Basic and Clinical

Research Paper

November & December 2025, Vol 16, No. 6

|®

DCM-ML: An Electroencephalography-based Classifier
for Early Diagnosis of Schizophrenia Based on Dynamic
Connectivity Matrices and Machine Learning Algorithms

Seyed Abolfazl Valizadeh' (5, Marcus Cheetham? (), Alireza Mohammadi*

1. Student Research Committee, Bagiyatallah University of Medical Sciences, Tehran, Iran.
2. Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
3. Neuroscience Research Center, Bagiyatallah University of Medical Sciences, Tehran, Iran.

Use your device to scan
and read the article online

[S{ETIETY Valizadeh, S. A., Cheetham, M., & Mohammadi, A. (2025). DCM-ML: An Electroencephalography-based
Classifier for Early Diagnosis of Schizophrenia Based on Dynamic Connectivity Matrices and Machine Learning
Algorithms. Basic and Clinical Neuroscience, 16(6), 1081-1096. http://dx.doi.org/10.32598/bcn.2025.2572.1

d - http:/dx.doi.org/10.32598/ben.2025.2572.1

Article info:

Received: 11 Aug 2025

First Revision: 08 Sep 2025
Accepted: 10 Oct 2025
Available Online: 01 Nov 2025

Keywords:

Event-related potentials (ERP),
Diagnosis, Schizophrenia
(SZ), Effective connectivity,
Machine learning (ML),
Classification

* Corresponding Author:
Alireza Mohammadi, PhD.

ABSTRACT

Introduction: Early diagnosis of schizophrenia (SZ) remains challenging due to the subjective
nature of clinical assessments and the heterogeneity of symptoms. There is a pressing need for
objective, scalable, and non-invasive diagnostic tools to complement traditional methods. This
study aimed to propose a machine learning (ML) framework that utilizes dynamic connectivity
matrices (DCMs) derived from event-related potentials (ERPs) for SZ classification.

Methods: ERP data from 81 participants, including 49 patients with SZ and 32 healthy
controls, were sourced from a publicly accessible and anonymized dataset. Granger causality
was employed to compute 64x64 directional connectivity matrices, capturing inter-electrode
information flow. Feature selection through t-tests identified 2,777 significant connectivity
differences (P<0.05), which were subsequently used to train a random forest (RF) classifier.
To address class imbalance, balanced training subsets were created. Additionally, the model’s
robustness was evaluated across varying levels of white Gaussian noise (0% to 45%).

Results: The RF classifier demonstrated high diagnostic accuracy (99.24%), sensitivity
(98.34%)), specificity (99.73%), and an F1-score of 98.91% across 100 iterations, effectively
minimizing the risks of overfitting. Its performance remained robust across various train-test
splits and substantial noise levels, with an F1-score of 92% even with 45% white Gaussian
noise. Feature selection significantly enhanced noise resilience and classification stability.
Connectivity analysis revealed that central (Cz, FCz), occipito-parietal (PO3, Oz), and
inferior (Iz) regions were key discriminators, indicating disrupted fronto-temporal and sensory
integration networks in individuals with SZ.

Conclusion: This study highlights the feasibility of ML-driven ERP connectivity analysis
as a non-invasive tool for early SZ detection. Achieving near-perfect accuracy, the model
demonstrates strong generalizability, interpretability, and clinical scalability, outperforming
deep learning counterparts while relying on a minimal, targeted feature set. These findings
underscore the diagnostic relevance of fronto-central and occipito-parietal connectivity
patterns. While promising as a non-invasive diagnostic adjunct, future validation on larger,
demographically diverse cohorts is essential.
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e A machine learning framework with ERP-based dynamic connectivity was used to classify SZ.

e Granger causality-derived connectivity at electrode level captured altered neural flow in SZ patients.

e Random forest classifier achieved 99% accuracy and maintained noise robustness.

o Single-trial ERP analysis preserved variability, enhancing SZ diagnostic sensitivity.

e Key discriminative features involved fronto-temporal and sensory integration hubs.

Plain Language Summary

Although the timely detection of schizophrenia (SZ) is crucial, it relies heavily on manual evaluation during clinical
assessment. However, the manual evaluation is prone to human error and is a time-consuming process. In this study,
we explored the feasibility of a novel approach to electroencephalography (EEG) dynamic analysis based on estimates
of functional or practical brain connectivity, combined with machine learning techniques, to aid early diagnosis of
schizophrenia. Using EEG and event-related potential (ERP) data, we assessed whether this approach can accurately
distinguish individuals with schizophrenia from those without schizophrenia. The results highlighted the feasibility of
machine learning-driven ERP connectivity analysis as a non-invasive tool for early schizophrenia detection. The model
demonstrated strong generalizability, interpretability, and clinical scalability, outperforming deep learning counterparts

while relying on a minimal, targeted feature set.

Introduction

chizophrenia (SZ) is a chronic mental disor-
der with a polygenic basis and an 80% heri-
tability rate. It is characterized by symp-
toms, such as hallucinations, delusions,
disorganized behavior, and progressive
cognitive impairments (Mohammadi et al.,
2018). It affects approximately 20 million
individuals worldwide (James et al., 2018). Early diag-
nosis and intervention can have a profound impact on
the lives of individuals affected. Early diagnosis allows
for prompt intervention of psychotic symptoms (e.g. hal-
lucinations, delusions, and disorganized thinking) before
they become more severe, improves outcomes and long-
term prognosis (e.g. daily life functioning, stability in so-
cial, academic, or work life), and prevents or delays re-
lapses and lessens the likelihood of hospital admissions
(Correll et al., 2018; Jadskeldinen et al., 2013; Mcgrath
etal., 2008; Millier et al., 2014). Early diagnosis can also
help to lessen the disabling aspects of the disorder (e.g.
cognitive impairments or social isolation) and improve
the quality of life (QoL) for patients and their families
(Hor & Taylor, 2010).

Although the timely detection of SZ is crucial, it relies
heavily on manual evaluation during clinical assessment

(Nieuwenhuis et al., 2012). This conventional approach
to clinical diagnosis is challenging due to the high het-
erogeneity of SZ (Orsolini et al., 2022). SZ can manifest
differently across individual patients and throughout the
disease, with some patients predominantly presenting
positive and others negative and cognitive symptoms
(Krauss et al., 2022). SZ can also show symptom over-
lap with other psychiatric disorders (e.g. depression),
making differential diagnosis difficult without a compre-
hensive understanding of the patient’s medical history
(Krauss et al., 2022). The subjective nature of manual
evaluation is prone to human error and time-consuming
(Devries & Delespaul, 1989).

Symptom onset in SZ typically occurs during adoles-
cence and early adulthood (ages 14-30). The time be-
tween symptom onset and diagnosis and treatment is
consistently one of the best predictors of later prognosis
(McGlashan, 1999). The prodromal stage, during which
initial symptoms may manifest, is a critical period for
identifying and intervening in the progression of SZ.
While cognitive symptoms can be apparent even before
this stage, their detection for diagnostic purposes is es-
pecially challenging due to their ambiguity, as they are
often mild or nonspecific.
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When symptoms are ambiguous, individuals at risk of
SZ may show irregularities in resting-state and task-re-
lated electroencephalography (EEG) activity (De Bock
et al., 2020; Narayanan et al., 2014). These can include
alterations in the temporal dynamics, coordination,
and functional connectivity between different brain re-
gions (e.g. instability in dynamic functional connectiv-
ity, hypo- and hyper-connectivity) compared to healthy
individuals (Aubonnet et al., 2024; Cinelli et al., 2018;
Koshiyama et al., 2020; de O. Toutain, et al., 2023; Yeh
et al., 2023). Altered brain activity patterns may provide
valuable insights into the likelihood of developing SZ.

We explored the feasibility of a novel approach to
EEG dynamic analysis based on estimates of functional
or practical brain connectivity, combined with machine
learning (ML) techniques, to aid early diagnosis of SZ.
The rationale for applying EEG dynamic analysis for
SZ detection is that SZ may be considered as a disorder
of brain network organization (Rubinov & Bullmore,
2013). In the present study, we reapplied a novel fea-
ture extraction approach, dynamic connectivity matrices
(DCM), and utilized the generated features in combina-
tion with an ML algorithm previously developed to iden-
tify, based on their unique patterns of dynamic functional
connectivity in EEG (Valizadeh et al., 2019). Standard
EEG data were acquired from a clinically well-charac-
terized cohort of adult patients. Using EEG and event-re-
lated potential (ERP) data, the expectation was that this
approach to EEG dynamic analysis would accurately
distinguish individuals with SZ from those without. To
inform further development of this approach, we asked
which combination of metrics is most informative for ac-
curately classifying SZ. The evaluation criteria were the
accuracy, sensitivity, and specificity of ML-based clas-
sification of clinically diagnosed patients with SZ and
healthy individuals.

Materials and Methods
Dataset

We conducted a retrospective analysis of EEG data
from 81 participants, sourced from a publicly accessible,
Kaggle dataset. The EEG dataset used in this study was
obtained from a publicly Kaggle dataset. According to
the dataset description, informed consent was obtained
from all participants for further use, and the data were
fully anonymized. Therefore, no additional ethical ap-
proval or consent was required for its use in this study.
However, all methods and analyses were conducted in
accordance with the relevant guidelines and regulations,
and the study protocol was approved by the Research
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Ethics Committee of Baqiyatallah University of Medi-
cal Sciences. This dataset includes EEG signals acquired
from 49 SZ patients (41 males, between 22 and 63 years,
Mean+SD 40+13.5) (17 in early stages and 32 in chron-
ic stages of the disorder) and 32 healthy controls (26
males, between 22 and 63 years, MeantSD 38.2+13).
Data were acquired while participants performed a pas-
sive (auditory-only) condition of a basic auditory listen-
ing task. All patients were clinically diagnosed using the
structured clinical interview for the diagnostic and statis-
tical manual of mental disorders, fourth edition (DSM-
IV) (SCID). Patients and healthy controls had no other
diagnoses.

Data acquisition

EEG data were captured with a 64-channel ActiveTwo
Biosemi system (Metting van Rijn et al., 1990) and cap,
using the 10-10 international system, while participants
engaged in the auditory listening task. This task entailed
the presentation of 100 auditory stimuli (1000 Hz tones
at 80 dB SPL for 50 ms.) with inter-stimulus intervals
varying between 1000 and 2000 ms. EEG signals were
recorded continuously and divided into separate ERP ep-
ochs of 3000 ms. Those were synchronized with the on-
set of each tone. The dataset also includes data acquired
from an auditory-motor task (Ford et al., 2014; Pinheiro
et al., 2020), which was not used in the present study.
The data were collected at a sampling frequency of 1024
Hz and down-sampled to 512 Hz.

EEG preprocessing and epoching

The EEG dataset was originally preprocessed and
cleaned for a previously published study (Barros et
al., 2022; Ford et al., 2014) and further processed and
cleaned by the same authors prior to public release. Uti-
lizing a publicly available dataset promotes research
transparency, facilitates reproducibility, and supports
further investigation by other researchers.

The preprocessing steps included re-referencing to av-
eraged earlobe electrodes, band-pass filtering between
0.5 and 15 Hz, and independent component analysis to
identify and remove ocular and muscular artifacts. A
regression-based algorithm was applied to correct for
eye movement and blink activity across all scalp chan-
nels. Artifact rejection was performed using a £100 pV
threshold at each electrode, and non-physiological chan-
nels were interpolated based on established spatial crite-
ria. These procedures ensured high-quality, artifact-free
EEG data suitable for connectivity analysis.

Valizadeh., et al. (2025). DCM-ML: An Electroencephalography-based Classifier. BCN, 16(6), 1081-1096.
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For this study, the preprocessed EEG signals were seg-
mented into 3000-ms epochs, each time-locked to the
onset of the auditory stimulus. Baseline correction was
applied using the window beginning 600 ms to 500 ms
before tone onset.

Signal processing and epochs

Unlike traditional ERP analysis, which relies on aver-
aging epochs to extract features, our approach treated
each epoch as an independent sample. This single-trial
analysis significantly expanded the dataset size, enabling
the model to capture subtle inter-trial variability in neural
activity. This is advantageous for studying complex neu-
rological disorders, such as SZ, where subtle differences
in neural responses may be obscured by averaging. By
analyzing each epoch individually, finer-grained neural
patterns were sought in line with recent advancements
that emphasize the importance of trial-to-trial variabil-
ity for capturing brain function (Huang et al., 2018; Ho,
1998; Valizadeh et al., 2018).

The epochs were 3000 ms in length and time-locked to
the onset of the auditory stimulus (i.e. the tone). Granger
causality was computed for the 3000-ms epoch, yielding
64x64 matrices for each epoch. The workflow illustrates
the processing of EEG, including cleaning and epoching
into stable segments representing event-related potentials
(ERPs) for both training and testing. Coherence Granger
causality was applied to each epoch to assess directional
information flow between 64 EEG electrodes in the time
domain, producing a 64x64 coherence matrix indicative
of pairwise electrode connectivity. These matrices served
as features for a random forest (RF) classifier. Classifica-
tion assessment involved a voting process across partici-
pants, trained on the training participants, and evaluated
on each event in the test participant separately.

Feature extractor

Our classification framework is based on a novel and
previously validated subject identification method (Val-
izadeh et al., 2019). This method uses surface-level (elec-
trode-based) functional connectivity in the time domain,
computed over short, overlapping temporal windows,
and generates temporal DCMs that capture the evolving
patterns of interaction among EEG electrodes. Within
each temporal window, the statistical relationship, wheth-
er correlational or causal, is quantified between pairs of
EEG time series. This dynamic representation enables
fine-grained tracking of brain network changes over time
and has been adopted in the present study as input fea-
tures for classifying SZ-related neural activity.

Basic and Clinical

The clean EEG data were divided into epochs, each
deemed sufficiently stable for connectivity analysis.
Within each epoch, coherence Granger causality was
used to assess interactions between EEG signals from
different electrodes in the time domain (Figure 1). Cau-
sation, or directional connectivity, was used to evaluate
the extent to which the activity in one EEG electrode
could predict the activity in another. All analyses were
performed in the time domain, except for the initial fil-
tering stage. An iterative method was employed to de-
termine the interaction between each seed electrode and
every other electrode, producing a 64x64 matrix that il-
lustrates the pairwise connectivity among all electrode
pairs.

Granger causality is a statistical method used to assess
whether one time series can predict another. If past val-
ues of variable X significantly improve the prediction
of variable Y— beyond what is possible using Y’s own
history—X is said to “Granger-cause” Y. This is typi-
cally evaluated using a linear regression model, where
the target time series is regressed on its own past values
and those of another series; statistical significance of the
latter indicates predictive influence.

In EEG analysis, Granger causality is applied to iden-
tify directional interactions between brain regions, pro-
viding insight into neural connectivity associated with
cognitive processes and disorders such as SZ (Gao et al.,
2020; Huang et al., 2018). Importantly, Granger causal-
ity reflects predictive, not necessarily direct, causal re-
lationships, suggesting information flow from one elec-
trode to another.

Granger Causality is computed as follows:
Model specification:
Two time series, X and Y, are examined.

A regression model is constructed for Y based on its
previous values in conjunction with the past values of Y.

Lag selection: Identify the appropriate lags for the time
series. This can be achieved using metrics, such as the

Akaike information criterion (AIC) or the Bayesian in-
formation criterion (BIC).

Regression analysis: Conduct two regression analyses:
Model 1:

Yt=a’+a'Yt—'+a?Yt—2+..+an¥Yt—n
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Figure 1. Time-domain electroencephalography (EEG) connectivity analysis using coherence granger causality for EERP clas-

sification
Model 2: Model 2 includes past values of X.

Yt=a®+alYt—-14+a?Yt-24+....+an¥t-
n+ctXt—1+c2Xt—>+..+cnXt—n

Hypothesis testing: The null hypothesis H,, posits that
X does not Granger-cause Y (i.e. the coefficients cl, 2,
... are equal to zero).

Implement an F-test to compare the two models. If the
inclusion of X substantively enhances the predictive ca-
pacity for Y, the null hypothesis is rejected, indicating
that X Granger-causes Y.

To ensure consistency and avoid model complexity
or overfitting, we did not perform individual model se-
lection using information criteria, such as the Bayesian
Information Criterion (BIC) or the Akaike Information
Criterion (AIC). Instead, we set the model lag order to
a fixed value of 10 across all participants and condi-
tions. This approach simplifies the analysis pipeline and
ensures cross-subject comparability while remaining
within a range adequate to capture relevant temporal de-
pendencies in EEG time series data.

ML procedures

The number of participants in each group is unbal-
anced, with 32 healthy individuals and 49 individuals
with SZ. To prevent unbalanced learning, we used the
healthy control (HC) sample, selected half for training,
and matched the SZ group with an equal number of par-
ticipants. This led to 16 participants from each group
being randomly selected for training. We subsequently
categorized the remaining healthy participants and indi-
viduals with SZ. This approach reduces the classifier’s
performance but improves its reliability when evaluat-
ing each additional participant. The classifiers are fed di-
rectly by the connectivity matrices. Every training step,
along with the classifiers, was performed on the training
set. The number of epochs for each participant remains
the same.

To mitigate the potential for overfitting, a particular
concern in smaller datasets with k-fold cross-validation,
we employed a 50/50 train-test split. This approach
aimed to maximize data utilization while minimizing the
risk of overfitting. Prior to classification, a feature se-
lection phase was conducted to refine the feature space
and potentially enhance model performance. Indepen-
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dent two-sample t-tests were performed on the train-
ing datasets to identify connectivity features exhibiting
statistically significant differences (P<0.05) between the
defined groups: HC and individuals with SZ. Only these
features were retained AS input features for the classifi-
cation algorithms.

This feature selection approach was designed to reduce
dimensionality, minimize noise, and improve model
performance by focusing on the most salient and dis-
criminatory features. This enhances the model’s ability
to accurately categorize individuals into their respective
diagnostic groups and its interpretability by highlighting
neural connectivity patterns associated with SZ.

The feature set comprised 64x64x100 epochs, indicat-
ing that each participant contributed 100 samples, each
with 64x64 features. Consequently, the training set for
each class consisted of 16x100 samples, each with 1 *
4096 elements (i.e. a 1x4096 feature vector). The final
training set was structured as a matrix with 3200 rows
(samples) and 4096 columns (connections). An addition-
al column was appended to the data as the class label, in-
dicating group membership (SZ or non-SZ). A t-test was
conducted based on this class label. The classification of
each epoch within the test set was performed indepen-
dently. A participant was classified as SZ if a majority
of epochs (at least 51 out of 100) were labeled as SZ;
otherwise, they were classified as non-SZ.

Classification

The classification process was performed on all test
epochs. The classification set was determined according
to the following criteria: Participants were labeled SZ
or non-SZ based on the majority classification of their
epochs. Those with an equal number of SZ and non-SZ
epochs would have been designated as unknown; how-
ever, no participants fell into this category in the current
dataset.

Classifier

The RF algorithm (Ho, 1998) is a robust ML algorithm
and particularly effective for classification tasks, includ-
ing medical diagnosis prediction. It operates by con-
structing an ensemble of decision trees, each trained on a
random subset of the data. This bootstrapping approach
ensures that each tree learns diverse aspects of the data,
mitigating overfitting and improving generalization. In
predicting, every tree in the forest votes, and the most
common class or the average prediction is selected as the

Basic and Clinical

result. This collective characteristic provides multiple
benefits (Valizadeh et al., 2019):

Great precision: The combined knowledge of several
trees frequently results in exact predictions.

Resilience to noise: The algorithm remains strong
against noisy data and outliers because of the ensemble’s
averaging impact.

Evaluation of feature importance: RF offers insights
into the significance of various features, assisting in fea-
ture selection and aiding in comprehending the funda-
mental patterns present in the data.

Managing absent data: It efficiently manages absent
data in the dataset.

Scalability: RF effectively manages extensive datasets,
rendering it appropriate for practical applications.

Classification assessment

Accuracy assesses the overall correctness of a model’s
predictions, i.e. the ratio of correctly classified cases to
the total number of instances. Although high accuracy
often suggests strong performance, it can be deceptive
in imbalanced datasets where one class greatly exceeds
the other. Sensitivity, also known as recall, measures
the model’s ability to accurately identify positive cases,
which is essential when the penalty for failing to detect a
positive instance is significant. On the other hand, speci-
ficity measures the model’s ability to accurately identify
negative instances, which is essential when misclassify-
ing a negative instance can lead to serious outcomes.
The Fl-score, the harmonic mean of precision and re-
call, provides a single metric that balances both factors,
especially useful for imbalanced datasets.

Selecting the appropriate metric is related to accurately
detecting both positive and negative cases. Note that
there is frequently a compromise between sensitivity and
specificity; enhancing one usually results in a decline of
the other. In addition, accuracy may be misleading in im-
balanced datasets, as metrics such as sensitivity, speci-
ficity, and F1-score provide a more nuanced assessment
of model effectiveness.

An additional strategy was implemented to evaluate
the robustness of the classification outcomes. This strat-
egy is based on the following considerations. If a neural
network is trained to recognize stimuli, its performance
should remain consistent when identifying stimuli, such

Valizadeh., et al. (2025). DCM-ML: An Electroencephalography-based Classifier. BCN, 16(6), 1081-1096.
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95% ClI
Feature Selection Metrics MeantSD

Lower Upper

Sensitivity 67.78+1.79 67.42 68.14

Specificity 98.73+0.29 98.67 98.73

All features

F1 Score 87.67+0.79 86.88 87.22

Accuracy 87.05+0.86 87.51 87.84

Sensitivity 98.34+0.16 98.3 98.38

Specificity 99.73+0.05 99.72 99.74

Selected feature

F1 Score 98.91+0.1 98.89 98.93

Accuracy 99.24+0.07 99.23 99.26

as faces, from various angles, under different lighting
conditions, or when presented with partial facial fea-
tures (Valizadeh et al., 2018, Valizadeh et al., 2019).
This means that the classifier must retain accuracy even
when target stimuli are altered or degraded. To replicate
these scenarios, white Gaussian noise was incrementally
added to the test dataset’s connectivity matrices. Initially,
the classification analysis was conducted without noise
(0% noise level). Subsequently, noise was linearly added
to all features in increments of 5% and progressing to
45%. This process resulted in nine distinct ten conditions
(0%, 5%, 10%, 15%, ..., 45%), each subjected to sepa-
rate classification evaluations.

Results

The RF model showed very high overall performance
through various assessment metrics, evaluated over 100
iterations to reduce the impact of overfitting and ran-
dom effects (Table 1). Sensitivity, a metric reflecting the
model’s ability to correctly identify positive instances,
reached 0.98, with a 95% confidence interval (CI) of
98.3440.04%. This indicates that the model was highly
accurate in detecting the target condition when present.
Similarly, specificity, which evaluates the model’s abil-
ity to correctly identify negative instances, achieved a
perfect score of 1.00 with 99.73+0.01% CI, demonstrat-
ing that the model did not mislabel any negative cases.
The F1 score, balancing precision and recall, was also
high at 0.99 with 98.91+0.02% CI, emphasizing the
model’s strong predictive capacity. Finally, the overall
accuracy of the model, determined as the proportion of
accurate predictions, was 0.99 (99.24+0.02%), indicat-

ing that the model generated highly accurate predictions
on the dataset.

Test train rate

Figure 2 shows the impact of the test rate on classifica-
tion performance. Notably, the RF classifier shows very
high performance even with relatively limited training
sample sizes. This is consistent with previous studies
that highlighted the effectiveness of RF classifiers in
handling imbalanced datasets and in generalizing well to
unseen data (Fawagreh et al., 2014). However, when the
testing rate approaches very high levels (0.09 and 0.95),
classification accuracy declines. This trend shows that
while RF classifiers are robust against data distribution,
significant imbalances can still negatively influence their
performance. This finding aligns with current research,
suggesting that imbalanced datasets pose challenges
for ML models, potentially leading to biased results. To
confirm that the observed performance trends were not
due to random factors, we systematically adjusted the
test rate from 5% to 95% of the overall epochs (Table
2). This method enabled us to evaluate the classifier’s
strength across various data distributions. Despite a test
rate of 95%, the RF classifier obtained an F1-score of
92%, indicating its ability to handle imbalanced datasets.

Noise stability

Figure 3 shows how rising levels of white Gaussian
noise affect the classification performance of two sets of
features: “All features” and “selected features noise was
progressively introduced to the connectivity matrices

Valizadeh., et al. (2025). DCM-ML: An Electroencephalography-based Classifier. BCN, 16(6), 1081-1096.
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Figure 2. Impact of the test/train rate on classification performance

Figure 3. Noise stability and classification performance
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Table 2. Impact of different test/train rates on random forrest classification performance

F1 Score
Test Rate
MeantSD F1 Score SD Lower CI Upper CI

0.05 1+0 1 1

0.10 0.99+0 0.99 1

0.15 0.99+0 0.99 0.99
0.20 0.99+0 0.99 0.99
0.25 0.99+0 0.99 0.99
0.30 0.99+0 0.99 0.99
0.35 0.99+0 0.99 0.99
0.40 0.99+0 0.99 0.99
0.45 0.99+0 0.99 0.99
0.50 0.99+0 0.99 0.99
0.55 0.99+0 0.99 0.99
0.60 0.98+0 0.98 0.98
0.65 0.98+0 0.98 0.98
0.70 0.97+0 0.97 0.97
0.75 0.98+0 0.98 0.98
0.80 0.98+0 0.98 0.98
0.85 0.97+0 0.97 0.97
0.90 0.94+0 0.94 0.94
0.95 0.92+0.01 0.92 0.92

of the test dataset, simulating scenarios in which target
stimuli are modified or compromised. The x-axis shows
the percentage of introduced noise, ranging from 0% (no
noise) to 45%, while the y-axis displays the F1-score, a
metric of classification accuracy. As the noise percent-
age increases, both feature sets exhibit a decline in F1-
score, indicating reduced classification effectiveness.
However, the “selected features” (blue line) demonstrate
greater resilience to noise, consistently achieving higher
F1 Scores than the “all features” set (red line) across all
noise levels. This suggests that the “selected features”
are more robust against the detrimental effects of noise
and provide more reliable classification, even when the
data is compromised.

This figure shows, for all (blue line) and selected fea-
tures (red line), the percentage of added noise, (ranging
from 0% [no noise] to 45%) on the x-axis, against the
F1-score (i.c. classification accuracy) on the y-axis. Er-
ror bars represent Cls of the F1-score calculated over
100 runs or folds.

Electrode contribution to classification

Through a comprehensive analysis of Granger cau-
sality across all 64x64 electrode pair combinations, we
identified 2,777 connections that exhibited statistically
significant differences between the HC and SZ groups (P
values ranging from 0.049 to 10-74) based on trained da-
tasets. Table 3 presents the most discriminatory Granger
causality combinations, characterized by particularly
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Table 3. Granger causality combinations significantly differentiating the healthy and SZ groups (E=Power of ten)

Rank Independent Dependent P Rank Independent Dependent P
1 PO3 Cz 4.61E-74 20 P7 FC3 1.05E-33
2 Fz Cz 5.81E-55 21 PO7 C1 1.82E-33
3 TP7 PO3 2.24E-54 22 Oz TP10 5.76E-33
4 PO3 FCz 7.41E-54 23 P7 Cc1 7.30E-33
5 TP7 C1 8.85E-51 24 C1 CP3 1.01E-32
6 T7 PO3 3.04E-48 25 PO3 FC3 2.33E-32
7 c5 PO3 3.41E-45 26 T7 Cc1 6.63E-32
8 PO3 FC1 6.17E-43 27 Fz PO3 6.95E-32
9 P3 FC1 4.51E-41 28 Oz Cc2 7.05E-32
10 FC5 PO3 1.00E-40 29 Iz FCz 1.82E-31
11 P3 Cz 2.67E-40 30 Oz FC2 4.72E-31
12 PO3 c2 2.98E-39 31 Cz CP4 4.96E-31
13 c3 POz 1.36E-37 32 P5 FC1 5.46E-31
14 Oz Cz 1.34E-35 33 P4 P2 1.50E-30
15 AF3 FC5 4.70E-35 34 Fz FCz 2.99E-30
16 o1 Cc2 1.35E-34 35 PO3 FC2 3.77E-30
17 o1 FCz 2.14E-34 36 POz FCz 3.87E-30
18 P3 FCz 3.70E-34 37 AF3 F5 6.32E-30
19 PO7 FCz 1.00E-33 38 Cz CP3 7.04E-30

robust statistical significance (P<10-30). To further in-
vestigate the regional brain areas most implicated in
these group differences, we created a frequency table.
This table is based on all Granger causality combinations
that demonstrate significant group separation (P<0.05).
It counts how often each electrode appears as either a
predictor or a predicted region across these significant
connections. The most frequently identified electrodes
from this process are presented in a subsequent table to
highlight key regions involved in connectivity altera-
tions in SZ.

Following the identification of the 2,777 statistically
significant Granger causality combinations that differ-
entiated the HC and SZ groups (P<0.05), a frequency
analysis was performed to determine the most relevant
electrode regions (Table 4). This table reports the top ten
electrodes ranked by their total frequency of appearance

in significant connections. For each electrode (column
1), the table shows its frequency as a predictor electrode
(column 2), its frequency as a predicted electrode (col-
umn 3), and the summed total frequency (column 4). A
higher total frequency indicates greater involvement in
group-discriminating Granger-causality relationships.

Discussion

The present study was guided by two primary research
questions: Is it possible to identify SZ using our novel
EEG-based ML classifier based on DCM, and which
combination of metrics is most informative for classify-
ing SZ? The DCM-ML approach identified SZ with a
very high degree of accuracy, approaching 100%. Our
findings indicate that only a subset of metrics is required
to achieve effective classification of individual partici-
pants, highlighting the efficiency and specificity of the
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Table 4. Frequency of electrode involvement in significant granger causality differences

Electrode Name Predictor Predicted

Cz 51 58
FCz 47 59

Iz 50 55
PO3 49 55
CP4 42 61
AF3 47 54

c1 45 56

o1 48 53
POz 54 46

selected features. These results underscore the potential
of using targeted metrics to enhance the precision of SZ
detection.

The RF model demonstrated very high performance
across various metrics. It achieved a sensitivity of 0.98
(98.34+0.04%), indicating its proficiency in accurately
identifying positive cases. In addition, it exhibited a
perfect specificity of 1.00 (99.73+0.01%), demonstrat-
ing its ability to correctly classify negative instances
without mislabeling. The model also achieved a high
F1 score of 0.99 (98.91+0.02%), indicating a strong
balance between precision and recall. Furthermore, the
overall accuracy was 0.99 (99.24+0.02%), which is
consistent with the model’s ability to generate highly

accurate predictions on the dataset. These results under-
score the potential of targeted metrics to enhance the
precision of SZ diagnosis.

This study also assessed the stability of the proposed
classification method under different conditions. The
introduction of white Gaussian noise led to a gradual,
but predictable, decline in classification performance.
At noise levels up to 10% of the data, the accuracy re-
mained above 95%, demonstrating considerable resil-
ience. However, beyond 10%, the accuracy decreased
more rapidly, highlighting the sensitivity of ERP-based
connectivity measures to excessive noise. This under-
scores the importance of stringent data-acquisition pro-
tocols and noise-reduction techniques in ERP studies.

Table 5. Comparative summary of studies using the button-tone-SZ dataset

Ref. Model and Features Performance
Mazroa et al. (2025) Cascaded Atrous Conv. netwo;l'js(i%ﬁ-AWFM); multi-scale adaptive 99.5% accuracy
Barros et al. (2022) Deep CNN (SzNet), smgle-trlgzl Egpz ﬁr;/; midline electrodes (Fz, FCz, 78% accuracy

Shaffi et al. (2023)
Srinivasan et al. (2024)
Rani et al. (2023)
Huang et al. (2018)

CNNs, classical ML (RF, SVM, LDA) Variable (75-85%)

Shen et al. (2023) Cross-mutual information in the alpha band and a 3D CNN 97.44% accuracy

Chen et al. (2024) Resting-state EEG and dynamic functional connectivity 73.1% accuracy

Abbreviations: ML: Machine learning; ERP: Event-related potentials; RF: Random forest; CA-AWFM: Cascaded Atrous convo-
lutional network; CNN: Convolutional neural network; EEG: Electroencephalography; SVM: Support vector machine; LDA:
Linear discriminant analysis.
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The RF classifier exhibited strong performance across
different training sample sizes, demonstrating its abil-
ity to generalize effectively even with limited data. This
finding is consistent with prior research, which has em-
phasized the robustness of RF classifiers in handling im-
balanced datasets and their capacity to maintain high ac-
curacy under constrained conditions. However, when the
testing rate approached extreme values (0.09 and 0.95),
classification accuracy declined. This suggests that while
RF classifiers are generally resilient to variations in data
distribution, significant imbalances can still adversely
affect their performance (Luan et al., 2020; Valizadeh et
al., 2018, 2019; Wang et al., 2016; Zhang et al., 2009).

Our findings on specific ERP components and inter-
electrode connectivity patterns offer valuable insights
into the neurophysiological underpinnings of SZ. No-
tably, our analysis revealed that a subset of electrodes
(Cz, FCgz, Iz, PO3, CP4, AF3, C1, Ol1, and POz) was
particularly influential in distinguishing individuals with
SZ from HC. This emphasis on a targeted set of elec-
trodes strikes a balance between diagnostic accuracy and
the practical considerations of clinical EEG procedures.

The prominence of central midline electrodes, particu-
larly Cz and FCz, in our findings aligns with the existing
literature, which emphasizes the role of these regions in
SZ pathophysiology. As highlighted in the literature, Cz
is consistently identified as a core component in optimal
electrode subsets for SZ detection, likely due to its sensi-
tivity to global neural dynamics and altered connectivity
patterns in resting-state paradigms (Becske et al., 2024;
Mabhato et al., 2021). The involvement of FCz, while
sometimes represented by the functionally proximal Fz
in standard montages, further supports the importance
of frontocentral activity in capturing auditory-evoked
anomalies and deficits related to auditory steady-state
responses in SZ (Hirano et al., 2020). These findings
suggest that disruptions in information processing and
sensory integration, often observed in SZ, are reflected
in the altered activity and connectivity of these central
and frontocentral regions.

The present study also identified other key electrodes,
including those in occipital (O1, POz), parietal (CP4),
and frontal (AF3) regions, as contributing to accurate
classification. The involvement of O1 aligns with evi-
dence of visual processing abnormalities and disruptions
of the default mode network in SZ (Becske et al., 2024;
Zeltser et al., 2024). While POz, CP4, and AF3 may not
have been as extensively studied in classification frame-
works, their inclusion in our model and their presence in
network analyses suggest their potential role in captur-
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ing specific aspects of the disorder, such as visuospatial
integration deficits (POz), right-lateralized connectivity
abnormalities (CP4), and prefrontal cortex dysfunction
(AF3). The inclusion of Cl1, near the primary somato-
sensory cortex, points towards possible sensorimotor in-
tegration abnormalities in SZ, though further research is
needed to validate its specific contribution to classifica-
tion models. The relative lack of direct evidence for Iz in
the literature suggests that it has limited diagnostic value
within current paradigms (Srinivasan et al., 2024). Taken
together, these results indicate that a distributed network
of brain regions, extending beyond the frontal cortex,
contributes to the neurophysiological signature of SZ.

Imbalanced datasets pose challenges in ML. The pres-
ent results align with existing literature in this regard
(Paraschiv et al., 2024). The observed decline in accu-
racy at very high testing rates highlights the potential for
biased outcomes when data distributions are significant-
ly skewed. This emphasizes the need to carefully consid-
er dataset composition and to apply strategies to mitigate
imbalance, such as resampling techniques or algorithmic
adjustments, to ensure the reliability and generalizability
of classification models.

Comparison of the model with other models

The dataset used in this study has been previously ana-
lyzed, using both traditional ML algorithms (Rani et al.,
2023; Shaffi et al., 2023; Srinivasan et al., 2024) and re-
cent deep learning methods (Paraschiv et al., 2024; Rao
et al., 2025; Sahu et al., 2023; Stunnenberg et al., 2024;
Swastika, 2022). These studies established performance
benchmarks and demonstrated the dataset’s value for de-
tecting neuropsychiatric disorders, such as SZ.

Although deep learning techniques have achieved high
accuracy (up to 97%), their complexity, large model siz-
es, and high computational demands often limit their ap-
plicability in time-sensitive, real-world clinical settings.

To address this limitation, this present study presents
a novel, computationally efficient ML model applied to
the same dataset. This approach achieves extremely high
classification accuracy (99.24%, 98.34%, and 99.73%)
without requiring deep hierarchical networks or dense
feature engineering. By extracting ERPs from a cogni-
tive auditory task, we observe task-related brain dynam-
ics and construct directional DCMs based on Granger
causality. This approach also accurately maps inter-elec-
trode information flow while preserving single-trial vari-
ability —an essential dimension usually lost to average-
based or resting-state methods.
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Compared to existing methods, our approach has sev-
eral advantages. For instance, Chen et al. (2024) used
resting-state EEG and dynamic functional connectivity
to achieve multi-class classification of various psychiat-
ric disorders with moderate accuracy (73.1%). However,
their method is based on averaged DFC states and does
not account for signal variability or noise resistance. In
contrast, our method relies on single-trial ERP data, re-
taining inter-epoch variability and exhibiting significant
robustness to noise with an F1-score of 92% even in the
presence of 45% Gaussian noise—a point entirely unex-
plored in their work.

Similarly, Shen et al. (2023) employ cross-mutual in-
formation in the alpha band and a 3D CNN to discrimi-
nate SZ from resting-state EEG with 97.74% accuracy.
Their approach is practical but relies on undirected,
frequency-specific connectivity rather than the temporal
specificity our ERP-based paradigm enables. Our model
not only improves accuracy but also offers greater inter-
pretability and clinical utility by selecting directionality
patterns of connectivity and electrode-level biomarkers,
particularly in fronto-central and occipito-parietal re-
gions that are critical to SZ pathology.

A recent study (Ciprian et al., 2021) utilizing symbolic
transfer entropy on resting-state EEG also achieved high
performance (96.92%) with minimal features. In the
absence of task engagement, however, their approach
may fail to capture critical neurocognitive signatures
of SZ. Our DCM-based model, with direction-aware
task-evoked P300 responses, can extract functional
impairments in challenging cognitive conditions and is
facilitated by direction-aware DCMs, offering a more
comprehensive description of inter-regional interactions.
Again, our model’s noise resistance and ability to main-
tain subtle pathological signals through single-trial anal-
ysis position it as a more clinically viable instrument.

Compared to a range of recent studies that have em-
ployed both deep learning and classical ML techniques
for SZ detection using EEG or ERP data, the present
study offers a unique combination of interpretability, ro-
bustness, and clinical relevance. While several approach-
es report high classification accuracies, for example,
99.5% using a cascaded Atrous convolutional network
(CA-AWFM) (Mazroa et al., 2025) with multi-scale fea-
ture fusion and 99.9% via ERP feature integration and
demographics, these methods often rely on black-box ar-
chitectures or require multimodal data inputs, which can
limit clinical transparency and scalability. In contrast,
our study achieves comparably high accuracy (99.24%)
using a single-modality ERP dataset and a RF classifier

November & December 2025, Vol 16, No. 6

trained on features derived from directional DCMs com-
puted with Granger causality. This approach emphasizes
inter-regional information flow, a critical neural marker
often overlooked in frequency-domain or undirected
methods.

While methods, such as SchizoGoogLeNet and multi-
ple kernel learning, also achieve strong results (Castro et
al., 2014; Siuly et al., 2022), they typically depend on ei-
ther large-scale automated feature extraction or fusion of
multiple ERP components (e.g. P300, MMN), requiring
extensive preprocessing pipelines. In contrast, our model
is noise-resilient, maintaining a 92% F1-score even with
45% added Gaussian noise, and uses single-trial data to
preserve the subtle inter-epoch variability vital for iden-
tifying SZ-related deficits. In addition, our identification
of clinically relevant electrode-level patterns in fronto-
central and occipito-parietal regions makes the findings
more explainable and suitable for integration into real-
time or portable diagnostic tools.

While deep learning models, such as those of Mazroa
et al. (2025), demonstrate impressive levels of accuracy,
their complexity, limited interpretability, and reliance on
resting-state signals or black-box convolutional layers
hinder real-world deployment. In contrast, our method
balances accuracy, interpretability, and practicality, mak-
ing it well-suited for scalable clinical translation, espe-
cially for early SZ detection n settings with limited com-
putational resources and variable signal quality.

In summary, the present approach overcomes the limi-
tations of existing methods by combining interpretable
directionality features with a high-performance yet light-
weight classifier into a practical, scalable, and highly ac-
curate method for early SZ diagnosis.

This approach has the potential to bridge algorithmic
performance with real-world clinical usability.

Limitations and future work

From a clinical perspective, this approach shows prom-
ise as a complementary tool for early diagnosis of SZ.
At this stage, our study serves as a proof-of-concept of
our ML approach and the results should be interpreted
in terms of the feasibility of this ML-based classifier
for clinical application. The findings suggest that the
ML-based classifier may detect early-phase EEG abnor-
malities associated with SZ. However, predictive models
must also account for the variability in individual dis-
ease progression. Additionally, the current dataset does
not allow for an assessment of whether these abnormali-
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ties overlap with other mental health conditions. Future
development of the current approach should consider
disease progression and comorbidities within a demo-
graphically and clinically broader and more diverse data-
set than that used in this study to verify the method’s reli-
ability and clinical applicability. This could be supported
by acquiring longitudinal data to identify consistent pat-
terns of EEG abnormalities (and changes in these pat-
terns) prior to the prodromal phase, throughout the pro-
dromal transition, and after the onset of psychosis. These
data can serve as a foundation for developing reliable
predictive markers. Although the model’s high accuracy
is promising, understanding the specific features or pat-
terns that influence its predictions is crucial. Integrating
this approach with multimodal data (e.g. biomarkers and
clinical evaluations) may enhance diagnostic accuracy.
Further efforts to improve the model’s interpretability
will be essential for its integration into clinical practice.

Conclusion

The tested approach, using a novel EEG-based classi-
fier based on DCM and ML algorithms, marks a consid-
erable improvement in the use of dynamic EEG analysis
for SZ detection. The very high F1-score demonstrates
the capability of computational methods to support psy-
chiatric diagnostics, providing an objective and non-in-
vasive instrument for early detection and intervention.
This approach requires additional refinement and valida-
tion based on broader demographic and clinical datasets
to verify its reliability and applicability.
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