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Abstract 

Background and Objective: Cognitive trajectories in individuals with a baseline Clinical 

Dementia Rating (CDR) score of 0.5 vary widely, ranging from recovery (stable reverse migration) 

to resistance to recovery. Identifying predictors of these trajectories is essential for targeted 

interventions. This study aimed to investigate baseline structural MRI features and clinical factors 

associated with both rate of recovery and the likelihood of resistance to it, using a penalized 

mixture cure model (MCM). 

Methods: Data from 185 individuals with a baseline CDR = 0.5 in the OASIS-3 database were 

analyzed. Structural MRI features and clinical measures were assessed using the latency and 

incidence components of an MCM. The latency component evaluated factors influencing recovery 

rates, while the incidence component identified predictors of resistance. 

Results: The latency component revealed that increasing right rostral middle frontal thickness 

(HR = 2.06) was linked to faster recovery, while right frontal pole thickness (HR = 0.48) predicted 

slower recovery. The cure component identified left bankssts volume (OR = 2.21) as a key 

predictor of resistance, whereas left parsorbitalis thickness (OR = 0.56) was protective. Notably, 

right supramarginal thickness was paradoxically associated with both faster recovery (HR = 1.24) 

and increased resistance (OR = 1.48), potentially acting as a proxy for both compensatory 

mechanisms and maladaptive changes. 

Conclusions: The MCM revealed complex, context-dependent roles of structural MRI features 

in recovery and resistance trajectories, with frontal and temporal regions pivotal to cognitive 

outcomes. These findings highlight the value of MCM in advancing personalized therapeutic 

strategies and understanding recovery dynamics. 

 

Keywords: Alzheimer’s Disease, Cognitive Recovery, Clinical Dementia Rating, Penalized 

Mixture Cure Model, Structural MRI 
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1. Introduction 

The Clinical Dementia Rating® (CDR®) is a validated tool for assessing Alzheimer’s Disease 

(AD) risk and severity through semi-structured interviews conducted by experienced clinicians 

with patients and collateral sources, such as family members. A key feature of the CDR is its 

ability to capture intraindividual cognitive trajectories, providing insights into the progression from 

normal cognition (NC) to mild cognitive impairment (MCI) and potential reversion to NC (Morris, 

1993). 

Reverse migration, particularly the transition from a CDR score of 0.5 to 0, is a crucial area of 

Alzheimer’s disease (AD) research (Duran et al., 2022; Angevaare et al., 2022; Hampel & Lista, 

2016). Stable reverse migration, which we refer to as cognitive recovery in this study, can be 

defined as a CDR score reverting from 0.5 to 0 without subsequent decline or fluctuation, 

indicating a return to normal cognitive function. This process, though not fully understood, 

suggests a form of neuroplasticity, where the brain, despite experiencing neurodegenerative 

changes, is able to compensate and restore cognitive function. Neuroplasticity may involve 

mechanisms such as synaptic strengthening, neuronal reorganization, and neurogenesis, 

particularly in regions like the hippocampus, prefrontal cortex, and parietal regions that are vital 

for memory and executive functions (Zatorre et al., 2012). Gray matter preservation and even 

increases in volume in certain regions have been observed in individuals who experience 

recovery, indicating that the brain’s ability to adapt plays a significant role in recovery processes 

(Duran et al., 2022). 

However, the understanding of neuroimaging biomarkers related to reverse migration remains 

limited. Previous studies have primarily focused on the unidirectional progression from normal 

cognition to mild cognitive impairment (MCI) and dementia (Jack et al., 2018; Sperling et al., 

2019), leaving the role of reverse migration in cognitive recovery largely unexplored. While this 
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concept has gained attention in recent years, further investigation is needed to identify specific 

biomarkers that predict stable reverse migration and differentiate it from other cognitive 

trajectories.  

In addition to structural brain features, various confounders such as vascular risk factors (e.g., 

hypertension, diabetes), BMI, APOE genotype, and psychiatric symptoms (e.g., depression) can 

influence cognitive recovery and resistance to recovery. For example, vascular risk factors and 

higher BMI are associated with impaired cognitive recovery (Deckers et al., 2017; Dregan et al., 

2013), while the APOE ε4 allele is linked to poorer recovery outcomes in MCI (Riedel et al., 2016). 

These factors should be carefully accounted for when interpreting the relationship between brain 

structure and cognitive trajectories. 

 In the most recent work by  (Duran et al., 2022), multinomial or binary logistic regression have 

been utilized to investigate biomarkers associated with reverse migration. However, time-to-event 

regression offers a more dynamic and informative approach by modeling factors that influence 

the timing of cognitive migration rather than merely estimating its probability. Survival models 

provide significant advantages over logistic models by incorporating the timing of events, which 

is crucial for elucidating the trajectory of cognitive changes and effectively predicting clinical 

outcomes (Cox, 1972; Rabin et al., 2020). 

When stable reverse migration in the CDR is the primary outcome, many participants with a CDR 

of 0.5 remain impaired or experience fluctuations. This is primarily due to the neurodegenerative 

nature of AD and related cognitive impairments. As a result, a substantial proportion of individuals 

becomes resistant to stable reverse migration (resistance to recovery) and does not achieve a 

sustained return to a CDR of 0. 
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In time-to-event analyses involving this resistance, mixture cure models (MCMs) provide a 

valuable alternative to traditional survival models such as the Cox proportional hazards model. 

Conventional survival analyses assume that every individual has some likelihood of experiencing 

the event. MCMs address this limitation by separately modeling the probability of resistance and 

the time to stable reverse migration among those who are susceptible. This dual approach 

includes an incidence component that assesses the probability of resistance versus susceptibility 

and a latency component that models the time to stable reverse migration among susceptible 

individuals. By distinguishing these processes, MCMs allow for the estimation of time to stable 

reverse migration and facilitate the identification of factors that influence the probability of 

resistance. This advantage leads to a more comprehensive understanding of cognitive 

trajectories. 

In this study, we leverage neuroimaging and clinical data from the OASIS-3 dataset, a publicly 

available resource designed to support research on normal aging and AD (LaMontagne, 

Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, & Vlassenko, 2019). 

The dataset includes extensive MRI data, cognitive assessments, and other clinical features, 

providing a rich foundation for identifying biomarkers associated with cognitive changes.  

The primary goal of this study is to identify an optimal subset of high-dimensional structural MRI 

biomarkers—specifically regional cortical thickness and gray matter volume—that contribute to 

cognitive recovery and resistance to recovery in individuals with mild cognitive impairment. We 

use the hdcuremodels package (Fu et al., 2022b; Fu & Archer, 2024) in R to implement penalized 

mixture cure models capable of handling high-dimensional data, allowing us to efficiently perform 

feature selection and highlight the most relevant MRI biomarkers for these cognitive outcomes. 
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2. Materials and Methods 

2.1 Study Design and Participants 

Data were obtained from the OASIS-3 cohort, a longitudinal study spanning over 15 years with 

1378 participants at the Knight Alzheimer Disease Research Center, Washington University in St. 

Louis. The cohort includes generally healthy older adults (CDR=0) with or without a family history 

of Alzheimer’s disease, as well as individuals with very mild to mild AD (CDR=0.5 or 1). 

Participants undergo periodic evaluations, genetic testing, and neuroimaging every two or three 

years. Exclusion criteria encompass conditions preventing long-term follow-up (for example, end-

stage renal disease) or contraindications to MRI or lumbar puncture (for example, pacemakers, 

anticoagulant use). Further inclusion and exclusion details appear in (LaMontagne, Benzinger, 

Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko, et al., 2019). 

At baseline, participants were categorized by their functional and cognitive states using the global 

CDR score, where CDR = 0 represented normal cognitive function and CDR = 0.5 indicated 

minimal cognitive impairment. The primary outcome of interest was stable reverse migration 

among participants who entered with a baseline CDR score of 0.5. Out of the 1,378 total 

participants, 185 individuals enrolled with a baseline CDR of 0.5 and had available MR session 

data. Participants with a baseline CDR score of 0.5 were further divided into the following four 

categories based on their migration patterns during the follow-up period: 

• CDR-0.5 Stables: Participants who showed no migration, maintaining a CDR score of 0.5 

at both baseline and follow-up visits. 

• CDR-0.5 Fluctuators: Participants who fluctuated between CDR scores of 0 and 0.5 during 

the follow-up period. 
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• CDR-0.5 Negative Migrators: Participants who exhibited negative migration from a 

baseline CDR score of 0.5 to a score greater than 0.5 (CDR > 0.5). 

• Stable Reverse Migrators: Participants who exhibited stable reverse migration from a 

baseline CDR of 0.5 to a CDR of 0 and did not progress to CDR > 0 during follow-up. 

The breakdown of these groups is illustrated in the flowchart below: 

--- Figure 1 should be inserted here --- 

Out of the 185 participants with an initial CDR score of 0.5: 

• 36 participants showed stable reverse migration to CDR = 0 and maintained it throughout 

follow-up. 

• 15 participants fluctuated between CDR scores of 0 and 0.5 during follow-up. 

• 95 participants maintained a CDR score of 0.5 consistently. 

• 39 participants experienced negative migration to a higher stage (CDR > 0.5). 

Missing data during follow-up visits were also noted in each category, as indicated in the 

flowchart. 

2.2 Ethical Considerations 

Based on the (LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, 

Moulder, Vlassenko, et al., 2019), all participants in the OASIS-3 dataset provided informed 

consent under the ethical standards set by the Institutional Review Board at Washington 

University School of Medicine. The study adhered to established guidelines for human subject’s 

research, ensuring confidentiality and appropriate handling of both clinical and neuroimaging 

data. 
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2.3 Demographic and Clinical Assessments 

We evaluated ten baseline clinical assessments to capture demographic, functional, psychiatric, 

and genetic factors potentially linked to stable reverse migration. These included age at 

enrollment, sex, education, socio-economic status, body mass index (BMI), total Neuropsychiatric 

Inventory Questionnaire (NPI-Q) score, total Geriatric Depression Scale (GDS) score, total NACC 

Functional Assessment Scale (FAS), APOE ε4 allele of apolipoprotein E gene, and Mini-Mental 

State Examination (MMSE). The NPI-Q, which assesses twelve behavioral symptoms such as 

delusions and agitation, evaluates the presence or absence of symptoms in the past month and 

rates their severity as mild, moderate, or severe if present. The GDS, a screening tool for 

depressive symptoms, has a total score ranging from 0 to 15, with higher scores indicating greater 

severity of depression. The FAS is a 10-item scale that measures a patient’s ability to perform 

daily activities, such as preparing a balanced meal, with functional abilities rated from 0 (normal) 

to 3 (dependent). 

2.5 MRI Data Acquisition 

MRI data were collected on three different Siemens scanner models (Siemens Medical Solutions 

USA, Inc.): Vision 1.5T, TIM Trio 3T (two different scanners of this model), and BioGraph mMR 

PET-MR 3T. Participants were placed in a 16-channel head coil for the 1.5T scanners and a 20-

channel head coil for the 3T scanners, with foam pad stabilizers placed next to the ears to reduce 

motion artifacts during the scans. These technical settings were standardized to minimize 

potential variability introduced by different MRI systems. Further details on the MRI acquisition 

parameters, including technical settings and harmonization strategies, can be found in the OASIS-

3 database. This resource provides a comprehensive overview of the scanning protocols and 

imaging parameters, ensuring consistency and quality control across all data collected 
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(LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, 

Vlassenko, et al., 2019). 

2.6 MRI Post-Processing: Volumetric Segmentation and Regional 

Feature Assessments 

All MRI sessions underwent cortical reconstruction and volumetric segmentation of T1-weighted 

images using the Desikan-Killiany atlas with the FreeSurfer image analysis suite 

(http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012). This procedure yielded 68 bilateral cortical 

regions, providing 136 volumetric features per subject, including averaged cortical thickness and 

gray matter volumes. For subsequent analyses, extracted regional gray matter volumes were 

scaled by the total intracranial volume (TIV), computed as the sum of gray matter, white matter, 

and cerebrospinal fluid. This adjustment corrects for interindividual variations in overall brain size. 

2.6 Matching Up MR Session and Clinical data 

Because MRI scans and clinical questionnaires do not always occur during the same visit, we 

considered clinical data entries within one year before or after each MRI session as valid matches. 

This approach ensured the accurate integration of cognitive and neuroimaging data for analysis. 

2.7 Statistical Analyses 

2.7.1 Collinearity 

To assess multicollinearity among the predictor variables, we calculated the Variance Inflation 

Factor (VIF) for all included covariates. The VIF was calculated using the “vif” function from the 

“rms” package in R, and it was verified that all covariates had VIF values less than 10, indicating 

the absence of significant multicollinearity issues. 
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2.7.2 The Mixture Cure Model Description 

In this study, we employed a high-dimensional mixture cure model (MCM) to analyze the primary 

outcome: stable reverse migration from a CDR of 0.5 to CDR=0. The MCM approach is 

particularly suited for scenarios where a proportion of individuals is resistant to stable reverse 

migration—remaining impaired or fluctuating—while others are susceptible and may achieve 

stable reversion. This dual-population framework allows for detailed modeling of both resistance 

(referred to as being “cured”) and the timing of stable reverse migration among the susceptible 

individuals.  

Mixture cure models conceptualize the target population as a mixture of susceptible and 

immune individuals with respect to the event of interest, in this case, stable reverse migration. Let 

𝑍 represent a cure random variable defined as: 

𝑧 = {

1, Susceptible individuals (likely to achieve stable reverse migration)
 

0, resistance individuals (
resistant to stable reverse migration, remaining

 impaired or fluctuating
)

 ,  

the probabilities of being cured (resistance) and not cured (susceptible) are: 

𝑃(𝑍 = 1) = 𝜂 and 𝑃(𝑍 = 0) = 1 − 𝜂, 

where 𝜂 is the probability of being resistant to stable reverse migration. This is particularly relevant 

in the context of neurodegenerative diseases like AD, where many individuals do not return to 

normal cognitive function. The survival function for each subgroup is defined as follows: 

𝑆𝑢(𝑡) = 𝑃(𝑇 > 𝑡 ∣ 𝑍 = 0), 𝑆𝑐(𝑡) = 𝑃(𝑇 > 𝑡 ∣ 𝑍 = 1), 
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where 𝑆𝑢(𝑡) is the survival function for the susceptible to stable reverse migration subpopulation 

and 𝑆𝑐(𝑡) for the resisted (cured) subpopulation. The overall survival function for the population 

is expressed as: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 𝜂 + (1 − 𝜂)𝑆𝑢(𝑡), 

2.7.3 Model Components and Role of Covariates 

2.7.3.1 Incidence Model (Cure Fraction Model) 

The cure fraction (𝜂) represents the probability of resistance to stable reverse migration. It is 

modeled using a logistic regression function: 

logit(𝜂|𝐱) = 𝐱⊤𝛃, 

where 𝐱  includes baseline covariates such as clinical characteristics (e.g., age, BMI), and 

structural MRI biomarkers (e.g., regional brain volumes or cortical thickness). The coefficients 𝛃 

quantify the effect of each covariate on the probability of resistance. For example, a positive 𝛽𝑘 

for a specific MRI feature indicates that higher values of this feature are associated with increased 

resistance to stable reverse migration (remaining impaired or fluctuating). 

2.7.3.2 Latency Model (Survival Model) 

For susceptible individuals (𝑍 = 0), the time to stable reverse migration (𝑇) is modeled using the 

Cox proportional hazards model: 

ℎ(𝑡 ∣ 𝐱) = ℎ0(𝑡)exp(𝐱⊤𝛄), 

where 𝐱 represents the same set of baseline covariates as in the incidence model, and 𝛄 are the 

associated coefficients. Here, 𝛄 captures the effect of each covariate on the rate of stable reverse 

migration. A negative 𝛾𝑘 for a clinical or neuroimaging feature suggests that higher values of this 

feature are associated with a longer time to stable reverse migration (slower recovery). 
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2.7.4 The hdcuremodels Package 

The hdcuremodels package in R provides a penalized approach for fitting mixture cure models in 

high-dimensional settings. By applying regularization techniques such as LASSO or elastic net, it 

selects the most predictive features while guarding against overfitting. This functionality is 

particularly beneficial for analyzing large sets of structural MRI biomarkers, as it narrows down 

variables to those most relevant for understanding cognitive recovery and resistance to recovery. 

The package offers functions for model fitting, cross-validation, and diagnostic assessments, 

creating a robust framework for identifying and validating the key biomarkers in mild cognitive 

impairment. In this work we fitted penalized MCM using LASSO penalty. In addition, to evaluate 

the predictive performance of penalized MCM, we employed two key metrics: the C-Concordance 

Index (C-index) and the Area Under the Receiver Operating Characteristic Curve (AUC). These 

metrics help assess the model’s ability to accurately prediction in latency and incidence 

components of the MCM, respectively (Fu et al., 2022a). Details on feature selection, model 

assessment, and uncertainty in the estimations are provided in Supplementary A. 

3. Results 

3.1 Description of Baseline Clinical Characteristics Between Study 

Groups 

Among the 185 participants with a baseline CDR score of 0.5, 36 were categorized as Stable 

Reverse Migrators and 149 as Impaired or Fluctuated. The groups did not differ significantly in 

gender, socio-economic status, body mass index, age at entry, or education levels. Significant 

differences were observed in APOE ε4 status, with the Impaired or Fluctuated group having a 

higher median value (p = 0.0062). Additionally, Stable Reverse Migrators exhibited slightly higher 

median Mini-Mental State Examination (MMSE) scores (p = 0.0042) and lower functional 
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impairment in daily activities as measured by the FAS (p < 0.0012). Other clinical measures, 

including the Neuropsychiatric Inventory Questionnaire (NPI-Q) and the Geriatric Depression 

Scale (GDS), did not differ significantly between groups. 

--- Table 1 should be inserted here  --- 

3.2 Assessing Mixture cure model Assumptions 

Kaplan-Meier analysis (Figure 2) revealed that a substantial portion of participants did not 

experience stable reverse migration, as indicated by a prolonged plateau in the survival curve. 

We estimated a significant cure fraction of 34% (p = 0.005), confirming the presence of a non-

zero cured population. Additionally, the follow-up duration was sufficient to support the reliability 

of our findings (p = 0.006). 

---Figure 2 should be inserted here--- 

3.3 Penalized Mixture Cure Model Outcomes: latency Component 

The penalized mixture cure model identified several standardized structural MRI features 

significantly associated with the rate of stable reverse migration from a CDR score of 0.5 to 0 (see 

Table 2). Features with HRs deviating by less than 10% from 1 were excluded, as such small 

deviations are unlikely to be clinically meaningful. Features with HR greater than one, such as left 

rostral middle frontal thickness (HR = 2.06), left medial orbitofrontal volume (HR = 1.37), right 

supramarginal thickness (HR = 1.24), and right precentral thickness (HR = 1.18), were linked to 

faster recovery rates. 

Conversely, features with HR less than one, including right frontal pole thickness (HR = 0.48), 

right transverse temporal volume (HR = 0.50), left pericalcarine thickness (HR = 0.73), left frontal 

pole volume (HR = 0.79), right inferior temporal volume (HR = 0.85), and left posterior cingulate 
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thickness (HR = 0.86), were associated with slower recovery rates. The increase in these features 

suggests that larger values may reflect maladaptive neuroplasticity, where the brain may 

compensate in ways that are not conducive to cognitive recovery. These structural changes could 

represent early neurodegenerative processes that impair brain function over time, limiting the 

potential for full recovery. 

Additionally, the clinical measure total Neuropsychiatric Inventory Questionnaire (NPI-Q) was 

significantly associated with a slower recovery rate (HR = 0.8163). This further supports the idea 

that neuropsychiatric symptoms hinder cognitive recovery by interfering with essential neural 

circuits for memory and executive function. 

--- Table 2 should be inserted here --- 

3.4 Penalized Mixture Cure Model Outcomes: Incidence Component 

Similar to the latency component, the penalized mixture cure model identified several structural 

MRI features and clinical measures significantly associated with the probability of resistance to 

stable reverse migration (see Table 3). Structural features with odds ratios (OR) greater than one, 

such as left bankssts volume (OR = 2.21), right superior frontal thickness (OR = 1.68), right 

supramarginal thickness (OR = 1.48), and right inferior parietal thickness (OR = 1.30), were linked 

to higher odds of remaining impaired or fluctuating. These features, particularly in regions involved 

in higher cognitive functions and sensory integration, may reflect maladaptive compensatory 

mechanisms or neuroplasticity, which might hinder recovery and contribute to resistance to 

reverse migration. 

Conversely, features with OR less than one, including left parsorbitalis thickness (OR = 0.56), 

right pericalcarine thickness (OR = 0.73), and left insula thickness (OR = 0.75), were associated 
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with lower odds of resistance to recovery, suggesting that decreased cortical thickness in these 

regions could be linked to a better likelihood of recovery. 

Additionally, higher BMI (OR = 1.20) increased the odds of remaining impaired, while higher FAS 

scores (OR = 0.51) reduced the odds of resistance to recovery, indicating the significant role of 

functional abilities and BMI in predicting recovery outcomes. 

3.5 Model Performance Assessment: C-Concordance Index and AUC 

The penalized mixture cure model demonstrated strong predictive performance, assessed using 

the C-Concordance Index (C-index) and Area Under the Curve (AUC) based on 2000 bootstrap 

samples. The C-index evaluates how well the model predicts the timing of stable reverse 

migration, with a value of 0.845 (95% CI: 0.843–0.872), indicating excellent accuracy in identifying 

individuals likely to recover sooner compared to those who recover later or not at all. 

The AUC measures the model's ability to classify individuals as resistant or susceptible to stable 

reverse migration. The AUC value of 0.905 (95% CI: 0.900–0.905) highlights the model’s strong 

classification performance. These results validate the model's robustness in predicting recovery 

timing and resistance likelihood in individuals with mild cognitive impairment. 

4 Discussion 

In this study, we adopted a penalized mixture cure model to examine the dual pathways of 

recovery (stable reverse migration) and resistance to it. This approach distinguishes our work 

from traditional analyses by capturing both the subgroup of participants who genuinely revert to 

normal cognition and remain there, as well as those who are resisted to stable recovery. By 

integrating high-dimensional neuroimaging features and key clinical variables (e.g., BMI, FAS 

scores) into the same modeling framework, we have offered a more comprehensive 
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understanding of the factors influencing cognitive trajectories. The robust performance indices (C-

index and AUC) underscore the reliability of this method in identifying specific brain regions and 

clinical measures that either facilitate recovery or predispose individuals to sustained impairment. 

This uniqueness lies in the model’s ability to illuminate how structural, clinical factors interact to 

shape not just the risk of decline, but also the realistic potential for cognitive improvement. 

4.1 Description of Baseline Clinical Characteristics Between Study 

Groups 

The analysis of baseline clinical characteristics between the Stable Reverse Migrators and 

Impaired or Fluctuated groups revealed only modest differences. While these variables may not 

exhibit stark contrasts at the group level, they could serve as early indicators of trajectories toward 

stable reverse migration (recovery) or resistance to recovery. Such baseline factors provide 

valuable insights into potential predictors of cognitive outcomes and may guide targeted 

interventions. 

The lack of significant differences in demographic factors such as gender, socio-economic status 

(SES), and body mass index (BMI) is consistent with some previous studies that highlight the 

limited role of these variables in early cognitive trajectories. However, their subtle contributions 

should not be dismissed. SES and BMI, for instance, have been linked to long-term cognitive 

health in broader populations, with SES reflecting access to resources and cognitive stimulation 

(Stern, 2002) and BMI indicating systemic health influences on the brain (Kim et al., 2016). While 

these variables may not directly differentiate recovery and resistance at baseline, they could 

interact with other factors over time, influencing long-term trajectories. 

The observed differences in APOE ε4 status underline its role as an important early indicator of 

resistance to recovery. Individuals in the Impaired or Fluctuated group exhibited a higher 
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prevalence of APOE ε4, aligning with its established association with increased amyloid beta 

deposition and reduced synaptic plasticity (Liu et al., 2013). This genetic predisposition may set 

the stage for more pronounced cognitive challenges, making APOE ε4 a critical focus for early 

risk assessment and intervention. 

Baseline cognitive function, as measured by MMSE scores, demonstrated significant differences 

between groups, even though the differences were small at the entry. These findings highlight the 

potential of MMSE as an early marker of stable reverse migration, emphasizing that even slight 

variations in cognitive function at baseline should not be overlooked. The higher MMSE scores 

observed in the Stable Reverse Migrators group suggest that individuals with better baseline 

cognitive abilities may possess greater neural reserve, enabling recovery despite underlying 

neuropathology (Stern, 2002). This underscores the importance of routine cognitive assessments 

to identify individuals with a higher likelihood of recovery and to implement early cognitive training 

programs that enhance compensatory mechanisms. 

Functional impairment in daily activities, captured by the FAS, was another significant 

differentiator between groups. Stable Reverse Migrators demonstrated lower FAS at baseline, 

highlighting the importance of functional assessments as predictors of recovery. FAS not only 

reflects cognitive health but also points to an individual’s ability to engage in adaptive behaviors 

and maintain quality of life, which are critical for successful recovery (Teng et al., 2010). 

The absence of significant differences in neuropsychiatric symptoms, as measured by the NPI-Q 

and GDS, suggests that these factors may not serve as strong early indicators of cognitive 

recovery or resistance to recovery in the current subpopulation of the dataset. This finding 

contrasts with several studies that emphasize the role of depression and behavioral symptoms in 

accelerating cognitive decline (Enache et al., 2011; Wilks et al., 2024).However, it is possible that, 

in this specific cohort, genetic factors and cognitive biomarkers—such as gray matter volume and 
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cortical thickness—may overshadow the influence of psychiatric symptoms, particularly at 

baseline. This aligns with recent findings in the meta-analysis by (Mallo et al., 2020),which 

showed that while psychiatric symptoms were generally associated with cognitive decline, 

heterogeneity across studies indicated that these symptoms may not always serve as significant 

predictors, especially in the early stages of mild cognitive impairment (MCI). 

In summary, the baseline variables such as APOE ε4 status, MMSE scores, and FAS scores 

stand out as significant predictors, highlighting the potential for targeted early interventions.  

4.2 Latency Component of the MCM: Predictors of Stable Recovery 

The latency component of the penalized mixture cure model (MCM) revealed a complex interplay 

of structural MRI features and clinical measures in predicting the rate of stable reverse migration. 

These findings underscore the importance of both neuroanatomical characteristics and clinical 

factors in shaping cognitive recovery, highlighting that while some structural features are 

associated with faster recovery, others may hinder it, challenging the traditional assumption that 

larger cortical thickness or greater volumes are universally protective. 

The positive association of left rostral middle frontal thickness with faster recovery aligns with the 

well-documented role of the frontal cortex in executive functions and cognitive flexibility (Sattari 

et al., 2022; Stuss & Levine, 2002). The frontal cortex is critically involved in processes such as 

planning, cognitive control, and working memory. Thus, increased cortical thickness in this region 

may support neuroplasticity, allowing individuals to more effectively recruit compensatory neural 

networks, facilitating cognitive recovery. This finding is consistent with prior research suggesting 

that preserved or enhanced structural integrity in the frontal regions may bolster cognitive reserve 

and support adaptive mechanisms (Stern, 2002). 
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Similarly, the association between left medial orbitofrontal volume and faster recovery highlights 

the importance of regions involved in emotional regulation, decision-making, and reward 

processing (Rolls, 2019). These findings are in line with prior work suggesting that structural 

integrity in areas related to emotional processing could aid cognitive recovery, especially in the 

context of mild cognitive impairment (MCI), where maintaining emotional and cognitive stability is 

crucial. 

However, the negative associations observed in regions such as right frontal pole thickness (HR 

= 0.48) and right transverse temporal volume (HR = 0.50) challenge the notion that larger cortical 

measurements in these areas necessarily predict better outcomes. These results are consistent 

with recent findings (Williams et al., 2023) indicating that increased cortical thickness or volume 

in certain regions may not always be protective. Instead, these features may reflect maladaptive 

neuroplasticity or pathological processes such as neuroinflammation or tau pathology, which are 

associated with slower recovery rates (Dickerson et al., 2009). The frontal pole and transverse 

temporal regions are involved in higher-order cognitive functions such as decision-making and 

auditory processing, and alterations in these regions may signal early disruptions in the brain's 

compensatory capacity, preventing successful cognitive recovery. 

Additionally, the moderate negative associations found in regions like left pericalcarine thickness 

(HR = 0.73) and left frontal pole volume (HR = 0.79) support this nuanced interpretation. These 

areas, involved in visual processing and executive integration, show that increased thickness or 

volume in these regions may not necessarily promote recovery. Instead, they may reflect 

compensatory neural processes that, while initially adaptive, are inefficient in the long term. This 

observation diverges from previous studies that have emphasized the protective nature of cortical 

integrity in these regions (Stern, 2002), highlighting the importance of understanding regional 

specificity in recovery pathways. 
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Clinical assessments also played a role in predicting recovery outcomes. The higher Total NPI-Q 

scores, which indicate a greater neuropsychiatric burden, were associated with slower recovery 

rates. This finding is consistent with earlier studies linking neuropsychiatric symptoms, particularly 

depression and anxiety, with reduced cognitive recovery (Enache et al., 2011). Neuropsychiatric 

symptoms likely interfere with recovery-promoting behaviors, such as cognitive engagement and 

physical activity, and may exacerbate neurobiological stress, hindering the neuroplasticity 

required for successful recovery. 

In conclusion, the latency component of the MCM highlights the complexity of recovery 

trajectories in individuals with CDR = 0.5. Increased cortical thickness and volume in certain 

regions facilitate recovery, while in others, such structural changes may hinder it, suggesting 

maladaptive neuroplasticity or the presence of early neurodegenerative processes. These 

findings emphasize the importance of regional specificity in interpreting structural biomarkers and 

caution against viewing cortical measurements as universally protective factors. Future research 

should aim to delineate the underlying mechanisms of these contrasting effects, focusing on the 

interplay of structural changes, neuropsychiatric symptoms, and recovery-promoting 

interventions. 

4.3 Incidence Component of the MCM: Predictors of Resistance to 

Stable Recovery 

The incidence component of the penalized mixture cure model (MCM) provides important insights 

into the structural and clinical factors that increase the likelihood of individuals remaining in an 

impaired or fluctuating state rather than achieving stable reverse migration. These findings offer 

a critical perspective on the barriers to cognitive recovery and highlight potential avenues for 

targeted interventions. 
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Key structural MRI features identified as contributors to resistance to recovery included regions 

such as the left bankssts volume, right superior frontal thickness, and left parahippocampal 

thickness and volume. Notably, the left bankssts volume demonstrated the strongest association, 

with an odds ratio (OR) of 2.21, indicating that a one-standard-deviation increase in this region 

more than doubles the odds of remaining impaired. This finding aligns with prior studies 

suggesting that larger cortical volume in certain regions may reflect compensatory but inefficient 

neuroplasticity, where the brain attempts to maintain function but with limited success, potentially 

due to maladaptive structural changes (Dickerson et al., 2009). 

Similarly, right superior frontal thickness (OR = 1.68) and left parahippocampal thickness (OR = 

1.48) were associated with slower recovery rates. These regions are involved in cognitive 

functions such as memory integration, executive control, and sensory processing, indicating that 

disruptions or larger volumes in these areas may hinder the brain’s capacity to engage in effective 

neuroplastic adaptation, leading to resistance to recovery. The findings suggest that larger 

structures in these areas may signal pathological neuroplasticity, preventing true cognitive 

improvement. 

Conversely, certain structural features were found to be protective against resistance to recovery. 

The left parsorbitalis thickness (OR = 0.56) emerged as the most significant protective factor, 

reducing the likelihood of resistance by 44% for every one-standard-deviation increase. The right 

pericalcarine thickness (OR = 0.73) and left insula thickness (OR = 0.75) also exhibited protective 

effects, with smaller volumes in these regions associated with lower odds of resistance to 

recovery. These findings align with studies that emphasize the importance of preserved structural 

integrity in certain brain regions, which can promote neural resilience and functional recovery 

(Stern, 2002). Smaller volumes in these areas might indicate efficient compensatory changes or 

structural integrity that supports cognitive recovery in individuals with MCI. 
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Clinical factors also played a crucial role in understanding resistance to recovery. Higher BMI (OR 

= 1.20) was associated with an increased likelihood of remaining impaired, aligning with existing 

literature that links obesity and systemic inflammation to cognitive decline and neurovascular 

burden (Dye et al., 2017). On the other hand, higher functional status, as indicated by higher Total 

FAS scores (OR = 0.51), reduced the odds of resistance to recovery. This result is somewhat 

counter to typical findings, which generally associate greater functional impairment with poorer 

recovery outcomes (Cumming et al., 2008; Needham et al., 2012). However, our study suggests 

that individuals with higher functional impairment may have received more targeted interventions 

or support, which could have facilitated recovery despite their higher FAS scores. This 

observation points to the importance of personalized interventions that take functional status into 

account. 

These findings contribute to the growing body of evidence that structural features interact in 

complex ways to influence resistance to cognitive recovery. While larger cortical volumes in 

certain regions, such as the bankssts, may reflect inefficient compensatory mechanisms, smaller 

structures in protective regions, such as the parsorbitalis and insula, may reflect areas where 

structural integrity promotes neural resilience. These results are consistent with recent studies 

challenging the assumption that increased cortical thickness or volume is always beneficial. 

Instead, they highlight the need for a nuanced interpretation of these markers, considering their 

potential to either support or hinder cognitive recovery depending on the context (de Chastelaine 

et al., 2023) 

The findings from the incidence component underscores the multifaceted nature of resistance to 

recovery. By identifying both risk and protective factors, this study provides a roadmap for 

personalized interventions. Strategies such as targeted cognitive rehabilitation, weight 
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management, and functional impairment training hold promise for reducing resistance to recovery 

and enhancing the likelihood of stable reverse migration. 

4.4 Limitations and Future Research Directions 

While this study provides valuable insights into the predictors of recovery and resistance to stable 

reverse migration, several limitations should be acknowledged. Addressing these limitations in 

future research will enhance the robustness and applicability of the findings. 

4.4.1 Sample Characteristics and Generalizability 

The study focused on individuals with a baseline CDR score of 0.5, representing a specific 

cognitive trajectory. This approach allowed for a detailed exploration of recovery and resistance 

but may not generalize to broader populations with different cognitive statuses or neurological 

conditions. Our study specifically addresses the underexplored transition from CDR = 0.5 to CDR 

= 0, which has received limited attention in previous studies, including (Duran et al., 2022) and 

(Wilks et al., 2024). 

While this focused approach is a strength, it also presents a limitation in terms of sample 

characteristics. Future research should include individuals with other cognitive states, such as 

those with normal cognition (CDR = 0) or more advanced cognitive impairments (CDR > 0.5), and 

more diverse demographic cohorts. This would help clarify the generalizability of our findings and 

identify unique predictors of cognitive recovery and resistance across different cognitive stages.  

Additionally, our study used a ±1-year window for matching clinical and MRI data, which was 

necessary for dataset completeness but may have introduced variability in the temporal alignment 

of assessments. This temporal mismatch could affect the precision of the observed relationships 

between neuroimaging features and clinical outcomes.  
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To further validate our findings and explore their applicability across different contexts, future 

research could apply the model to datasets from studies such as (Duran et al., 2022) or (Wilks et 

al., 2024) Comparative analysis of these datasets could provide additional insights and strengthen 

the generalizability of our results across varying populations and clinical settings. 

4.4.2 Complex Dynamics of Feature Influence in MCM Components 

The results of the mixture cure model (MCM) highlight how structural MRI features influence the 

rate of stable reverse migration (latency) and resistance to recovery (cure component). While 

most features exhibit expected patterns—where protective effects on recovery rates align with 

reduced resistance—one feature demonstrates a distinct and paradoxical role. 

Right supramarginal thickness is associated with HR > 1 (1.24) in the latency component and OR 

> 1 (1.48) in the cure component. This paradoxical pattern suggests a complex, context-

dependent role for this feature. It may facilitate reverse migration by enhancing compensatory 

mechanisms or structural resilience in individuals predisposed to recovery (Stern, 2002). Under 

certain conditions, it might contribute to resistance, possibly due to the persistence of pathological 

states in individuals with greater impairments (de Chastelaine et al., 2023; Williams et al., 2023). 

The duality in the effects of right supramarginal thickness is rare but not unprecedented in the 

literature on cure models. It underscores the complexity of structural brain features in recovery 

dynamics, reflecting potential heterogeneity in their mechanisms of action across different 

subpopulations or clinical contexts. Alternatively, the feature may represent a proxy for two 

competing processes: promoting compensatory mechanisms in some individuals while reflecting 

maladaptive structural changes in others. This paradoxical role aligns with recent 

conceptualizations of cortical thickness alterations, which propose that regional brain metrics may 
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serve as biomarkers for adaptive or maladaptive processes depending on the pathological context 

(Dickerson et al., 2009; Stern, 2002). 

These findings emphasize the multifaceted roles of structural MRI features in the recovery 

process. Future research should explore the mechanisms underlying these dynamics to tailor 

interventions that maximize recovery potential and minimize resistance, ultimately improving 

patient outcomes. Validation using multi-modal imaging techniques such as positron emission 

tomography (PET) and functional MRI (fMRI), along with cross-validation in independent datasets 

(e.g., ADNI, AIBL), will be essential to better understand these complex relationships and their 

implications for clinical practice. 

4.4.3 Potential Interventions and Causality 

The study’s observational design limits its ability to establish causal relationships between 

identified predictors and cognitive outcomes. Interventional studies that target modifiable factors, 

such as functional impairment in daily activities or BMI, will be critical for confirming their causal 

roles in recovery or resistance. Moreover, exploring the efficacy of interventions tailored to specific 

structural vulnerabilities, such as neuromodulation or cognitive training focused on regions like 

the frontal pole or parahippocampal cortex, could yield actionable insights. 

5 Conclusion 

This study provides a nuanced understanding of cognitive trajectories in individuals with CDR = 

0.5, highlighting the dual pathways of stable reverse migration (recovery) and resistance to 

recovery. By using the penalized mixture cure model (MCM), we identified key structural MRI 

features and clinical measures that predict both recovery likelihood and timing. Key regions such 

as the left rostral middle frontal cortex and left medial orbitofrontal volume facilitate recovery, while 

right frontal pole and left bankssts volume are linked to resistance. These findings emphasize that 
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increased cortical thickness or volume can either promote recovery or reflect maladaptive 

neuroplasticity, depending on the region. 

This work also highlights the importance of addressing modifiable factors like neuropsychiatric 

symptoms and BMI. Lifestyle interventions, including weight management, physical activity, and 

psychiatric care, may enhance recovery outcomes. These results underscore the need for 

personalized interventions that combine neuroimaging, psychiatric management, and lifestyle 

modifications to optimize cognitive recovery. This work bridges structural neuroscience and 

clinical practice, laying the foundation for future research aimed at developing targeted strategies 

to maintain cognitive health.   
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Figure legends 

 

Figure 1  Study Design and Participant Classification 
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Figure 2 Kaplan-Meier Survival Curve for time to Stable Reverse Migration: The survival curve illustrates the proportion 

of individuals who achieved stable cognitive recovery (i.e., a return to a CDR score of 0 without further decline). A key 

observation is the prolonged plateau in the survival curve, which indicates that a significant portion of participants did 

not experience stable reverse migration.  
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Table Legends 

Table 1. Demographic and Clinical Characteristics of Stable Reverse Migrators and Impaired or Fluctuated Participants 

at Baseline 

Characteristic Impaired or fluctuated, N = 149 Stable reverse migration, N = 36 p-value 

GENDER, n (%)   0.871 

female 64 (43) 16 (44)  

male 85 (57) 20 (56)  

SES, Median (IQR) 2.00 (1.00 – 3.00) 2.00 (1.00 – 3.00) 0.172 

Unknown 2 0  

BMI, Median (IQR) 26.7 (24.0 – 30.1) 26.9 (24.6 – 30.9) 0.352 

Unknown 36 9  

Age at entry, Median (IQR) 72 (68 – 77) 73 (68 – 77) 0.802 

EDUC, Median (IQR) 16.00 (12.00 – 16.00) 16.00 (13.75 – 18.00) 0.152 

APOE, Median (IQR) 34 (33 – 34) 33 (33 – 34) 0.0062 

Unknown 2 0  

MMSE, Median (IQR) 27.00 (25.00 – 29.00) 28.50 (27.00 – 29.00) 0.0042 

Total NPIQ, Median (IQR) 2.0 (0.0 – 4.0) 1.0 (0.0 – 4.3)  0.242 

Unknown 7 0  

GDS, Median (IQR) 2.00 (1.00 – 4.00) 1.00 (0.00 – 3.00) 0.132 

Unknown 9 1  

Total FAS, Median (IQR) 3.0 (1.0 – 6.0) 1.0 (0.0 – 2.0) <0.0012 

Unknown 7 0  

1Pearson's Chi-squared test 

2Wilcoxon rank sum test 
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Table 2. Structural MRI Features Significantly Associated with the Rate of Stable Reverse Migration (Standardized 

Variables) 

   95 % Confidence Interval for log(HR) 

 

Feature 
HR log (HR) lower Upper 

right rostral middle frontal thickness 2.06085 0.72312 0.65001 0.72315 

left medial orbitofrontal volume 1.36537 0.31142 0.23835 0.31435 

right supramarginal thickness 1.23912 0.21440 0.21342 0.42125 

 right precentral thickness 1.18059 0.16601 0.06595 0.17085 

left posterior cingulate thickness 0.86049 -0.15025 -0.15180 -0.04232 

 right inferior temporal volume 0.84850 -0.16429 -0.20864 -0.14163 

left frontal pole volume 0.79074 -0.23479 -0.23945 -0.07098 

left pericalcarine thickness 0.72522 -0.32129 -0.33971 -0.31857 

 right transverse temporal volume 0.49906 -0.69504 -0.69967 -0.61866 

 right frontal pole thickness 0.48289 -0.72797 -0.87341 -0.72451 

Note: HR is the hazard ratio for Stable Reverse Migration. All features were standardized before model fitting; thus, the 

HR corresponds to a one-standard-deviation increase in each feature. A value above 1 indicates higher rate of Stable 

Reverse Migration. 
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Table 3. Structural MRI Features Significantly Associated with the probability of resistance to stable reverse migration 

(Standardized Variables) 

   
95 % Confidence Interval for 

log(OR) 

Feature OR 
log 

(OR) 
Lower Upper 

left bankssts volume 
2.2052

7 
0.79085 0.79007 0.85552 

 right superior frontal thickness 
1.6788

8 
0.51813 0.51606 0.63579 

 right supramarginal thickness 
1.4766

1 
0.38975 0.36898 0.38995 

left parahippocampal thickness 
1.4747

5 
0.38849 0.37692 0.39064 

 right inferior parietal thickness 
1.2987

8 
0.26143 0.06078 0.26522 

left superior parietal thickness 
1.2901

8 
0.25478 0.16287 0.25611 

left parahippocampal volume 
1.1696

6 
0.15672 0.15283 0.35849 

 right caudal middle frontal 
thickness 

1.1144
7 

0.10838 0.08917 0.10945 

left insula thickness 
0.7517

3 
-

0.28538 
-0.28617 -0.21287 

 right pericalcarine thickness 
0.7313

4 
-

0.31287 
-0.33834 -0.31185 

left parsorbitalis thickness 
0.5617

5 
-

0.57669 
-0.66175 -0.57494 

Note: OR is the odds ratio for being resisted to stable reverse migration (remaining impaired or fluctuated rather than 

reverting to normal cognition). All features were standardized before model fitting; thus, the OR corresponds to a one-

standard-deviation increase in each feature. A value above 1 indicates higher odds of non-recovery from mild cognitive 

impairment. 
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