.nlm.nih.gov/pubmed/2749186
https://doi.org/10.1080/21642583.2014.956265
https://doi.org/10.1080/21642583.2014.956265
https://doi.org/10.1093/schbul/sbt072
https://www.ncbi.nlm.nih.gov/pubmed/23754836
https://doi.org/10.3389/fpsyt.2020.00575
https://www.ncbi.nlm.nih.gov/pubmed/32670108
https://doi.org/10.3389/fpsyt.2020.00876
https://www.ncbi.nlm.nih.gov/pubmed/32982810
https://doi.org/10.1109/34.709601
https://doi.org/10.1177/1359786810385490
https://www.ncbi.nlm.nih.gov/pubmed/20923923
https://doi.org/10.1016/j.pscychresns.2017.08.003
https://www.ncbi.nlm.nih.gov/pubmed/29122402
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://www.ncbi.nlm.nih.gov/pubmed/30496104
https://doi.org/10.1093/schbul/sbs130
https://www.ncbi.nlm.nih.gov/pubmed/23172003
https://doi.org/10.3389/fpsyt.2020.608154
https://www.ncbi.nlm.nih.gov/pubmed/33329160
https://doi.org/10.12788/fp.0338
https://www.ncbi.nlm.nih.gov/pubmed/36582498
https://doi.org/10.1016/j.fishres.2020.105534
https://doi.org/10.1002/9781119785620.ch15
https://doi.org/10.1016/S0006-3223(99)00084-0
https://doi.org/10.1016/S0006-3223(99)00084-0
https://www.ncbi.nlm.nih.gov/pubmed/10509173
https://doi.org/10.1093/epirev/mxn001
https://doi.org/10.1093/epirev/mxn001
https://www.ncbi.nlm.nih.gov/pubmed/18480098
https://doi.org/10.1007/BF02441961
https://doi.org/10.1007/BF02441961
https://www.ncbi.nlm.nih.gov/pubmed/2277538
https://doi.org/10.1016/j.jpsychires.2014.03.021
https://www.ncbi.nlm.nih.gov/pubmed/24795289
https://doi.org/10.2174/1566523218666180302163029
https://doi.org/10.2174/1566523218666180302163029
https://www.ncbi.nlm.nih.gov/pubmed/29512462
https://doi.org/10.1016/j.biopsych.2013.12.008
https://doi.org/10.1016/j.biopsych.2013.12.008
https://www.ncbi.nlm.nih.gov/pubmed/24439302
https://doi.org/10.1016/j.neuroimage.2012.03.079
https://www.ncbi.nlm.nih.gov/pubmed/22507227
https://doi.org/10.3390/jcm11175040
https://www.ncbi.nlm.nih.gov/pubmed/36078967


Basic and Clinical

1096

November & December 2025, Vol 16, No. 6

Paraschiv, E. A., Băjenaru, L., Petrache, C., Bica, O., & Nicolau, 
D. N. (2024). AI-driven neuro-monitoring: advancing schizo-
phrenia detection and management through deep learning 
and EEG analysis. Future Internet, 16(11), 424. [DOI:10.3390/
fi16110424]

Pinheiro, A. P., Schwartze, M., Amorim, M., Coentre, R., Levy, 
P., & Kotz, S. A. (2020). Changes in motor preparation affect 
the sensory consequences of voice production in voice hear-
ers. Neuropsychologia, 146, 107531. [DOI:10.1016/j.neuropsy-
chologia.2020.107531] [PMID]

Rani, P. E., & Pavan, B. V. (2023). Multi-class EEG classification 
for schizophrenia. AIMS Biophysics, 10(3), 399-414. [Link]

Rao, A. P., Ranjan, R., Sahana, B. C., & Kumar, G. P. (2025). Schi-
zoLMNet: A modified lightweight MobileNetV2- architecture 
for automated schizophrenia detection using EEG-derived 
spectrograms. Physical and Engineering Sciences in Medicine, 
48(1), 285–299. [DOI:10.1007/s13246-024-01512-y] [PMID]

Rubinov, M., & Bullmore, E. (2013). Schizophrenia and abnor-
mal brain network hubs. Dialogues in Clinical Neuroscience, 
15(3), 339-349. [DOI:10.31887/DCNS.2013.15.3/mrubinov] 
[PMID] 

Sahu, G., Karnati, M., Gupta, A., & Seal, A. (2023). SCZ-SCAN: 
An automated Schizophrenia detection system from electro-
encephalogram signals. Biomedical Signal Processing and Con-
trol, 86, 105206. [DOI:10.1016/j.bspc.2023.105206]

Shaffi, N., Mahmud, M., Hajamohideen, F., et al. (2022). ML 
and DL for schizophrenia detection. In ICTCS (pp. 849-866). 
Springer. [Link]

Shen, M., Wen, P., Song, B., & Li, Y. (2023). Automatic identifica-
tion of schizophrenia based on EEG signals using dynamic 
functional connectivity analysis and 3D convolutional neu-
ral network. Computers in Biology and Medicine, 160, 107022. 
[DOI:10.1016/j.compbiomed.2023.107022] [PMID]

Siuly, S., Li, Y., Wen, P., & Alcin, O. F. (2022). SchizoGoogLeNet: 
The googlenet-based deep feature extraction design for au-
tomatic detection of schizophrenia. Computational Intelligence 
and Neuroscience, 2022, 1992596. [DOI:10.1155/2022/1992596] 
[PMID] 

Srinivasan, S., & Johnson, S. D. (2024). A novel approach to schiz-
ophrenia detection: Optimized preprocessing and deep learn-
ing analysis of multichannel EEG data. Expert Systems with 
Applications, 246, 122937. [DOI:10.1016/j.eswa.2023.122937]

Stunnenberg, K. R., Hendriks, R. C., Vroegop, J. L., Adank, M. 
L., & Hunyadi, B. (2024). Tensor decomposition-based data fu-
sion for biomarker extraction from multiple EEG experiments. 
Paper presented at ICASSP 2024 - 2024 IEEE International 
Conference on Acoustics, Speech and Signal Processing 
(ICASSP), Seoul, Korea, 14-19 April 2024. [DOI:10.1109/
ICASSP48485.2024.10448073]

de O. Toutain, T. G. L., Miranda, J. G. V., do Rosário, R. S., & 
de Sena, E. P. (2023). Brain instability in dynamic functional 
connectivity in schizophrenia. Journal of Neural Transmission, 
130(2), 171-180. [DOI:10.1007/S00702-022-02579-1]

Swastika, N. (2022). Diagnosis for schizophrenia patients in EEG 
signals (Doctoral dissertation). [Link]

Valizadeh, S. A., Liem, F., Mérillat, S., Hänggi, J., & Jäncke, L. 
(2018). Identification of individual subjects on the basis of 

their brain anatomical features. Scientific Reports, 8(1), 5611. 
[DOI:10.1038/s41598-018-23696-6] [PMID] 

Valizadeh, S. A., Riener, R., Elmer, S., & Jäncke, L. (2019). De-
crypting the electrophysiological individuality of the human 
brain: Identification of individuals based on resting-state EEG 
activity. NeuroImage, 197, 470–481 [DOI:10.1016/j.neuroim-
age.2019.04.005] [PMID]

Wang, H., Yang, F., & Luo, Z. (2016). An experimental study of 
the intrinsic stability of random forest variable importance 
measures. BMC Bioinformatics, 17, 60. [DOI:10.1186/s12859-
016-0900-5] [PMID] 

Yeh, T. C., Huang, C. C., Chung, Y. A., Park, S. Y., Im, J. J., & 
Lin, Y. Y., et al. (2023). Resting-state Eeg connectivity at high-
frequency bands and attentional performance dysfunction 
in stabilized schizophrenia patients. Medicina (Kaunas, Lithu-
ania), 59(4), 737. [DOI:10.3390/medicina59040737] [PMID] 

Zeltser, A., Ochneva, A., Riabinina, D., Zakurazhnaya, V., Tsu-
rina, A., & Golubeva, E., et al. (2024). EEG techniques with 
brain activity localization, specifically LORETA, and its appli-
cability in monitoring schizophrenia. Journal of Clinical Medi-
cine, 13(17), 5108.[DOI:10.3390/jcm13175108] [PMID] 

Zhang, H., & Wang, M. (2009). Search for the smallest random 
forest. Statistics and Its Interface, 2(3), 381. [DOI:10.4310/
SII.2009.v2.n3.a11] [PMID] 

Valizadeh., et al. (2025). DCM-ML: An Electroencephalography-based Classifier. BCN, 16(6), 1081-1096.

http://bcn.iums.ac.ir/
https://doi.org/10.3390/fi16110424
https://doi.org/10.3390/fi16110424
https://doi.org/10.1016/j.neuropsychologia.2020.107531
https://doi.org/10.1016/j.neuropsychologia.2020.107531
https://www.ncbi.nlm.nih.gov/pubmed/32553846
https://www.aimspress.com/article/doi/10.3934/biophy.2023021
https://doi.org/10.1007/s13246-024-01512-y
https://www.ncbi.nlm.nih.gov/pubmed/39760847
https://doi.org/10.31887/DCNS.2013.15.3/mrubinov
https://www.ncbi.nlm.nih.gov/pubmed/24174905
https://doi.org/10.1016/j.bspc.2023.105206
https://ouci.dntb.gov.ua/en/works/4bPPzjKv/
https://doi.org/10.1016/j.compbiomed.2023.107022
https://www.ncbi.nlm.nih.gov/pubmed/37187135
https://doi.org/10.1155/2022/1992596
https://www.ncbi.nlm.nih.gov/pubmed/36120676
https://doi.org/10.1016/j.eswa.2023.122937
https://doi.org/10.1109/ICASSP48485.2024.10448073
https://doi.org/10.1109/ICASSP48485.2024.10448073
https://repository.i3l.ac.id/handle/123456789/741
https://doi.org/10.1038/s41598-018-23696-6
https://www.ncbi.nlm.nih.gov/pubmed/29618790
https://doi.org/10.1016/j.neuroimage.2019.04.005
https://doi.org/10.1016/j.neuroimage.2019.04.005
https://www.ncbi.nlm.nih.gov/pubmed/30978497
https://doi.org/10.1186/s12859-016-0900-5
https://www.ncbi.nlm.nih.gov/pubmed/26842629
https://doi.org/10.3390/medicina59040737
https://www.ncbi.nlm.nih.gov/pubmed/37109695
https://doi.org/10.3390/jcm13175108
https://www.ncbi.nlm.nih.gov/pubmed/39274319
https://doi.org/10.4310/SII.2009.v2.n3.a11
https://doi.org/10.4310/SII.2009.v2.n3.a11
https://www.ncbi.nlm.nih.gov/pubmed/20165560

