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ABSTRACT 
Purpose: The early diagnosis of schizophrenia (SZ) continues to be challenging due to the 

subjective nature of clinical assessments and the heterogeneity of symptoms. There is a 

pressing need for objective, scalable, and non-invasive diagnostic tools to complement 

traditional methods. This study proposes a machine learning (ML) framework that utilizes 

dynamic effective connectivity matrices (DCM) derived from event-related potentials (ERP) 

for SZ classification. 

Methods: ERP data from 81 participants, including 49 SZ patients and 32 healthy controls, 

sourced from a publicly accessible and anonymized dataset. Granger causality was employed 

to compute 64×64 directional connectivity matrices, capturing inter-electrode information 

flow. Feature selection through t-tests identified 2,777 significant connectivity differences (p 

< 0.05), which were subsequently used to train a Random Forest (RF) classifier. To address 

class imbalance, balanced training subsets were created. Additionally, the robustness of the 

model was evaluated under varying levels of white Gaussian noise (0% to 45%). 

Results: The Random Forest classifier demonstrated high diagnostic accuracy (99.24%), 

sensitivity (98.34%), specificity (99.73%), and an F1-score of 98.91% across 100 iterations, 

effectively minimizing the risks of overfitting. Its performance remained robust under varying 

train-test splits and substantial noise levels, with an F1-score of 92% even with 45% white 

Gaussian noise. Feature selection significantly enhanced noise resilience and classification 

stability. Connectivity analysis revealed that central (Cz, FCz), occipito-parietal (PO3, Oz), and 

inferior (Iz) regions were key discriminators, indicating disrupted fronto-temporal and sensory 

integration networks in individuals with schizophrenia. 

Conclusion: This study highlights the feasibility of ML-driven ERP connectivity analysis as a 

non-invasive tool for the early detection of SZ. Achieving near-perfect accuracy, the model 

demonstrates strong generalizability, interpretability, and clinical scalability, outperforming 

deep learning counterparts while relying on a minimal, targeted feature set. The findings 

underscore the diagnostic relevance of fronto-central and occipito-parietal connectivity 

patterns. While promising as a non-invasive diagnostic adjunct, future validation on larger, 

demographically diverse cohorts is essential. 

Keywords: ERP, Diagnosis, Schizophrenia, Effective Connectivity, Machine Learning, Classification. 
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Introduction 

 
Schizophrenia (SZ) is a chronic mental disorder with a polygenic basis and 

an 80% heritability rate. It is characterized by symptoms such as hallucinations, 

delusions, disorganized behavior, and progressive cognitive impairments (1). It 

affects approximately 20 million people worldwide (2). Early diagnosis and 

intervention can significantly impact the lives of affected individuals. Early 

diagnosis allows for prompt intervention of psychotic symptoms (e.g., 

hallucinations, delusions, and disorganized thinking) before they become more 

severe, improves outcomes and long-term prognosis (e.g., daily-life 

functioning, stability in social, academic, or work life), and prevents or delays 

relapses and lessens the likelihood of hospital admissions (3–6). Early diagnosis 

can also help to lessen the disabling aspects of the disorder (e.g., cognitive 

impairments or social isolation) and improve the quality of life for patients and 

family (7). 

While timely detection of schizophrenia is crucial, detection is heavily 

reliant on manual evaluation during clinical assessment (8). This conventional 

approach to clinical diagnosis is challenging due to the high heterogeneity of SZ 

(9). SZ can manifest differently across individual patients and throughout the 

disease, with some patients predominantly presenting positive and others 

negative and cognitive symptoms (10). SZ can also show symptom overlap with 

other psychiatric disorders (e.g., depression), making differential diagnosis 

difficult without a comprehensive understanding of the patient's medical 

history (10). The subjective nature of manual evaluation is prone to human 

error and time-consuming (11). 

Symptom onset in SZ typically occurs during adolescence and early 

adulthood (between 14 and 30). The time between symptom onset and 

diagnosis and treatment is consistently found to be one of the best predictors 

of later prognosis (12). The prodromal stage, during which initial symptoms 

may manifest, is a critical period for identifying and intervening in the 

progression of SZ. is While cognitive symptoms can be apparent even before 

this stage, detecting them for diagnostic purposes is especially challenging due 
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to their ambiguity, as they are often mild or nonspecific. 

When symptoms are ambiguous, individuals at risk of schizophrenia may 

show irregularities in resting-state and task-related EEG activity (13,14). These 

can include alterations in the temporal dynamics, coordination and functional 

connectivity between different brain regions (e.g., instability in dynamic 

functional connectivity, hypo- and hyper-connectivity) compared to healthy 

individuals (15–19). Altered brain activity patterns might provide valuable 

insights into the likelihood of developing schizophrenia. 

We explored the feasibility of a novel approach to EEG dynamic analysis 

based on estimates of functional or effective brain connectivity in combination 

with machine learning (ML) techniques and algorithms to aid early diagnosis of 

SZ. The rationale for applying EEG Dynamic Analysis for SZ detection is that SZ 

many be considered as a disorder of brain network organization (20). In the 

present study, we re-applied a novel feature extraction approach called 

Dynamic Connectivity Matrices (DCM) and utilized the generated features in 

combination with an ML algorithm that was previously developed to identify 

based on their unique patterns of dynamic functional connectivity in EEG (21). 

Standard EEG data were acquired from a clinically well-characterized cohort of 

adult patients. Using Electroencephalography (EEG) and Event Related 

Potential (ERP) data, the expectation was that this approach to EEG dynamic 

analysis would accurately distinguish individuals with schizophrenia from those 

without. To inform further development of this approach, we asked which 

combination of metrics is most informative for accurately classifying SZ. 

Evaluation criteria were the accuracy, sensitivity and specificity of ML-based 

classification of clinically diagnosed SZ patients and healthy individuals. 

Methods 

 
Dataset and Participants 

 
We conducted a retrospective analysis of EEG data from N=81 participants 

sourced from a publicly accessible and anonymized dataset 

(https://www.kaggle.com/datasets/broach/ button-tone-sz). The EEG dataset 

http://www.kaggle.com/datasets/broach/
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used in this study was obtained from a publicly available source 

(www.kaggle.com). According to the dataset description, informed consent 

had already been obtained from all participants for further use, and the data was 

fully anonymized. Therefore, no additional ethical approval or consent was 

required for its use in this study. However, all methods and analyses were 

conducted in accordance with the relevant guidelines and regulations, and the 

study protocol was approved by the Research Ethics Committee of Baqiyatallah 

University of Medical Sciences (Ethics code: IR.BMSU.BAQ.REC.1403.147). This 

dataset includes EEG signals acquired from n=49 SZ patients (41 male, between 

22 and 63 years, M= 40.0; SD=13.5) (17 in early stages and 32 in chronic stages 

of the disorder) and n= 32 healthy controls (26 male, between 22 and 63 years, 

M= 38.2; SD=13.0). Data was acquired while participants performed a passive 

(auditory-only) condition of a basic auditory listening task. All patients were 

clinically diagnosed using Structured Clinical Interview for DSM-IV (SCID). 

Patients and healthy controls had no other diagnoses. 

Data acquisition 

 
EEG data were captured with a 64-channel Active Two Biosemi system (22) 

and cap, following the 10-10 international system, while participants engaged 

in the auditory listening task. This task entailed the presentation of 100 

auditory stimuli (1000 Hz tones at 80 dB SPL for a duration of 50 ms.) with 

inter-stimulus intervals (ISIs) varying between 1000 and 2000 milliseconds. EEG 

signals were recorded continuously and divided into separate ERP epochs of 

3000 ms. Those were synchronized with the onset of each tone. The dataset 

also includes data acquired from an auditory-motor task (23,24) that were not 

used in the present study. The data were collected at a sampling frequency of 

1024 Hz and down sampled to 512 Hz. 

EEG Preprocessing and Epoching 

 
The EEG dataset was originally preprocessed and cleaned for a previously 

published study (23,25) and further processed and cleaned by the same 

http://www.kaggle.com/
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authors prior to public release. Utilizing a publicly available dataset promotes 

research transparency, facilitates reproducibility, and supports further 

investigation by other researchers. 

The preprocessing steps included re-referencing to averaged earlobe 

electrodes, band-pass filtering between 0.5 and 15 Hz, and Independent 

Component Analysis (ICA) for the identification and removal of ocular and 

muscular artifacts. A regression-based algorithm was applied to correct for eye 

movement and blink activity across all scalp channels. Artifact rejection was 

performed using a ±100 µV threshold at each electrode, and non-physiological 

channels were interpolated based on established spatial criteria. These 

procedures ensured high-quality, artifact-free EEG data suitable for 

connectivity analysis. 

For this study, the preprocessed EEG signals were segmented into 3000-ms 

epochs, each time-locked to the onset of the auditory stimulus. Baseline 

correction was applied using the window beginning 600 ms to 500 ms before 

tone onset. 
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Signal processing and epochs 

 
Unlike traditional ERP analysis, which relies on averaging epochs to extract 

features, our approach treated each epoch as an independent sample. This 

single-trial analysis significantly expanded the dataset size, enabling the model 

to capture subtle inter-trial variability in neural activity. This is advantageous for 

studying complex neurological disorders like SZ, where subtle differences in 

neural responses may be obscured by averaging. By analyzing each epoch 

individually, finer-grained neural patterns were sought in line with recent 

advancements that emphasize the importance of trial-to-trial variability for 

capturing brain function27-29. 

Fig. 1. Time-domain EEG connectivity analysis using coherence Granger causality for 
ERP classification. The epochs were 3000 milliseconds (ms) in length and time-locked 
to the onset of the auditory stimulus (i.e., the tone). Granger causality was computed 
for the 3000-ms epoch and created 64*64 matrices for each epoch. The workflow 
illustrates the processing of cleaning the EEG data and epoching it into stable segments 
representing Event-Related Potentials (ERPs) for both training and testing. Coherence 
Granger causality was applied to each epoch to assess directional information flow 
between 64 EEG electrodes in the time domain, producing a 64x64 coherence matrix 
indicative of pairwise electrode connectivity. These matrices served as features for a 
Random Forest (RF) classifier. Classification assessment involved a voting process 
across participants, trained on the training participants and evaluated on each event 
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in test participant separately. Feature extractor 

Our classification framework is based on a novel and previously validated 

subject identification method (21). This method uses surface-level (electrode-

based) functional connectivity in the time domain, computed over short, 

overlapping temporal windows, and generates Temporal Dynamic Connectivity 

Matrices (TDCMs), which capture the evolving patterns of interaction between 

EEG electrodes. Within each temporal window, the statistical relationship - 

whether correlational or causal - is quantified between pairs of EEG time series. 

This dynamic representation enables fine-grained tracking of brain network 

changes over time and has been adapted in the present study to serve as input 

features for classifying SZ-related neural activity. 

The clean EEG data were divided into epochs, each deemed sufficiently 

stable for connectivity analysis. Within each epoch, coherence Granger 

causality was used to assess interactions between EEG signals from different 

electrodes in the time domain (see Figure 1). Causation, or directional 

connectivity, was used to evaluate how much activity in one EEG electrode 

could predict activity in another. All analyses were performed in the time 

domain, with the exception of the initial filtering stage. An iterative method 

was employed to determine the interaction between each seed electrode and 

every other electrode, producing a 64x64 matrix that illustrates the pairwise 

connectivity among all electrode pairs. 

Granger causality is a statistical method used to assess whether one time-

series can predict another. If past values of variable X significantly improve the 

prediction of variable Y— beyond what is possible using Y's own history—X is 

said to "Granger-cause" Y. This is typically evaluated using a linear regression 

model, where the target time series is regressed on its own past values and 

those of another series; statistical significance of the latter indicates predictive 

influence. 

In EEG analysis, Granger causality is applied to identify directional 

interactions between brain regions, providing insight into neural connectivity 

associated with cognitive processes and disorders such as SZ (26,27). 

Importantly, Granger causality reflects predictive, not necessarily direct, causal 
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relationships, suggesting information flow from electrode to another. 

Granger Causality is computed as follows: 

1. Model Specification: 

- Two time-series, X and Y, are examined.  

- A regression model is constructed for Y based on its previous values in 

conjunction with the past values of Y. 

2. Lag Selection: 

- Identify the appropriate lags for the time series. This can be achieved 

through metrics like the Akaike Information Criterion (AIC) or the 

Bayesian Information Criterion (BIC). 

3. Regression Analysis: 

- Conduct two regression analyses: 

- Model 1: 

𝑌𝑡 = 𝑎0 + 𝑎1 𝑌𝑡−1 + 𝑎2 𝑌𝑡−2 + .... + 𝑎𝑛𝑌𝑡−𝑛 

- Model 2: Model 2 includes past values of X. 

𝑌𝑡 = 𝑎0 + 𝑎1 𝑌𝑡−1 + 𝑎2 𝑌𝑡−2 + .... + 𝑎𝑛𝑌𝑡−𝑛 + 𝑐1 𝑋𝑡−1 + 𝑐2 𝑋𝑡−2 + ... + 

𝑐𝑛𝑋𝑡−𝑛 

4. Hypothesis Testing: 

- The null hypothesis 𝐻0posits that X does not Granger-cause Y (i.e., the 
coefficients 

𝑐1 ,𝑐2 ,... are equal to zero). 

- Implement an F-test to juxtapose the two models. Should the inclusion of 

X substantively enhance the predictive capacity for Y, the null hypothesis 

is rejected, indicating that X Granger-causes Y. 

To ensure consistency and avoid model complexity or potential overfitting, 

we did not perform individual model selection using information criteria such 

as BIC or AIC. Instead, we set the model lag order to a fixed value of 10 across 

all participants and conditions. This approach simplifies the analysis pipeline 

and ensures cross-subject comparability while remaining within the range 

generally adequate to capture relevant temporal dependencies in EEG time 

series data. 



 

11 
 

Machine learning procedures 

 
The number of participants in each group is unbalanced, with 32 healthy 

individuals and 49 individuals with schizophrenia. To prevent unbalanced 

learning, we used the HC sample, chose half for training, and picked an equal 

number of participants from the schizophrenia group. This led to 16 

participants chosen at random from each group for training. We subsequently 

categorized the remaining healthy participants and individuals with 

schizophrenia. This approach reduces the classifier's performance but 

improves its dependability for evaluating each extra participant. The 

classifiers are fed directly by the connectivity matrices. Every training step, 

along with the classifiers, was performed on the training set. The number of 

epochs for each participant remains the same. 

To mitigate the potential for overfitting, a particular concern in smaller 

datasets with k- fold cross-validation, we employed a 50/50 train-test split. This 

approach aimed to maximize data utilization while minimizing overfitting risk. 

Prior to classification, a feature selection phase was conducted to refine the 

feature space and potentially enhance model performance. Independent two-

sample t-tests were performed on the training datasets to identify connectivity 

features exhibiting statistically significant differences (p < 0.05) between the 

defined groups: healthy controls and individuals with SZ. Only these features 

were retained AS input features for the classification algorithms. 

This feature selection approach was designed to reduce dimensionality, 

minimize noise and improve model performance by focusing on the most 

salient and discriminatory features. This enhances the model's ability to 

accurately categorize individuals into their respective diagnostic groups and 

the interpretability of the model by highlighting neural connectivity patterns 

associated with SZ. 

The feature set comprised 64*64*100 epochs, indicating that each 

participant contributed 100 samples, each with 64*64 features. Consequently, 

the training set for each class consisted of 16*100 samples, each with 1*4096 

elements (i.e., a 1×4096 feature vector). The final training set was structured as 
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a matrix with 3200 rows (samples) and 4096 columns (connections). An 

additional column was appended to the data as the class label, indicating group 

membership (SZ or non-SZ). A t-test was conducted based on this class label. 

The classification of each epoch within the test set was performed 

independently. A participant was classified as SZ if a majority of epochs (at 

least 51 out of 100) were labeled as SZ; otherwise, they were classified as non-

SZ. 

Classification 

 
The classification process was performed on all test epochs. The classification 

set was determined according to the following criteria: Participants were 

labeled SZ or non-SZ based on the majority classification of their epochs. Those 

with an equal number of SZ and non-SZ epochs would have been designated as 

unknown; however, no participants fell into this category in the current 

dataset. 

Classifier 

 
The RF algorithm (28) is a robust machine learning algorithm and 

particularly effective for classification tasks, including medical diagnosis 

prediction. It operates by constructing an ensemble of decision trees, each 

trained on a random subset of the data. This bootstrapping approach ensures 

that each tree learns diverse aspects of the data, mitigating overfitting and 

improving generalization. In predicting, every tree in the forest votes, and the 

most common class or the average prediction is selected as the result. This 

collective characteristic provides multiple benefits (21): 

● Great Precision: The combined knowledge of several trees frequently 

results in very precise predictions. 

● Resilience to Noise: The algorithm remains strong against noisy data 

and outliers because of the ensemble's averaging impact. 

● Evaluation of Feature Importance: Random Forest offers insights into 

the significance of various features, assisting in feature selection and 

aiding in comprehending the fundamental patterns present in the data. 
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● Managing Absent Data: It efficiently manages absent data in the dataset. 

● Scalability: Random Forest effectively manages extensive datasets, 

rendering it appropriate for practical applications. 

Classification Assessment 

 
Accuracy assesses the overall correctness of a model's predictions, 

indicating the ratio of correctly classified cases to the total instances. Although 

high accuracy often suggests strong performance, it can be deceptive in 

imbalanced datasets where one class greatly exceeds the other. Sensitivity, 

referred to as recall, evaluates the model's capacity to accurately identify 

positive cases, which is essential when the penalty for failing to detect a 

positive instance is significant. On the other hand, specificity evaluates the 

model's capacity to accurately recognize negative instances, which is essential 

when the misclassification of a negative instance can lead to serious outcomes. 

The F1-score, which is the harmonic mean of precision and recall, offers a single 

measurement that balances both factors, especially useful in imbalanced 

datasets. 

Selecting the appropriate metric relates to accurately detecting both 

positive and negative cases. Note that there is frequently a compromise 

between sensitivity and specificity; 
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enhancing one usually results in a decline of the other. In addition, accuracy may 

be misleading in imbalanced datasets, as metrics such as sensitivity, specificity, 

and F1-score provide a more nuanced assessment of model effectiveness. 

An additional strategy was implemented to evaluate the robustness of the 

classification outcomes. This strategy relates to the following consideration. if a 

neural network is trained to recognize stimuli, its performance should remain 

consistent when identifying stimuli, like faces, from various angles, under 

differing lighting conditions, or when presented with partial facial features 

(21,29). This means that the classifier must retain accuracy even when target 

stimuli are altered or degraded. To replicate such scenarios, white Gaussian 

noise was incrementally introduced into the test dataset’s connectivity 

matrices. Initially, the classification analysis was conducted without noise (0% 

noise level). Subsequently, noise was linearly added to all features in increasing 

increments, starting at 5% and progressing to 45%. This process resulted in 

nine distinct ten conditions (0%, 5%, 10%, 15%, …, 45%), each subjected to 

separate classification evaluations. 

Results 

 
The RF model showed very high overall performance through various 

assessment metrics, evaluated over 100 iterations to reduce the impact of 

overfitting and random effects (see Table 1). Sensitivity, a metric reflecting the 

model's ability to correctly identify positive instances, reached 0.98, with a 

confidence interval of 98.34±0.04%. This indicates that the model was highly 

accurate in detecting the target condition when it was present. Similarly, 

specificity, which evaluates the model's ability to correctly identify negative 

instances, achieved a perfect score of 1.00 with a confidence interval of 

99.73±0.01%, demonstrating that the model did not mislabel any negative 

cases. The F1 score, balancing precision and recall, was also high at 0.99 with a 

confidence interval of 98.91±0.02%, emphasizing the model's strong predictive 

capacity. Finally, the overall accuracy of the model, determined by the 

proportion of accurate predictions, was 0.99 with a confidence interval of 
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99.24±0.02%, indicating that the model generated highly accurate predictions 

on the dataset. 

Table 1. Overall result for 100 runs. 
 

Feature 
Selection 

Metrics Mean Standard 
Deviation 

Confidence Interval 

Lower 

Confidence Interval 

Upper 

 

 
All features 

Sensitivity 67.78% 1.79% 67.42% 68.14% 

Specificity 98.73% 0.29% 98.67% 98.73% 

F1 Score 87.67% 0.79% 86.88% 87.22% 

Accuracy 87.05 0.86% 87.51% 87.84% 

 

 
Selected 
Feature 

Sensitivity 98.34% 0.16% 98.30% 98.38% 

Specificity 99.73% 0.05% 99.72% 99.74% 

F1 Score 98.91% 0.10% 98.89% 98.93% 

Accuracy 99.24% 0.07% 99.23% 99.26% 

 
Test Train Rate 

 
Figure 2 demonstrates the impact of the test rate on classification 

performance. Notably, the RF classifier shows very high performance even with 

relatively limited training sample sizes. This is consistent with previous studies 

that highlighted the effectiveness of RF classifiers in handling imbalanced 

datasets and their ability to generalize well to unseen data (30). However, 

when the testing rate approaches very high values (0.09 and 0.95), a decline in 

classification accuracy is observed. This trend shows that while RF classifiers 

are generally robust against data distribution, significant imbalances can still 

negatively influence their performance. This finding aligns with current 

research, suggesting that imbalanced datasets can pose challenges for ML 

models, potentially leading to biased results. To confirm that the observed 

performance trends were not a result of random factors, we methodically 

adjusted the test rate from 5% to 95% of the overall epochs (see Table 2). This 

method enabled us to evaluate the classifier's strength across various data 

distributions. Despite a test rate of 95%, the RF classifier obtained an F1-score 

of 92%, indicating its capability in managing imbalanced datasets. 
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Fig. 2. Impact of the test/train rate on classification performance. 
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Table 2. Impact of different test/train rates on Random Forrest classification 
performance. 

 

Test rate F1 Score Mean F1 Score SD Lower CI F1 score Upper CI F1 Score 
0.05 1.00 0.00 1.00 1.00 
0.10 0.99 0.00 0.99 1.00 
0.15 0.99 0.00 0.99 0.99 
0.20 0.99 0.00 0.99 0.99 
0.25 0.99 0.00 0.99 0.99 
0.30 0.99 0.00 0.99 0.99 
0.35 0.99 0.00 0.99 0.99 
0.40 0.99 0.00 0.99 0.99 
0.45 0.99 0.00 0.99 0.99 
0.50 0.99 0.00 0.99 0.99 
0.55 0.99 0.00 0.99 0.99 
0.60 0.98 0.00 0.98 0.98 
0.65 0.98 0.00 0.98 0.98 
0.70 0.97 0.00 0.97 0.97 
0.75 0.98 0.00 0.98 0.98 
0.80 0.98 0.00 0.98 0.98 
0.85 0.97 0.00 0.97 0.97 
0.90 0.94 0.00 0.94 0.94 
0.95 0.92 0.01 0.92 0.92 
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Noise stability 

Figure 3 illustrates how rising levels of white Gaussian noise affect the 

classification performance of two sets of features: "All Features" and "Selected 

Features Noise was progressively introduced to the connectivity matrices of the 

test dataset, simulating scenarios in which target stimuli are modified or 

compromised. The x-axis represents the percentage of introduced noise, 

ranging from 0% (no noise) to 45%, while the y-axis displays the F1-score, a 

metric that quantifies classification accuracy. As the percentage of noise 

increases, both feature sets exhibit a decline in F1-score, indicating a reduction 

in classification effectiveness. However, the "Selected Features" (blue line) 

demonstrate greater resilience to noise, consistently achieving a higher F1-

score than the "All Features" set (red line) across all noise levels. This suggests 

that the "Selected Features" are more robust against the detrimental effects of 

noise and provide more reliable classification, even when the data is 

compromised. 
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Fig. 3. Noise stability and classification performance. This figure illustrates for all 
(blue line) and selected features (red line) the percentage of added noise, ranging 
from 0% (no noise) to 45% on the x-axis against the F1-score (i.e., classification 
accuracy) on the y-axis. Error bars represent confidence intervals of the F1-score 
calculated over 100 runs or folds. 
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Electrode contribution to classification 

 
Through a comprehensive analysis of Granger causality across all 64x64 

electrode pair combinations, we identified 2,777 connections that exhibited 

statistically significant differences between the healthy control (HC) and SZ 

groups (p-values ranging from 0.049 to10-74) on the basis of trained datasets. 

Table 3 presents the most discriminatory Granger causality combinations, 

characterized by particularly robust statistical significance (p < 10-30). To further 

investigate the regional brain areas most implicated in these group differences, 

we created a frequency table. This table is based on all Granger causality 

combinations that demonstrate significant group separation (p < 0.05), and 

counts how often each electrode appears as either a predictor or a predicted 

region across these significant connections. The most frequently identified 

electrodes through this process will be presented in a subsequent table, aiming 

to highlight key regions involved in connectivity alterations related to 

schizophrenia. 
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Table 3. Granger causality combinations that significantly differentiate the healthy and SZ 
groups (E = Power of ten). 

 

# Independent Dependent P-Value # Independent Dependent P-Value 

1 PO3 Cz 4.61E-74 20 P7 FC3 1.05E-33 

2 Fz Cz 5.81E-55 21 PO7 C1 1.82E-33 

3 TP7 PO3 2.24E-54 22 Oz TP10 5.76E-33 

4 PO3 FCz 7.41E-54 23 P7 C1 7.30E-33 

5 TP7 C1 8.85E-51 24 C1 CP3 1.01E-32 

6 T7 PO3 3.04E-48 25 PO3 FC3 2.33E-32 

7 C5 PO3 3.41E-45 26 T7 C1 6.63E-32 

8 PO3 FC1 6.17E-43 27 Fz PO3 6.95E-32 

9 P3 FC1 4.51E-41 28 Oz C2 7.05E-32 

10 FC5 PO3 1.00E-40 29 Iz FCz 1.82E-31 

11 P3 Cz 2.67E-40 30 Oz FC2 4.72E-31 

12 PO3 C2 2.98E-39 31 Cz CP4 4.96E-31 

13 C3 POz 1.36E-37 32 P5 FC1 5.46E-31 

14 Oz Cz 1.34E-35 33 P4 P2 1.50E-30 

15 AF3 FC5 4.70E-35 34 Fz FCz 2.99E-30 

16 O1 C2 1.35E-34 35 PO3 FC2 3.77E-30 

17 O1 FCz 2.14E-34 36 POz FCz 3.87E-30 

18 P3 FCz 3.70E-34 37 AF3 F5 6.32E-30 

19 PO7 FCz 1.00E-33 38 Cz CP3 7.04E-30 
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Following the identification of the 2,777 statistically significant Granger 

causality combinations that differentiated the healthy control and 

schizophrenia groups (p < 0.05), a frequency analysis was performed to 

determine the most relevant electrode regions (see Table 4). This table reports 

the top ten electrodes ranked by their total frequency of appearance in these 

significant connections. For each electrode (column 1), the table shows its 

frequency as a predictor electrode (column 2), its frequency as a predicted 

electrode (column 3), and the summed total frequency (column 4). Higher total 

frequency indicates greater involvement in group-discriminating Granger 

causality relationships. 

Table 4. Frequency of electrode involvement in significant Granger causality 
differences. 

 

Electrode name Predictor Predicted 

Cz 51 58 

FCz 47 59 

Iz 50 55 

PO3 49 55 

CP4 42 61 

AF3 47 54 

C1 45 56 

O1 48 53 

POz 54 46 

 

Discussion 

The present study was guided by two primary research questions: Is it 

possible to identify SZ using our novel EEG-based ML classifier based on DCM, 

and which combination of metrics is most informative for classifying SZ? The 

DCM-ML approach identified SZ to a very high degree of accuracy that 

approached 100%. Our findings indicate that only a subset of metrics is 

required to achieve effective classification of individual participants, 

highlighting the efficiency and specificity of the selected features. These results 
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underscore the potential of using targeted metrics to enhance the precision of 

SZ detection. 

The RF model demonstrated very high performance across various metrics. 

It achieved a sensitivity of 0.98 (98.34% ± 0.04%), indicating its proficiency in 

accurately identifying positive cases. In addition, it exhibited a perfect 

specificity of 1.00 (99.73% ± 0.01%), demonstrating its performance in 

correctly classify negative instances without mislabeling. The model also 

achieved a high F1 score of 0.99 (98.91% ± 0.02%), indicating a strong balance 

between precision and recall. Furthermore, the overall accuracy was 0.99 

(99.24% ± 0.02%), which is consistent with the model's ability to generate 

highly accurate predictions on the dataset. These results underscore the 

potential of targeted metrics in enhancing the precision of schizophrenia 

diagnosis. 

The study also assessed the stability of the proposed classification method 

under different conditions. The introduction of white Gaussian noise led to a 

gradual, but predictable, decline in classification performance. Up to a noise 

level of 10% of the data, the accuracy remained above 95%, demonstrating 

considerable resilience. However, beyond 10%, the accuracy decreased more 

rapidly, highlighting the sensitivity of ERP-based connectivity measures to 

excessive noise. This underscores the importance of stringent data acquisition 

protocols and noise reduction techniques in ERP studies. 

The RF classifier exhibited strong performance across different training 

sample sizes, demonstrating its ability to generalize effectively even with 

limited data. This finding is consistent with prior research, which has 

emphasized the robustness of RF classifiers in handling imbalanced datasets 

and their capacity to maintain high accuracy under constrained conditions. 

However, when the testing rate approached extreme values (0.09 and 0.95), a 

decline in classification accuracy was observed. This suggests that while RF 

classifiers are generally resilient to variations in data distribution, significant 

imbalances can still adversely affect their performance (21,29,31–33). 

Our findings on the specific ERP components and inter-electrode 

connectivity patterns offer valuable insights into the neurophysiological 
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underpinnings of SZ. Notably, our analysis revealed that a subset of 

electrodes—Cz, FCz, Iz, PO3, CP4, AF3, C1, O1, and POz—were particularly 

influential in distinguishing individuals with schizophrenia from healthy 

controls. This emphasis on a targeted set of electrodes strikes a balance 

between diagnostic accuracy and the practical considerations of clinical EEG 

procedures. 

The prominence of central midline electrodes, particularly Cz and FCz, in 

our findings aligns with existing literature that emphasizes the role of these 

regions in SZ pathophysiology. As highlighted in the literature, Cz is consistently 

identified as a core component in optimal electrode subsets for schizophrenia 

detection, likely due to its sensitivity to global neural dynamics and altered 

connectivity patterns in resting-state paradigms (34,35). The involvement of 

FCz, while sometimes represented by the functionally proximal Fz in standard 

montages, further supports the importance of frontocentral activity in 

capturing auditory- evoked anomalies and deficits related to auditory steady-

state responses (ASSR) in schizophrenia (36). These findings suggest that 

disruptions in information processing and sensory integration, often observed 

in SZ, are reflected in the altered activity and connectivity of these central and 

frontocentral regions. 

The present study also identified other key electrodes, including those in 

occipital (O1, POz), parietal (CP4), and frontal (AF3) regions, as contributing to 

accurate classification. The involvement of O1 aligns with evidence of visual 

processing abnormalities and default mode network disruptions in 

schizophrenia (34,37). While POz, CP4, and AF3 may not have been as 

extensively studied in classification frameworks, their inclusion in our model 

and their presence in network analyses suggest their potential role in capturing 

specific aspects of the disorder, such as visuospatial integration deficits (POz), 

right-lateralized connectivity abnormalities (CP4), and prefrontal cortex 

dysfunction (AF3). The inclusion of C1, near the primary somatosensory cortex, 

points towards possible sensorimotor integration abnormalities in SZ, though 

further research is needed to validate its specific contribution to classification 

models. The relative lack of direct evidence for Iz in the literature40 suggests its 
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limited diagnostic value within current paradigms. Taken together, these 

results indicate that a distributed network of brain regions, extending beyond 

the frontal cortex, contributes to the neurophysiological signature of 

schizophrenia. 

Imbalanced datasets pose challenges in machine learning. The present 

results align with existing literature in this regard41.The observed decline in 

accuracy at very high testing rates highlights the potential for biased outcomes 

when data distributions are significantly skewed. This emphasizes the need for 

careful consideration of dataset composition and the application of strategies to 

mitigate the effects of imbalance, such as resampling techniques or algorithmic 

adjustments, to ensure the reliability and generalizability of classification 

models. 

Comparison of the model with other models 

 
The dataset used in this study has been previously analyzed, using both 

traditional machine learning algorithms (38–40) and recent deep learning 

methods (41–45). These studies have established performance benchmarks 

and demonstrated the dataset’s value for detecting neuropsychiatric disorders 

like SZ.  

Although deep learning techniques have achieved high accuracy (up to 

97%), their complexity, large model sizes, and high computational demands 

often limit their applicability in time-sensitive, real-world clinical settings. 

To address this limitation, this present study presents a novel, 

computationally efficient machine learning model applied to the same dataset. 

This approach achieves an extremely high classification accuracy (99.24%, 

98.34%, 99.73%) with no need for deep hierarchical networks or dense feature 

engineering. Extracting ERPs from a cognitive auditory task, we observe task-

related brain dynamics and construct directional DCMs according to Granger 

causality. This approach also accurately maps inter-electrode information flow 

while preserving single-trial variability —an essential dimension usually lost to 

average-based or resting-state methods. 

Compared to existing work, our approach displays several distinctive 
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advantages. For instance, Chen et al (46). use resting-state EEG and dynamic 

functional connectivity to achieve multi-class classification of various 

psychiatric disorders with moderate accuracy (73.1%). However, their method 

is based on averaged DFC states and does not account for signal variability or 

noise resistance. Our method, by contrast, relies on single-trial ERP data, 

retaining inter-epoch variability and exhibiting significant robustness to noise 

with an F1- score of 92% even in the presence of 45% Gaussian noise—a point 

fully unexplored in their work. 

Similarly, Shen et al. (47) employ cross-mutual information in the alpha 

band and a 3D CNN for SZ discrimination from resting-state EEG with 97.74% 

accuracy. Their approach is effective but relies on undirected, frequency-

specific connectivity rather than the temporal specificity our ERP-based 

paradigm enables. Our model not only leads to better accuracy but also offers 

greater interpretability and clinical utility through the selection of directionality 

patterns of connectivity and electrode-level biomarkers, particularly in fronto-

central and occipito-parietal regions that are critical to SZ pathology. 

A further recent paper (48)utilising Symbolic Transfer Entropy (STE) on 

resting-state EEG also has high performance (96.92%) with minimal features. In 

the absence of task engagement, however, their approach may lose critical 

neurocognitive signatures of SZ. Our DCM-based model, with direction-aware 

task-evoked P300 responses, can extract functional impairments in challenging 

cognitive conditions and is facilitated by direction-aware DCMs, offering a 

more comprehensive description of inter-regional interactions. Again, our 

model's noise resistance and ability to maintain subtle pathological signals 

through single-trial analysis position it as a more clinically viable instrument. 
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Table 5: Comparative Summary of Studies Using the Button-Tone-SZ Dataset  

Study/Year Model & Features Performance 

Al Mazroa, 2025 [49] Cascaded Atrous Conv. Network (CA-AWFM); multi-

scale adaptive fusion 

99.5% accuracy 

Barros[25] Deep CNN (SzNet), single-trial ERP, 5 midline 

electrodes (Fz, FCz, Cz, CPz, Pz) 

78% accuracy  

Shaffi, Rani, Srinivasan, 

Huang   [27,38–40] 

CNNs, classical ML (RF, SVM, LDA) Variable (75–85%) 

Shen [47] Cross-mutual information in the alpha band and a 

3D CNN 

97.44% accuracy 

Chen[46]. resting-state EEG and dynamic functional 

connectivity 

73.1% accuracy 

 

Compared to a range of recent studies that have employed both deep 

learning and classical machine learning techniques for SZ detection using EEG 

or ERP data, the present study offers a unique combination of interpretability, 

robustness, and clinical relevance. While several approaches report high 

classification accuracies — for example, 99.5% using a Cascaded Atrous 

Convolutional Network (CA-AWFM)(49) with multi-scale feature fusion and 

99.9% via ERP feature integration and demographics — these methods often 

rely on black- box architectures or require multimodal data inputs, which can 

limit clinical transparency and scalability. In contrast, our study achieves 

comparably high accuracy (99.24%) using a single- modality ERP dataset and a 

RF classifier trained on features derived from directional DCMs computed with 

Granger causality. This approach emphasizes inter-regional information flow, a 

critical neural marker often overlooked in frequency-domain or undirected 

methods. 

While methods like SchizoGoogLeNet and Multiple Kernel Learning (MKL) 

also achieve strong results (50,51), they typically depend on either large-scale 

automated feature extraction or fusion of multiple ERP components (e.g., 

P300, MMN), requiring extensive preprocessing pipelines. Our model, by 
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contrast, is noise-resilient—maintaining a 92% F1- score even under 45% added 

Gaussian noise—and uses single-trial data to preserve the subtle inter-epoch 

variability vital for identifying schizophrenia-related deficits. In addition, our 

identification of clinically relevant electrode-level patterns in fronto-central 

and occipito- parietal regions makes the findings more explainable and suitable 

for integration into real- time or portable diagnostic tools. 

While deep learning models such as those of Mazroa et al. (49) 

demonstrate impressive levels of accuracy, their complexity, limited 

interpretability and reliance on resting-state signals or black-box convolutional 

layers hinder real-world deployment. In contrast, our method balances 

accuracy, interpretability, and practicality, making it a well-suited for scalable 

clinical translation — especially for early SZ detection n settings with limited 

computational resources and variable signal quality. 

In summary, the present approach overcomes limitations of existing 

methods by combining interpretable directionality features with a high-

performance yet lightweight classifier to a practical, scalable, and highly 

accurate means to early SZ diagnosis.  

This approach has the potential to bridge algorithmic performance with 

real-world clinical usability. 

Limitations and future work 

 
From a clinical perspective, this approach shows promise as a 

complementary tool for early diagnosis of SZ. At this stage, our study serves as a 

proof-of-concept of our ML-approach and the results should be interpreted in 

terms of feasibility of this ML-based classifier for clinical application. The 

findings suggest that the ML-based classifier may detect early-phase EEG 

abnormalities associated with SZ. s. However, predictive models must also 

account for the variability in individual disease progression. Additionally, the 

current dataset does not allow for an assessment of whether these 

abnormalities overlap with other mental health conditions. Future 

development of the current approach should consider disease progression and 

comorbidities within a demographically and clinically broader and more diverse 
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dataset than that used in this study to verify the method's reliability and 

clinical applicability. This could be supported by acquiring longitudinal data to 

identify consistent patterns of EEG abnormalities (and changes in these 

patterns) prior to the prodromal phase, throughout the prodromal transition, 

and after the onset of psychosis. Such data could serve as a foundation for 

developing reliable predictive markers. Although the high accuracy of the 

model is promising, understanding the specific features or patterns that 

influence the predictions is crucial. Integrating this approach with multimodal 

data (e.g., biomarkers and clinical evaluations) may enhance diagnostic 

accuracy. Further efforts to improve the model's interpretability will be 

essential for its integration into clinical practice. 

Conclusion 

 
The tested approach using a novel EEG-based classifier based on dynamic 

connectivity matrices and machine learning algorithms marks a considerable 

improvement in the use of dynamic EEG analysis for SZ detection. The very 

high F1-score demonstrates the capability of computational methods to 

support psychiatric diagnostics, providing an objective and non- invasive 

instrument for early detection and intervention. This approach needs 

additional refinement and validation based on demographically and clinically 

broader dataset to verify its reliability and applicability. 
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