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Abstract 

Behavior contagion in social decision-making refers to the alignment of an individual's 

behavior and decisions with those of others in social interactions. Despite the previous studies 

in the field, it is still required to be well understood that how the brain activities are spatio-

temporally organized while contagion is occurred. Since brain activities include both positive 

and negative fluctuations, monitoring of these occurrences in a polar space using visibility 

graph can aid in a better understanding of this phenomenon. Therefore, we exposed a healthy 

group to a psycho-economic task while their EEG was simultaneously recorded. The 

participants performances were compared before and after observation of others’ preferences 

in a dictator game task. Subsequently, two groups were differentiated based on their behavior 

contagion rate. Then, visibility graph of event related potentials in both contagion and non-

contagion groups were compared before and after observation. Our results indicated that the 

visibility graph features differentially change in various EEG channels. For instance, changes 

in clustering coefficient, modularity, and efficiency of VGs indicated that number of ERP 

components varies after contagion specifically at the frontal, frontocentral, centroparietal and 

parietal regions. This may put a question mark on ERP analysis of contagion while using the 

same number and length of components (eg. P300) for comparison of ERPs before and after 

contagion.  

Keywords: Behavioral contagion, social decision making, dictator game, event-related 

potential (ERP), visibility graph 
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Introduction 

Human social decision-making is influenced by several neurobehavioral mechanisms, 

including trust, social influence, observational learning, conformity, and behavioral contagion. 

These mechanisms have been extensively studied in social and cognitive neuroscience 

(Charpentier et al., 2020; Mahmoodi et al., 2022; Rilling & Sanfey, 2011; L. Zhang & Gläscher, 
2020), often through a neuroeconomic approach that employs experimental designs derived 

from game theory (Lee, 2008; Ridderinkhof et al., 2004; Sanfey, 2007) . One particularly 

important phenomenon in social decision-making is behavioral contagion, which refers to how 

an individual’s decisions are influenced by the choices of others (Suzuki et al., 2016; Thomas 

et al., 2022) . This contagion can manifest in both positive (e.g., altruistic or prosocial) and 

negative (e.g., risky or antisocial) behaviors, each governed by complex neurobehavioral 

processes(Dimant, 2019; Martínez et al., 2023; Suzuki et al., 2016; Tsvetkova & Macy, 2014). 
Such a phenomenon has been investigated using neuroimaging techniques like EEG and fMRI 

for instance, Suzuki et al showed the contagion of risky behaviors due to observing the risky behavior 

of others can be explained by a neurocomputational approach.In this regards, EEG based analysis 

has raised interest because of high temporal resolution . 

Electrophysiological studies, particularly those utilizing Event-Related Potentials (ERPs), have 

traditionally been used to examine decision-making processes. These studies typically analyze 

ERP components based on two factors: amplitude and latency(Congedo, 2018; Donoghue & 
Voytek, 2022). one of the shortcomings and challenges in past ERP time series studies is the 

number of components and time windows of the components. These deficiencies could be 

covered by Visibility Graph (VG) analysis, as a promising method for understanding the 

nonlinear dynamics of neural time series data. Unlike conventional ERP analysis, VG maps 

time series data into a graph structure which enables us to identify hidden patterns within high-

volume sequential data(Sannino et al., 2017; Sengupta et al., 2013; Sulaimany & Safahi, 2023; 
Zheng et al., 2021). Prior research suggests that behavioral contagion influences ERP time 

series(Deldoost et al., 2024), making it important to explore new analytical frameworks that 

can capture these dynamics more effectively. Considering the fact that ERP time series contain 

both positive and negative fluctuations, examining them in polar space through graph-based 

methods may provide deeper insights into contagion effects. Given its ability to model complex 

nonlinear phenomena, VG analysis presents a compelling alternative to traditional ERP 

assessment methods(Congedo, 2018). 

In this study, we apply Visibility Graph analysis to ERPs associated with behavioral contagion 

in social decision-making. The VG approach(Zheng et al., 2021)  is a strong abstraction of time 

series ERP data based on points of high-volume sequential data(Lacasa et al., 2008).Our 

primary objective is to examine the characteristics of the graph structures derived from ERP 

data in individuals who exhibit behavioral contagion. Specifically, we aim to determine 

whether neural indicators of behavior contagion can be identified through these graph-based 

features including clustering coefficient, local and global efficiency, pathlengths, modularity, 

and radius. To investigate this, we designed an experiment based on the Dictator Game, a well-

established task in neuroeconomics and game theory, while simultaneously recording brain 

electrical activity. 

By leveraging this novel methodological approach, our research seeks to advance the 

understanding of neural mechanisms underlying behavioral contagion and contribute to the 

development of new analytical techniques in cognitive neuroscience. 
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Methods 

 Participants  

The study included 30 healthy participants aged between 20 to 30 years (mean age 27±2.1), comprising 

15 men and 15 women, who voluntarily entered the test based on public calls, and all were right-handed 

with no history of neurological or psychological disorders and were not on any medication. Among 

them, 2 participants were removed. Additionally, 6 dollars were allocated for one hour of testing. This 

research was approved by the ethics committee with the ethical code IR.UT.IRICSS.REC.1400.034, 

and all participants signed an informed consent form to participate in the experiment.  

Stimuli and Procedure 

The stages of the experiment were as follows: after a general description of the experiment and 

answering the participants' questions, they entered the main phase of the test following a trial run to 

ensure their learning. During a behavioral task ,modified dictator game, ( It should be noted that various 

models of the dictator game have been used in research(Engel, 2011) , which may be interactive or 

non-interactive, meaning the dictator and recipient can switch roles (Grech & Nax, 2020). In this study, 

a non-interactive model was used, where the dictator does not receive feedback in the form of reward 

or punishment. Also, both anonymous and identified peer types are used in research  (Rilling & Sanfey, 

2011), The version we use is similar to the paper from fehr’s group (Krajbich et al.,2015) and the 

paradigm similar to mobasseri et al.  

As Heinrich and Weinmann .(2013) explain , In the classic dictator game introduced by Forsythe et al. 

(1994) (Fairness in Simple Bargaining Experiments, n.d.),the budget constraint has a slope of −1, 

reflecting the fact that each cent transferred to the recipient decreases the dictator’s own earnings by the 

same amount. However, in altered versions of the game, this trade-off rate—represented by the slope 

of the budget line—can differ  (Heinrich & Weimann, 2013)) 

an EEG recording was also conducted simultaneously. These experimental stages are conceptually 

illustrated in Figures 1. Overall, the behavioral experiment consisted of three phases including Phase 1: 

Involving the individual's own decisions, Phase 2: Involving the observation of others' decisions (first 

predicting someone else's choice and then observing), and Phase 3: Involving the individual's own 

decisions. 
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Figure1. Experimental, procedure 

 

 General description of the experiment:  

- Preparation and familiarization with the experiment:  

First, explanations about the generalities of the experiment were provided, stating that the dictator game 

was explained to them and it was emphasized that there is no concept of right/wrong or good/bad 

choices, nor any winning/losing in this experiment to minimize potential effects of these factors. Then, 

the preparation of the EEG cap and device was done, and a trial was conducted to ensure the participant 

had learned the tasks. 

- Leaving the laboratory and starting the recording:  

To prevent social priming of the participant by the experimenter(Gilder & Heerey, 2018), after ensuring 

that the participant fully understood the experiment and was briefed, the experimenter visibly left the 

laboratory and discreetly monitored the participant to minimize the effect of the experimenter's presence 

on the participant's decision-making. To reduce stress, it was mentioned to them that they could call out 

loudly whenever needed for the experimenter to come (while no one felt the need to call out during this 

time). 

- End of the experiment and answering potential questions from the participant:  

At this stage, potential questions from the participant were answered, and in addition to monetary 

compensation, a certificate of appreciation was also awarded to them. 
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Figure4. overview of task paradigm. 

a: during the task, participants must choose between left or right options in each changing trial. (the amount of self/other is 

more than other/self in each random trial). this part is repeated in all phases whereas phase 2 is the observational phase.b: in 

phases 1 and 3, subjects must select and make decisions, but in phase 2, subjects must observe others' decisions while they 

predict each of the other selections, The duration of each test phase was approximately 15 minutes and depended on the 

response time of the subjects. 

 

      Behavioural analysis 

 

To observe the behavior contagion, based on similar studies (Suzuki et al., 2016), the differences 

between the decisions in the first and third phases of the experiment, that is, the differences between 

one’s own decision-making before and after observing the decisions of others, were examined in such 

a way that the differences in trials in decision-making were calculated using MATLAB. Then, the 

participants were divided into two groups: contagion and no contagion, Based on recent studies to 

determine the threshold, Behavioural contagion rate was chosen (Mobasseri et al., n.d.),such that 

participants with a difference in the number of decisions in phases 1 and 3 greater than or equal to 6 

were classified as the contagion group, while the remaining participants with a smaller difference were 

placed in the no contagion group. 

 EEG Recording and (Pre)processing 

The data obtained from electroencephalography was recorded using a 64-channel gel-based device with 

a sampling rate of 1000 Hz. Data acquisition was performed with a monopolar setup, and the EEG cap 

was placed on the subjects' heads using the standard 10-20 method.  

In the preprocessing stage of the data, motion artifacts, eye blink noise, eye movement noise, EMG 

noise, and ECG noise were removed using the ICA method. A bandpass filter from 0.1 to 30 Hz was 

also applied to the data, all of which was conducted using the MATLAB-based software EEGLAB, and 

the obtained data were subsequently analyzed using ERPLAB, considering 200 milliseconds before and 

800 milliseconds after the stimulus 
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Data Analysis 

   Visibility graph  

After obtaining the ERP time series, these time series were analyzed using the Visibility graph analysis 

approach, such that the ERP time series for each EEG channel were considered as inputs. After the 

calculations of the Visibility graph network analysis using Python with the NetworkX library, the values 

related to the visibility graph were separately calculated for each EEG channel for the first phase and 

the third phase of the experiment, The graph features included: Clustering Coefficient, pathlengths, 

global efficiency, local efficiency, modularity, and radius.  

The visibility graph is defined 20 as below if and only if:  

𝑥𝑚+𝑖 <  𝑥𝑛  +   
(𝑛 −  𝑚 + 𝑖 )

𝑛 − 𝑚
(𝑥𝑚  −  𝑥𝑛)          ∀𝑖 ∈  𝑍+∶  𝑖 <  𝑛 –  𝑚 

 

 

Figure 2. schematic shape of visibility graph 

Therefore, to implement the visibility graph on ERP time series: 

xi = ERPCHANNEL (i) 

   

                                  1    :       

 
       f (visibility graph)=  

 

                                   0   : else  

 

 Statistical analysis 

Behavioral data consisted of continuous integer types and visibility graph data included clustering 

coefficient, pathlength, global efficiency, local efficiency, of continuous decimal type, and modularity 

and radius of discrete type. After calculating the quantitative values of the graph features, the 

Kolmogorov-Smirnov test was used to check for normality, and then, considering the non-normal 

distribution of the data, the Wilcoxon Signed Rank statistical test was used to examine significance. 

x𝑚+𝑖 <  x𝑛  +   
(𝑛 −  𝑚 + 𝑖 )

𝑛 − 𝑚
(x𝑚  −  x𝑛)          ∀𝑖 ∈  𝑍+∶  𝑖 <  𝑛 –  𝑚 
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Finally, the family wise error (FWE) correction method with the Bonferroni-Hochberg approach was 

employed to determine the most significant components in each EEG channel for each graph feature to 

create the related maps and diagrams. 

Subsequently, the relationship between behavioral changes and significant changes in the brain graph 

features in the first and third phases of the experiment will be calculated using Pearson correlation. 

Results 

 Behavioral Result  

The results of the behavioral data show that 13 individuals were placed in the contagion group and 15 

individuals in the no contagion group, such that the individuals in the contagion group changed more 

than 6 decisions before and after second phase (observing other's behavior) . 

The results of the behavioral analysis in the two groups, contagion and no contagion, are presented in 

Table 1. 

Table 1. Demographic of the subjects with behavioral contagion scores 

NO Contagion Group Contagion Group 

Behavioral 

Result 

Age Gender Subject 

ID 

Behavioral 

Result 

Age  Gender  Subject 

ID 

1 30 Male 1 14 23 Female 1 

-5 20 Female 2 8 30 Female 2 

1 25 Female 3 8 25 Male 3 

0 27 Male 4 8 23 Male 4 

-1 28 Male 5 8 26 Female 5 

1 28 Male 6 15 30 Female 6 

3 25 Female 7 9 26 Female 7 

0 24 Female 8 6 23 Male 8 

1 29 Male 9 19 25 Female 9 

-2 30 Male 10 7 27 Female 10 

-5 28 Female 11 11 30 Male 11 

2 27 Male 12 11 30 Male 12 

3 25 Female 13 10 28 Male 13 

1 30 Male 14 Removed from list 14 

1 25 Female 15 Removed from list 15 

After conducting the Wilcoxon statistical test in the first and third phases for the visibility features of 

the contagion group, significant channels with a significance level of p value<0.05 for each feature are 

presented in Table 2. 
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Table2. significant channels for visibility graph features in contagion group 

Significant Channels with p value <0.05 Feature 
Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, FT7, FC5, FC3, FC1, FC6, C5, C3, C1, TP9, 

TP7, CP5, CP3, CP1, P7, P5, P3, P1, P2, PO3, POz, PO8, O1, Oz, O2 

Clustering 

Coefficient 

CP3 Pathlength 

FC5,C5,C1,CP5,CP3,CP1,P5,P6 Global 

Efficiency 

Fpz,Fp2,AF3,F7,F5,F3,F1,FC5,FC3,FC1,C5,TP9,TP7,CP5,CP3,P7,PO3,O2 Local 

Efficiency 

FC4,T7,PO3 Modularity 

PO3,PO8 Radius 

The topoplots obtained from the averages and p values of each feature of the visibility graph are shown 

in Figure 5. These average topoplots are for Phase 1 and Phase 3 of the experiment, as well as for 

comparing Phase 1 and Phase 3 with p value . 
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Figure 5. Topoplots of visibility graph features achieved from ERP signals: the first column indicates the average of features 

in phase 1, the second column indicates the average of features in phase 3, and the third column indicates the p value of 

differences between phase 3 and phase 1. A: clustering coefficient, B: global efficiency, C: local efficiency, D: pathlengths, 

E: radius, F: modularity 
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For the relationship between behavioral changes and changes in each of the graph features, the most 

significant EEG channel was calculated. According to Figure 6, regression lines with coefficients r and 

p were drawn, showing that the highest significant relationship was for radius (r=0.689, p=0.009) and 

modularity (r=0.586, p=0.035) 

 

Figure 6. regression lines indicate relationships between behavioural changes and change in visibility graph features (a: 

changes modularity and behaviour in PO3, b: changes in radius and behaviour in PO3) 

 

Discussion 

In this research, we sought a model for the brain mechanism of behavioral contagion based on 

the visibility graph, as this type of modeling represents a novel approach for processing brain 

signals according to previous studies (Sulaimany & Safahi, 2023). Since the visibility graph 

transforms time series data into a graph, we used this nonlinear model to analyze ERP data, as 

the nature of these brain signals is inherently complex and nonlinear(Poikonen et al., 2023; K. 
Zhang & Hu, 2024). After conducting behavioral experiments and simultaneously recording 

EEG, we calculated the features of the visibility graph for the ERPs obtained from it. For the 

contagion group, the results are observable in a topoplot for the mean and also the significance 

levels of the comparison between phases 1 and 3 of the experiment. On the other hand, 

considering the most significant EEG channels in this contagion group, the results indicate that 

the obtained clustering coefficient feature in channel P7 is the most significant area of the brain 

for this feature. Additionally, for the obtained pathlengths feature, channel CP3 is the most 

significant, while for the obtained global efficiency feature, the most significant channel is also 

CP3. For the obtained local efficiency feature, the most significant channel is P7, and for the 

obtained modularity feature, the most significant channel is PO3. Furthermore, for the obtained 

radius feature, the most significant channel is also PO3.given that these areas were exclusively 

observed in the contagion group, it can be concluded that in behavior contagion, based on the 

results of clustering coefficient and local efficiency, individuals are more influenced by visual 

and spatial cues. Therefore, improving visual-spatial information processing should enhance 

sensitivity to the behavior of others, which is associated with increased social information 

processing through observing others. regarding the results of global efficiency and path lengths in 

the left centroparietal region, it is associated with better integration of sensory-motor and social 

information. Therefore, concerning the behavior contagion, it can be concluded that better coordination 

between observing the behaviors of others and decision-making for contagion is likely related. 

additionally, in the results of modularity in the PO3 region, it signifies more independent and modular 

processing of spatial social information. Thus, it can be concluded that regarding behavior contagion, 
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there is more specialized processing of visual and social information in this area, with a greater focus 

on social cues, which may indicate a higher sensitivity to the behaviors of others that play an important 

role in behavior contagion.in addition to the results from radius, in the PO3 region, it can be concluded 

that this area of the brain may play an important role in the brains of individuals in the Contagion group 

and sends processed social information faster. previous studies have also shown that the parieto-

occipital region is related to the decision-making selection phase, which is corroborated by our findings 

in this study, showing alignment with previous results (Weinstein, 2023).previous studies have shown 

that social influence is more related to the DLPFC and TPJ regions, and our data in this study also aligns 

with previous results and may point to the effective role of these areas in the transmission of others' 

behavior 4.previous studies have shown that social decision-making is more associated with vmPFC 

regions, and this area is critical for prosocial decision-making in social decisions. Our findings in this 

study are consistent with previous results, and we may refer to the role of prosocial decision-making 

versus antisocial when making decisions regarding the spread of behavior, which is associated with the 

involvement of this area of the brain(Lockwood et al., 2024). additionally, previous studies have 

indicated that a specific neural network is engaged in decision-making under social influence, involving 

the rTPJ, DLPFC, and vmPFC regions. Our data in this study are consistent with these findings, further 

supporting the role of these brain regions in behavioral contagion and the networked nature of brain 

function(Hu et al., 2022).moreover, prior research has demonstrated that the occipitoparietal region is 

associated with social conformity and behavioral contagion. our findings also align with these studies, 

suggesting the crucial role of this region in the contagion of behavior(Berns et al., 2005).Considering 

that a significant correlation was observed only in the contagion group between modularity (r = 0.7, p 

< 0.05) and radius (r = 0.6, p < 0.05) with behavioral changes—while this correlation was absent in the 

no-contagion group—it can be concluded that this relationship may serve as a specific neural marker 

for behavioral contagion, indicating a neural mechanism underlying social imitation. Therefore, PO3 

appears to be a brain region where increased processing differentiation (as reflected by the modularity 

index) and faster information integration (as indicated by the radius index) could lead to behavior 

contagion. In addition, given that the predictive indices of VG-based behavior contagion were observed 

more in the left side of the brain, perhaps it can be said that behavior contagion has laterality in the 

brain. 

one of the limitations of this study is the task design, as we generalized human-computer interaction to 

human-human interaction. This study lacks face-to-face interaction data and differs from real-world 

human communication conditions(Ibanez, 2022; Sonkusare et al., 2019). Therefore, future studies are 

recommended to use hyper-scanning EEG recording, which allows for simultaneous brain activity 

recording of two individuals(Hakim et al., 2023).considering the different results obtained from various 

visibility graph parameters across different channels, future research should utilize the visibility graph 

analysis approach with community detection to better distinguish ERP components(Zheng et al., 2021), 

especially in studies related to behavioral contagion.Additionally, to account for cultural 

effects(Henrich et al., 2023), Since culture has a significant impact on the formation of our social norms 

and our judgment of others, perhaps the influence of culture could be considered important in the 

behavior contagion. This is because if an altruistic or selfish behavior is to spread, individualistic or 

collectivistic cultural factors may be involved in our evaluation of the behavior and its contagion. In an 

individualistic culture, people are more focused on their personal interests and individual goals, whereas 

in a collectivistic culture, people prioritize the group's benefit. Studies show that people from collectivist 

cultures (e.g., East Asia, Latin America) tend to give more in the Dictator Game than those from 

individualist cultures (e.g., U.S., U.K.) (Henrich et al., 2005) . However, given the phenomenon of 

cultural evolution and the complexity of modern societies (Mesoudi, 2016), further research should be 

conducted regarding the generalization of results based on community culture, and future studies with 

larger datasets are recommended. Moreover, given the role of hormones such as oxytocin in social 

decision-making(Flechsenhar et al., 2024), it is suggested that future research designs incorporate this 

factor. 
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Conclusion 

 In this study, the neural mechanism of behavioral contagion was examined. Using nonlinear time 

series analysis of ERP with the visibility graph method, we identified a neural marker for behavioral 

contagion. Specifically, the features modularity and radius showed a direct relationship with behavioral 

contagion in the group exhibiting this behavior, whereas this relationship was absent in the group 

without contagion. These findings suggest that modularity and radius can serve as neural predictors of 

behavioral contagion. 
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