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Abstract

The use of brain—computer interfaces (BCls) to decode imagined speech has significant clinical
and assistive potential. Twenty-six studies investigated covert speech decoding between 2009
and 2025 using EEG, fNIRS, or hybrid EEG—{NIRS systems. Early research (2009-2012)
primarily focused on analyzing phonemes and syllables with EEG, achieving accuracy rates
around 75%. From 2013 to 2017, CNN-based phoneme decoding produced highly variable
results (40%—-83%), with more complex multiclass tasks occasionally performing poorly (as
low as 26.7%). Since 2018, binary paradigms such as yes/no responses have reached 64%—
100% accuracy. CNN variants (about 83.4%), AlexNet (90.3%), and LSTM-RNNs (92.5%)
demonstrated notable improvements, whereas architectures like EEGNet and SPDNet often
underperformed (24.79%—66.93%). In hybrid EEG—NIRS methods, convolutionalneural
networks (CNNs) achieved roughly 53% accuracy, while traditional classifiers like SVM and
LDA performed better, reaching 78—79%. These results indicate that although deep learning
and multimodal systems have potential for enhancing imagined speech decoding, there are still
major challenges related to generalization, variability, and robustness.

Keywords: Brain-computer interface, imagined speech decoding, EEG, fNIRS, machine
learning, multimodal fusion.



Introduction

The brain-computer interface (BCI) enables direct interaction between the human cerebral
cortex and external devices [1, 2]. Individuals control devices via cognitive intent, translating
brain impulses or blood flow into signals through BCls. This is crucial in neurorehabilitation,
assistive tech for motor disabilities, and restoring communication in severe impairments. A key
research area is decoding imagined speech [3, 4]. The methodology involves individuals
silently thinking words or phrases while the system tries to identify their mental speech. Those
unable to speak or move can use imagined speech as a natural, voluntary communication
method. Reading these covert cognitive processes is challenging due to their weak.neural
activity often masked by noise, complicating investigation [5, 6]. Two non-invasive techniques
are commonly employed by researchers to solve this challenge, Electroencephalography (EEG)
and Functional Near-Infrared Spectroscopy (fNIRS) [7, 8]. Integrating EEG and tNIRS into a
multimodal framework offers an excellent opportunity. Scientists can leverage each technique's
strengths: EEG captures rapid brain activity, while fNIRS precisely targets specific regions [9].
An investigation utilized a configuration to classify imagery related to.hand movements,
involving three EEG electrodes (C3, C4, and Cz) and ten fNIRS channels{10-12]. The system
achieved 81.2% accuracy, outperforming EEG at 74.7% and fNIRS at 56.8% [12]. The success
of combining different BCI approaches shows these technologies.can improve the field and
inspire hope. However, merging these data types is very challenging [13, 14]. The differing
temporal scales of EEG and fNIRS—instantaneous! signals versus delayed blood flow
changes—require researchers to use advanced ‘methods like phase-space reconstruction,
Common Spatial Patterns (CSP), and hemodynamic features (e.g., the Hurst exponent) to
synchronize and combine the data [12]. Multimodal brain-computer interfaces can restore
communication and autonomy for critical, individuals by combining EEG and fNIRS
advantages [15, 16].

In recent years, there has beena growing scholarly interest in decoding internally generated
speech with EEG signals, which goes beyond basic binary classification tasks like yes/no
responses, where neural networks applied to 60-channel EEG data achieved accuracy ranging
from 70% to nearly.100% [17-19]. Researchers quickly adopted CSP analysis and Support
Vector Machines (SVMs) as methods that provided comparable performance [20]. This review
paper explains:why specific machine learning and signal processing methods are suitable for
speech decoding by concluding valid studies. While previous reviews mainly focus on EEG
for decoding imagined speech, this study emphasizes evidence from fNIRS and hybrid EEG—
fNIRS systems alongside EEG. Although reports on fNIRS-only [21] and hybrid [12, 22-25]
approaches are limited, these findings offer valuable insights. This review investigates whether
combining or replacing these modalities can enhance decoding imagined speech by using
fNIRS' ability to detect hemodynamic changes and complement EEG's limitations.

Methodology

We conducted a narrative review of empirical studies on decoding imagined speech with EEG,
fNIRS, or hybrid EEG—fNIRS systems from 2009 to 2025, across PubMed, IEEE Xplore,
Scopus, and Google Scholar. Keywords included combinations like 'EEG' and 'imagined
speech', etc. The search yielded approximately 15,900 records. After eliminating duplicates,
we examined titles and abstracts. The studies had to meet three criteria to be included: (1) the



articles had to be original or reviews in English, (2) they had to investigate imagined speech
decoding using EEG, fNIRS, or both, and (3) the methods used had to be clearly explained. If
studies were not in English, did not involve imagined speech, or did not have clear
methodological details, they were excluded. We found 26 studies that met the criteria after
reviewing the full texts.

To compare, the research studies were divided into three distinct categories:

1. Laboratory-based investigations, with a focus on data acquisition and designing
experimental tasks.

2. Algorithmic investigations emphasize the importance of feature extraction and the
effectiveness of classification methods.

1. Utilization of integrated EEG-fNIRS methodologies for investigating the synthesis of
multimodal signal convergence.

Preprocessing methods were consistently used across studies, mainly focusing on bandpass
filtering to retain signals within EEG (0.5-40 Hz) or fNIRS frequency ranges, artifact removal
via ICA, and phase-space reconstruction in EEG to reveal nonlinear attributes. Feature
extraction included PSD, DWT, CSP, Riemannian features, and’ fNIRS indicators like
hemoglobin concentration changes. Connectivity metrics like. PDC and PLV studied motor,
Broca's, and prefrontal areas during imagined speech tasks: Algorithms such as SVM, CNN,
RNN, and hybrid models like CSP EEGNet were compared-for their effectiveness in handling
high-dimensional, small-sample EEG and fNIRS data. SVM offered robust decision
boundaries, while CNN and RNN excelled in feature learning and temporal modeling.
Performance was evaluated based on classification accuracy and error rates for comparison.

Results

This section outlines 26, studies decoding imagined speech with EEG, fNIRS, or both,
highlighting key pattetns, comparing findings, and exploring reasons for variances.

Data distribution methodology

EEG-exclusive investigations (20 out of 26): EEG has been established as the premier
modality due. to its remarkable temporal resolution and non-invasive characteristics. The
reported classification accuracy in EEG-exclusive investigations exhibit considerable
variability; ranging from approximately 34.2% to 99%, depending on the task complexity, the
number.of electrodes used, and the preprocessing methodologies employed [6, 20].

fNIRS-exclusive investigations (1 out of 26): Despite delays in the hemodynamic response,
fNIRS is effective in binary mental communication tasks, with past accuracy rate around 71—
75% [26]. This study introduced a three-class imagined speech BCI, allowing participants to
communicate by thinking "yes", "no", or resting. The average online accuracy over three blocks
was 64.1% £ 20.6, and nine of twelve participants were above chance. Results varied due to
signal-to-noise ratio, mental task performance, and channel setup, especially over the left

temporal and temporoparietal areas, which provided the most discriminative information[21].



Hybrid EEG-fNIRS investigations (5 out of 26): Through the integration of EEG
characteristics (e.g., CSP, Root Mean Square RMS)) with fNIRS indicators (e.g., average
concentrations of oxyhemoglobin, Hurst exponent), hybrid systems have demonstrated
superior performance relative to their single modality counterparts by margins of up to 20% in
numerous studies. Nevertheless, challenges related to synchronization (the alignment of rapid
EEG intervals with the more gradual fNIRS segments) and the increased complexity of the
equipment occasionally introduce extraneous noise, which partially mitigates these advantages
[12,22-25, 27, 28].

Dataset

Hybrid EEG +
FNIRS
19%

FNIRS
4%

EEG
77%

EEG MEFNIRS MEHybrid EEG + FNIRS

Figure 1: The distribution of data modalities utilized in the reviewed studies.

Comparative analysis and classification of speech stimuli

Various scholarly studies have used a variety of imagined speech tasks that vary in complexity
and number of categories.

1. Binary Tasks (Yes/No):

o EEG-only: Accuracy reached approximately 99%, particularly with
methods such as Common Spatial Pattern and SVM. Simple two-
category experiments remain consistently robust and stable [29].

o fNIRS-only: In three-class classification, the average accuracy over the
last three online blocks was about 64.1% +20.6%. In the final block,
nine of twelve participants reached 83.8% +9.4%, with each mental task
lasting 15 seconds to ensure an adequate hemodynamic response [21].



2. Phonemic Stimuli (e.g., /a/ or /u/) in Closed-Set Environments:

o

EEG-based: Accuracy metrics using methods like the Hilbert
Transform with CSP, predictive models like matched filters or CNN,
range from 57% to 85%. One study achieved 75% accuracy with a real-
time matched filter and PSD features. CNN architectures like CNNeeg] -
1 reached up to 85% accuracy on balanced datasets[18, 30-34].

3. Word-Based Tasks (e.g., “up,” “down,” “left,” “right,” “help,” “stop”):

o

EEG-only: Accuracy metrics for tasks involving six imaginary-Persian
words range from 85% to 97%, especially when using FFTs with SVM
or CNN/LSTM. An AlexNet study on ten imaginary words achieved
about 90.03% [23, 35-40].

4. Multi-Class Phrases (up to 13 categories, sometimes multilingual):

@)

EEG-only: For multilingual setups with 6-12 lexemes in languages
such as English, Arabic, Persian, and, Spanish, the accuracy of CNN,
rLDA, and RF models varies from 23.7% (12-class) / 34.2% (13-class)
to 62.37%, depending on the features and validation methods used [17,
35-37, 41-50].

Hybrid EEG—NIRS: EEG and fNIRS data are combined using
features like Discrete. Wavelet Transform coefficients from Symlet-10
across six levels, the EEG signal's RMS value, and the average [HbO]
concentration-from fNIRS. One study reported a classification accuracy
of 89.4% for imagined speech[24]. These findings demonstrate that the
hybrid-approach surpasses single-modality methods, with EEG alone
achieving accuracy between 34.2% and 70.33%, and fNIRS alone
generally showing weaker results compared to the combined technique
[22-24, 41, 46, 51, 52].

Feature Extraction Techniques

To. extract"meaningful features from neural signals, the studies discussed in this review
employed a variety of signal processing techniques. The methodology used was primarily
determined by the type of data available, whether it was EEG, fNIRS, or a hybrid system. The
following are the main techniques discussed:

EEG-Based Features

1.

Root mean square (RMS): The temporal-domain parameter measures EEG signal
amplitude via RMS, reflecting signal energy sensitive to cerebral activity, especially
during motor imagery or movement [32, 53, 54].

Power Spectral Density (PSD): PSD assesses power across frequency bands—delta,
theta, alpha, beta, gamma—Iinked to specific cognitive functions [47].
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3. Discrete Wavelet Transform (DWT): The DWT enables multi-resolution EEG
decomposition, making it ideal for identifying time-frequency features crucial
for interpreting imagined speech [6, 41].

4. Common Spatial Patterns (CSP): CSP is used in binary classification to
improve class discrimination by fine-tuning spatial filters across EEG channels
[29, 46, 49, 52, 55].

5. Phase-Based Connectivity Measures: The use of techniques such as PLV and
coherence to examine synchronization among cerebral regions can provide
insight into the neural dynamics involved in the generation of internal speech
[44, 56].

fNIRS-Based Features Key features derived from fNIRS data include:

1. Mean changes in the concentrations of oxygenated hemoglobin (HbO) and
deoxygenated hemoglobin (HbR) [21].

2. Variations in slope of hemodynamic response curves:[57].

3. Hurst exponent values are used to capture, the complexity and long-term
memory characteristics of fNIRS signals [51]:

Multimodal Features (EEG—{NIRS Hybrid Systems):

EEG and fNIRS signals were used in studies where features were either combined or integrated
before classification. This method leverages EEG's high temporal resolution along with the
spatial and hemodynamic information fromfNIRS to create more complete and insightful data
representations. As a result, this approach helps the audience understand the potential of
multimodal features for improving their knowledge of brain function [58].

Classification Algorithms

In this research, there have been various classification algorithms utilized, each chosen based
on the data's specificnature, task difficulty, and dataset size.

Support Vector Machine (SVM)

The reviewed research shows that this classification algorithm, commonly used, has yielded
promising results, especially in complex tasks and large datasets. In EEG-specific setups, SVM
1s the.most used classifier. For example, EEG features like band power and CSP extracted from
specific filters achieved subject-specific accuracies of 70% to 99.9% when distinguishing
“Yes/No” responses in occupational questions. Under the mixed-time scenario, the SVM
achieved up to 97% accuracy in binary classification for six imagined Persian words [35]. Other
research has also found accuracy between 80.2% and approximately 86% for tasks using simple
yes/no words [29, 59, 60]. SVM demonstrated efficiency with integrated EEG and fNIRS
features, achieving 81.2% accuracy in distinguishing left and right-hand motor imagery. This
highlights SVM's ability to handle high-dimensional multimodal data [51].



Linear Discriminant Analysis (LDA) and Regularized LDA (rLDA)

In fNIRS tasks, rLDA achieved a mean accuracy of 64.1% = 20.6% for a dichotomous 'Yes/No'
task; however, the considerable variance indicated a susceptibility to minor datasets and noise
[21]. Regularized rLDA achieved about 61% accuracy in decoding six Spanish words from an
EEG. Using EEG and fNIRS, shrinkage-based LDA can categorize MI, MA, and rest states
with an accuracy of around 78—79%. The accuracy was 77.5 £12.1% in a small setup with 2
EEG channels and 2 fNIRS pairs. LDA's effectiveness decreases if Gaussian assumptions are
violated, even though it is both simple and interpretable [21, 22, 61, 62].

Random Forest (RF)

The RF algorithm's accuracy in multiclass EEG word classification ranged from 68.18 to
70.33% for five Spanish words (‘arriba, abajo, izquierda, derecha, seleccionar’) together with
their English equivalents, depending on features and subjects [41]. A separate study with
twelve words or phrases, plus a rest class (creating a 13-class setup), showed accuracy dropping
to 26.7% for visual imagery and 34.2% for imagined speech [41, 46, 63]. RF.achieved moderate
accuracy with features like wavelet transforms or statistical analyses but-generally performed
worse than deep learning [64].

Naive Bayes (NB)

Some EEG studies show that this method is used mainly with low-dimensional or discrete
attributes. A Naive Bayes classifier using a Bag-of-Features approach achieved an average
accuracy of 65.65% +13.39 when classifying five.Spanish words (‘arriba,' 'abajo,' 'izquierda,’'
'derecha,"seleccionar'). In transfer experiments without calibration, the accuracy decreased to
58.74% + 13.39 for the word Up and 61.38% +12.47 for the word Down. Compared to SVM
or deep learning, neural networks (NB) tend to perform worse when features are correlated,
despite their speed and simplicity [65,.66]:

LDA Variants

Regularized adaptations.like ridge-regularized LDA or shrinkage-based LDA have been used
alongside conventional LDA. These techniques improved weight stability, especially with
limited data or.contaminated EEG channels [65, 66].

Adaptive and Kalman Filters

In phoneme recognition, implemented adaptive filtering to differentiate /ku/ and /ba/ using
EEG data, achieving 75% accuracy [47]. In EEG/ECoG vowel decoding, Kalman filtering
estimated the first two formants (F1, F2) for vowels (AA, IY, UW), with about 71% accuracy.
These methods leverage signal continuity but need careful parameter tuning [32, 67, 68].

Convolutional Neural Networks (CNN)

A two-stage system was built that included Convolutional Neural Networks, Spatial CNN,
Temporal CNN (TCNN), Denoising Autoencoder (DAE), and XGBoost. Initially, this approach



classified six binary phonological categories with an accuracy of 83.42%. Then, it used these
features for token recognition, reaching an accuracy of 53.36% across 11 tokens. A baseline
method that relied solely on raw covariance features achieved 28.08%. AlexNet classified ten
English words with a accuracy of 90.3% [36, 43, 69].

* CNN with attentional mechanisms

The EEGNet model incorporating attention mechanisms was able to achieve a 57% accuracy
in identifying four syllables (/Ba/, /Ku/, /He/, /Li/). Even if attention is below 60%, it can still
effectively extract salient spatial-spectral features from noisy EEG signals [40, 70].

e In the domain of EEG and fNIRS fusion

A CNN used to integrate EEG and fNIRS features achieved accuracy ranges between 53% and
87.18%, depending on the subjects and tasks (text, image, audio). This variability shows that
CNNs can leverage multimodal synergy but are subject to individual differences [23, 51, 52].

EEGNet Variants and CTC

Three categories (/a/, /u/, and rest) were classified using-a model combining EEGNet-inspired
CNN, RNN (LSTM), and CTC loss. The study used character-level edit distance instead of
accuracy. Despite no attention mechanism, “results showed that compact depthwise
convolutions effectively captured spatial-temporal features in EEG signals [34, 71].

Recurrent Neural Networks (RNNs)

Four-directional EEG classification (Up, Down, Left, Right) was investigated by using LSTM-
RNNs with a accuracy of 92:5%. These models are adept at capturing intricate, temporally
varying characteristics, especially in tasks that involve motor imagery [71].

Graph Neural Networks (GNNs)

The GraphlS method; combining classical signal processing, graph processing, and graph
learning features with a two-stage SVM (RBF kernel), achieved a 50.1% accuracy in decoding
'Rock, Paper, Scissors, Rest' imagined speech EEG, surpassing chance (25%) and the CSP
baseline (47.1%), highlighting the benefit of feature fusion [49].

EEGNet-SPDNet

The researchers evaluated the EEGNet—SPDNet architecture by combining EEGNet's temporal
features with SPDNet's covariance representations for two imaginable speech EEG tasks. BCI
2020 gave it 66.93% and Kara One gave it 24.79%. Results suggest that Riemannian geometry
features may outperform Euclidean methods in EEG classification [50].
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Hybrid and Ensemble Approaches

Many studies examine classifier combinations or layered frameworks, like using CSP or
wavelet features with SVM or RF, or LDA followed by ensemble voting with CNNs or SVMs
over deep features. These methods improve robustness but add complexity [19, 42, 46].
Evaluation of all classification models used subject-dependent or subject-independent
protocols, with methods like k-fold cross-validation and leave-one-subject-out (LOSO) to
assess generalizability [72]. Additional details, including stimulus types, class labels, and
accuracy ranges, are presented in Table 1.
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Table 1: Summary of classification algorithms and reported accuracies

Ref. | Modality | Number of Task type Signal Stimuli / Classes Fusion Method Accuracy
Subjects Acquisition strategy
Setup

[19] | EEG 23 subjects | binary yes/no 60-channel Yes/No (Occupation- | early CSP + SVM 70-99.9%

based Qs)

[21] | INIRS 12 subjects | Three 44-channel Yes/No/Rest - mean value of [HbO] + RLDA 64.1% £ 20.6%

Classes(Yes,No,Rest)
[47] | EEG 4 subjects | multiclass 128-channel | /ba/, /ku/ early power spectral densities + | 75%
Adaptive Filter

[32] | EEG/ECoG | 2 subjects | phoneme Two- AA, 1Y, UW early root-mean-squared ~71%
channel/48- (RMS) + Kalman Filter
channel

[37] | EEG 6 subjects | word-level 19-channel 8 English Words early Qualitative

[41] | EEG 27 subjects | multiclass 14-channel five Spanish words | early DWT + Random Forest 68.18—

(“arriba,” “abajo,” 70.33%

“izquierda,”

“derecha,”

“seleccionar”)

[34] | EEG Not phoneme 8-channel /al, lu/, rest - EEGNet-inspired CNN combined | -

mentioned with RNN (LSTM) and CTC
[38] | EEG 2 subjects | word-level 14-channel CVC Words early PSD and Relative Power, PLV Qualitative
[42] | EEG 15 Binary classification | six-channel | 6 Spanish Words - Deep CNN and Shallow CNN | CNN-Deep:
subjects of imagined word- (proposed); baseline: tTLDA with | 62.37%
pairs FBCSP. No decision-level fusion | CNN-Shallow:
60.88%
rLDA (FBCSP):
57.80%

[48] | EEG 14 subjects | Two Classes 64-channel 7 syllables, four words | early CNN+TCNN+DAE+XGBoost 83.42%

(Kara One) (phonological
features, binary
tasks);  53.36%
(11 tokens);
28.08% (raw
covariance)

[39] | EEG 27 subjects | word-level 14-channel five Spanish words | early Bag of Features (BoF) + Naive | 65.5%

(“arriba,” “abajo,” Bayes

“izquierda,”

“derecha,”

“seleccionar”)

[40] | EEG 10 subjects | word-level 58-channel /Ba/, /Ku/, /He/sLi/ early EEGNet + Attention 57%

[33] | EEG 15 subjects | phoneme 18- /al, lel, 1il, /o, lu/ decision- | CNNeegl-1 BDI1 = 65.62%
channel/14- level BD2 = 85.66%
channel

[46] | EEG 7 subjects | multiclass 64-channel 12 English Words + | decision- | CSP + RF 34.2%

Rest level

[44] | EEG 16 subjects | multiclass 64-channel words/phrases - PLV Qualitative

(ambulance,  clock,

hello, help me, light,

pain, stop, thank you,

toilet, TV, water, and

yes)

[35] | EEG 5 subjects | multiclass 19-channel six Persian words for | decision- | FFTs + SVM 97% (binary

this experiment: { | level tasks)

(ol ol s 88.2% (7-class:

Yo ol ). They are six words + rest)

pronounced as

{(baly),  (paym),

(chap), (rast), (bzle),

(khemr)}

[49] | EEG 15 subjects | multiclass 64-channels | Rock, Paper, Scissors, | decision- | GraphlS (Fusion of classical + | 50.1%

Rest level GSP/GL features; 2-stage SVM) (significant
improvement
over CSP =
47.1%)

[18] | EEG 14 and 8 | phoneme 64-channel KARA ONE/FUM early Hilbert transform + SVM 81.1%

subjects
[12] | EEG + | 12 subjects | Two classes EEG: 64- | Imagined left- versus | early Eeg: Phase-Space Reconstruction | 81.2%
fNIRS channel right-hand movement (PSR),CSP
fNIRS: 52- Fnirs:
channel Moving Average,Hurst Exponent
+SVM

[22] | EEG + | 18 subjects | Three classes EEG: 11- | ML, MA, IS decision- | CSP +sLDA =~78-79%

fNIRS channel level
fNIRS: 16-
channel

[23] | EEG + | 19 subjects | word-level EEG: 64- | Action-Text (AT): | late CNN 53%

fNIRS channel squeeze, jump, kiss,
fNIRS: 16- | smile
channels Action-Image (AD):

squeeze, jump, kiss,
smile

Action-Audio (AA):
squeeze, jump, kiss,
smile

Combinations-Text
(CT): red ball, green

hat, red green, ball hat
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Combinations-
Image (CI): red ball,
green hat, red green,
ball hat
Combinations-
Audio (CA): red ball,
green hat, red green,
ball hat

[24] | EEG 11 subjects | Three Classes | EEG:  32- | Yes, No, Rest decision- | DWT (Symlet-10, 6 levels); RMS | %70.45 + 19.19
fNIRS (Yes,No,Rest) channel level (EEG); Mean [HbO] (fNIRS) +
fNIRS: 44- RLDA
channels
[25] | EEG 26 Two Classes EEG: 30- | Word Generation — | dual- EF-Net Subject-
fNIRS subjects channel WG/Baseline — | stream dependent:
fNIRS:72- BL(Rest) fNIRS only:
channel 99.69%
fNIRS + EEG:
99.36%
Subject semi-
dependent:
fNIRS only:
98.50%
fNIRS + EEG:
98.31%
Subject
independent:
fNIRS only:
63.80%
fNIRS + EEG:
65.05%
[36] | EEG 10 subjects | word-level 16-channel 10 Words(Up, Down, | early Morlet .~ Continuous  wavelet | 90.3%
with 2- | Left, Right,...) transform + AlexNet
reference
[17] | EEG 4 subjects | multiclass 8-channel Up, Down, Left, Right | early Wavelet scattering transform + | 92.5%
LSTM-RNN
[50] | EEG 11 and 15 | multiclass 64-channel Kara One and dual- EEGNet - SPDNet 2020 BCI Comp
subjects BCI 2020 stream = 06.93% / Kara

One =24.79%
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Classification Performance

The accuracy of classification, as documented in various studies, was influenced by
variables such as the complexity of the imagined speech tasks, the number of stimulus
categories, and the data modalities used. The following is a synthesis of performance trends
categorized accordingly:

o Binary EEG Tasks: The tasks above typically yielded elevated accuracy rates,
ranging from 75% to exceeding 99%, especially when employing-feature
extraction methodologies such as CSP in conjunction with SVM classifiers. The
effectiveness of this performance was further enhanced by the implementation
of simplified task designs and a reduction in the number of classes [29].

e Multi-Class EEG Tasks: Accuracy seemed to decrease ‘as the complexity of
the tasks increased. Depending on the number of imagined words or phrases and
the specific combination of features and classifiers used, the documented
performance could range from 34.2% to 85% [32, 33, 36-43, 45, 46, 73].

o fNIRS-Only Investigations: The accuracy:of classification was typically
moderate in studies that relied solely on fNIRS.data. For instance, an accuracy
of 64.1% +20.6% was achieved in one studyusing the mean value of [HbO] as
a feature and the rLDA algorithm in-a binary (Yes/No) classification task [21].

o Hybrid EEG-{NIRS Systems: Even with the same experimental settings,
multimodal methods consistently surpass single-modality systems. One study
showed that integrating EEG.and fNIRS features for imagined speech achieved
a peak classification accuracy of 53%, notably higher than EEG alone (about
30-37%) or fNIRS alone (around 28-31%) [23]. While hybrid methods have
the ability to impreve.accuracy from 65-72% (single modality) to about 87%,
these numbers, are obtained from different tasks with different class numbers
and difficulty levels. They are not directly comparable across studies and should
be viewed as a general indicator of the potential of multimodal systems, not as
definitive proof of superiority.

The scientific .community increasingly agrees that hybrid systems decode better by
combining EEG's temporal resolution with fNIRS's hemodynamic sensitivity (Fig. 2).
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Classification Performance
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Figure 2. Classification accuracy by modality and classifier.
EEG—NIRS Hybrid Data

Two studies examined hybrid EEG and fNIRS for decoding imagined speech. EEG electrodes
targeted motor and speech-related areas, while fNIRS optodes focused on the prefrontal cortex
connected to language functions. Using feature fusion of CSP EEG features and fNIRS HbO
means, they classified with SVM and Structured LDA. Both studies showed accuracy increases
of up to 20%, demonstrating the potential of multimodal systems for imagined speech decoding
[12, 23, 52].

Experimental Configurations

Although research focus and design varied, many studies shared similar experimental setups,
including the main aspects listed below:

o Participant Demographics

Most studies involved healthy, right-handed participants, often aged 20-30, with gender
data provided for demographics.

o Signal Acquisition

o EEG systems vary from consumer headsets to research-grade devices
with 14-128 electrodes, offering different spatial resolutions [74, 75].

o Most fNIRS setups use 10-16 optodes, with short-separation channels to
improve spatial specificity and reduce interference [74].

¢ Session Structure

Experimental sessions involved multiple blocks with randomized imagined speech
trials. To avoid fatigue, trials lasted 2 to 10 seconds, followed by inter-trial intervals.
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e Data Preprocessing

Most studies use standard preprocessing like band-pass filtering (e.g., 0.5-45 Hz for
EEGQG), ICA for artifact removal in EEG, and baseline correction for fNIRS signals.

¢ Validation Methods

Studies used cross-validation methods like 10-fold, leave-one-out, or trial-wise validation to
assess model generalizability, based on dataset size and design. This trend toward standardizing
protocols is key for comparability and reproducibility in imagined speech decoding.

Discussion

The growing research on decoding imagined speech with EEG and fNIRS, and their combined
use, indicates major progress in BCI technology [23, 76]. This review summarizes advances in
methods to acquire cerebral signals, extract patterns, and classify them to understand silent
speech intentions, all within carefully controlled laboratory settings {6, 77].

Model performance and key insights

EEG remains the main tool for decoding imagined speech due. to its high temporal resolution
and ease of use [78]. EEG classification accuracy varies from 60% to over 90%, influenced by
task complexity, features, and algorithms [6, 20, 76]. Although fNIRS has been less used, it
shows good performance (65-85%) in simpler binary tasks [21, 26, 79]. The integration of EEG
and fNIRS into a hybrid system often improves performance, sometimes by as much as 25%
over using either method alone [23, 24]. Each modality offers advantages: EEG's rapid
response and fNIRS's spatial resolution ' work together for a better understanding of imagined
speech activity [80, 81].

Strengths and Weaknesses of EEG and fNIRS

This review's limitations include reliance on English publications and specific search terms,
which may potentially omit relevant research. Larger and standardized datasets are needed for
better comparisons, as highlighted by the few hybrid EEG—{NIRS studies. In order to measure
performance accurately, future reviews should include systematic methods and meta-analyses.
EEG has excellent temporal resolution, recording changes in cerebral activity in milliseconds,
making it-.ideal for capturing rapid neural responses in inner speech. [82]. Model
generalizability was assessed through cross-validation methods such as 10-fold, leave-one-out,
or.trial-wise validation, based on dataset size and design. The trend towards standardizing
protocols is crucial for achieving comparability and reproducibility in imagined speech
decoding. [83] and fNIRS is slower, unable to measure blood flow changes that take time to
become evident due to real-time limitations [83, 84]. Furthermore, the flow of dermis can cause
noise during measurements. Although the reported advancements are significant, there are
significant limitations in many of the studies reviewed. For instance, [24]only achieved around
70% ternary accuracy in classifying imagined speech using a hybrid EEG—fNIRS approach,
and performance varied significantly from person to person. similarity, [23]reported accuracies
of about 34% for imagined speech using deep learning, showing that decoding speech without
invasive methods remains highly uncertain. Recent CNN-based models, such as EF-Net, were
unable to surpass 65% F1 in subject-independent settings, emphasizing that many models only
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perform well in controlled lab conditions [25]. The gap between promising results and practical
clinical applications is highlighted by these differences.

Classical vs. Deep Learning methods.

SVMs, LDA, and RF are still widely used in machine learning algorithms. [29, 35, 51, 59, 60]
[41, 46, 63-66]. These methods are simple, transparent, and effective for small datasets,
especially with features like PSD, CSP, or wavelet transforms [6, 29, 46, 47, 49, 52, 55]. Recent
advancements favor deep learning, especially CNNs and RNNs, which can independently
identify data patterns, removing the need for manual feature engineering [36, 43, 69, 71].
Despite their potential to improve accuracy, these advanced models face challenges. They need
large training data, which is often limited, and act as 'black boxes', making their outputs.hard
to interpret—an issue in clinical settings. Progress in decoding imagined speech has been made,
but challenges remain. Most studies use small vocabularies and offline tests that don't mimic
real interactions. Small sample sizes, variability, and limited data hinder.generalization, with
little use of transfer learning. Models also lack neurophysiological interpretability, reducing
trust and usefulness. Additionally, their robustness to artifacts ‘like. motion, visual, and
environmental noise in real-time remains problematic. In regard to challenges for real-world
BCI deployment, transitioning from controlled experiments.tofeal-world imagined speech
BCIs faces major obstacles: weak, variable signals; decoding delays with fNIRS; poor outside
performance due to lack of personalization; small datasets hinder robust model training.
Solutions include developing better algorithms, standard’ methods, and richer, multimodal
datasets. Future brain activity research should focus on multimodal systems (like EEG and
fNIRS) for better understanding, creating larger and shared datasets, using hybrid deep learning
models (CNN-RNNs, Transformers), developing personalized, adaptive systems, and
employing interpretable Al for trust and «clinical use. Recent studies that combined EEG and
fNIRS [12, 22-25] further demonstrate the potential of integrating these technologies. These
studies show that deep multimodal architectures consistently outperform unimodal EEG or
fNIRS systems, achieving higher accuracy and robustness across subjects. The inclusion of
their information emphasizes. the importance of hybrid frameworks for future BCI
development, particularly in clinical and assistive communication settings.

Conclusion

Research increasingly confirms that EEG and fNIRS can decode imagined speech, confirming
this field's potential to enhance brain—computer interface (BCI) technologies. While traditional
machine learning offers strong benchmarks, advancements in deep learning and multimodal
integration have opened new opportunities, leading to a significant boost in decoding accuracy.
However, there is still a significant obstacle to overcome. Studies show that classification
accutacy can reach nearly 99% in subject-dependent setups, but drops to around 65% in
subject-independent contexts. The gap highlights the challenge of creating models that perform
well for new users and real-world scenarios, where robustness and adaptability are crucial.
Future efforts should be concentrated on the creation of hybrid systems, the expansion of shared
datasets, the development of adaptive and interpretable deep learning models, and the
establishment of standardized evaluation methods to address this issue. To transform imagined
speech BClIs from controlled laboratory experiments into practical clinical and assistive devices
that provide reliable, scalable communication for users overcoming these challenges is crucial.
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