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Abstract 

Predicting progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) is challenging, 

requiring reliable predictive markers for intervention. This study identifies predictive markers across 

various assessments, including demographics, Positron Emission Tomography (PET), genotyping, 

Magnetic Resonance Imaging (MRI), and neurocognitive tests from statistical methods. The primary goal 

is to discern markers effectively distinguishing stable MCI (sMCI) from progressive MCI (pMCI) to AD. We 

use the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset which individuals are meticulously 

categorized into sMCI (487 individuals) and pMCI to AD (348 individuals). In this study, we employ an 

innovative methodology that involves comprehensive data cleaning and engineering on the ADNI 

dataset. Area Under the Curve (AUC) and Wilcoxon testing as robust statistical methods are used to 

reveal distinct cognitive patterns between sMCI and pMCI. With a focus on 50 features, our findings 

highlight the discriminatory potential of PET, specifically Florbetaben (FBB), boasting an AUC value of 

0.84. Neurocognitive tests, including Alzheimer’s Disease Assessment Scale 13 items (ADAS13), ADNI-

modified Preclinical Alzheimer Cognitive Composite with Trails B (mPACCtrailsB), ADAS cognitive 

subscale question 4 (ADASQ4), Logical memory delayed recall Total score (LDELTOTAL), and ADNI-

modified Preclinical Alzheimer Cognitive Composite with Digit Symbol Substitution (mPACCdigit), exhibit 

substantial discriminatory power, each with AUC values of 0.83, 0.83, 0.82, 0.82, and 0.82, respectively. 

Consequently, diverse features, analyzed via robust methods, reveal cognitive markers for 

differentiating stable and progressive MCI, offering insights for improved early AD diagnosis and 

intervention. 

 

Keywords: Alzheimer's Disease, Mild Cognitive Impairment, Predictive markers. 
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Introduction 

Alzheimer's disease (AD), a severe form of dementia marked by rapid progression and profound 

cognitive impact, necessitates exploration of symptoms, rising incidence, diagnostic progress, and the 

urgent need for enhanced measures1. AD is exceptionally severe, progressing swiftly and often leading 

to fatality with profound cognitive impairment. Individuals with AD experience various symptoms, 

underscoring the pressing need for improved diagnostic, preventive, and therapeutic measures. The 

rising incidence of AD mirrors the demographic shift toward an aging population. Recent statistics 

indicate that approximately 5 to 10 percent of individuals aged 65 and above meet the criteria for AD2. 

Projections suggest a staggering 152 million people worldwide will be affected by 2050, underscoring 

the paramount importance of understanding AD's development and mechanisms3. Collaborative 

initiatives, exemplified by the Alzheimer's Disease Neuroimaging Initiative (ADNI)4, play a pivotal role in 

recruitment, assessment, and data management. ADNI's comprehensive approach significantly advances 

our comprehension of AD, bridging the gap between epidemiological trends and the intricate 

neurobiological processes underlying the disease. Concurrently, the field of AD diagnosis has progressed 

with the implementation of the International Working Group (IWG-2)5 criteria, representing a delicate 

balance between biomarkers and clinical phenotype. These criteria facilitate a nuanced understanding 

of the clinical heterogeneity inherent in AD6. The integration of biomarkers and clinical features is 

especially critical in comprehending the phases of AD7, influencing the design and execution of clinical 

trials, and shaping treatment considerations. 

In elucidating the critical role of early detection and precise risk prediction within Alzheimer's research, 

there is an emphasis on recognizing Mild Cognitive Impairment (MCI) as a pivotal prodromal stage. 

Within the intricate domain of AD investigation, this emphasis consistently revolves around the 

imperative need for early detection and precise risk prediction 8-10. The emphasis originates from the 

considerable economic and clinical advantages linked to timely identification and intervention, signaling 

a paradigm shift towards proactive healthcare strategies11. Various scholarly discourses significantly 

contribute to this thematic exploration, converging on the challenging question of early AD diagnosis. 

This dialogue accentuates the importance of acknowledging MCI as a prodromal stage, representing a 

critical juncture in the temporal progression of AD 12,13. MCI, distinguished by noticeable cognitive 

decline exceeding age-related expectations without significant interference with daily life, emerges as a 

pivotal phase in comprehending and detecting early AD symptoms 14. 

Identifying individuals with MCI susceptible to the progression to AD is crucial for timely intervention. 

Although MCI is not a deterministic condition precursor to dementia15 and even sometimes reverses to 

normal cognitive16, the exploration of MCI to AD encompasses diverse modalities, including 

clinical/demographic factors 17,18, Positron Emission Tomography or Magnetic Resonance Imaging 

(PET/MRI) analyses 19-21, genotyping22, along with neurocognitive assessments 23,24, and psychosocial 

elements 25-27. Each modality carries distinct advantages and limitations. Clinical/demographic factors 

provide valuable contextual information and play a pivotal role in diagnostic decision-making. PET/MRI 

analyses furnish high-resolution neuroimaging data, yet, despite yielding precise images, entail 

considerations of cost and radiation exposure. Genotyping offers insights into genetic underpinnings but 

may lack specificity. Neurocognitive assessments unravel cognitive profiles, although they may exhibit 

variability in reliability. The intricate interplay and potential synergy among these modalities introduce 

complexities, presenting unique challenges in comprehending the progression from MCI to AD. It's 
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worth noting that, although our dataset doesn't directly assess psychosocial elements, we review 

relevant studies to ensure a comprehensive understanding of all features in our contextual analysis. 

Embarking on a discussion of previous studies, Li et al.'s meta-analysis 26  reveals a suggested correlation 

between anxiety, Alzheimer's biomarkers, and cognitive decline in MCI. However, the study faces 

challenges due to the lack of specificity in MCI subtypes and inconsistencies in operational and 

diagnostic criteria, posing difficulties in forming robust conclusions. This leads to an inherent limitation, 

as relying on reported measures, rather than patient-administered assessments, may potentially result 

in false diagnostic assumptions. Transitioning to a different focus, M. Fei et al.'s literature synthesis 

integrates findings from eight studies exploring the association between the APOE ε4-allele and the 

transition risk from MCI to AD 22. The meta-analysis underscores a heightened AD risk in Amnestic MCI 

patients with the APOE ε4-allele. Despite the robust findings, the study acknowledges limitations, such 

as the need for larger sample sizes and additional family-based Transmission/Disequilibrium Test (TDT) 

studies. It also highlights potential publication bias, originating from data sourced in English journals and 

the absence of family-based TDT studies. Shifting the focus to community-based follow-up surveys, C. 

Hu et al.'s study, spanning 17 communities, employed psychiatric medical staff with over 2 years of 

clinical experience, achieving a 43.8% follow-up rate 28. Challenges emerged as demographic differences 

surfaced among participants lost to follow-up. Among the 441 diagnosed with MCI, the study uncovered 

varied outcomes, with 17.5% progressing to dementia, 80.7% remaining stable, and 1.8% reverting to 

normal cognition. The findings also unveiled significant associations with diabetes, marital status, and 

occupational roles. 

Continuing in a longitudinal context, T. Gabryelewicz and colleagues conducted an extensive study 

involving 105 individuals with MCI, subjecting them to comprehensive assessments and following up 

every 12 months 27. Over the 3 years, the study observed a significant trend: individuals identified with 

multiple-domains MCI (MD-MCI) displayed a notably increased likelihood of progressing to dementia, 

emphasizing the clinical significance of this classification. This shift in focus from community-based 

surveys to more targeted assessments contributes to a nuanced understanding of MCI progression. 

Shifting gears to a six-year investigation, MP Ates et al. observed seventy-six individuals aged 57 and 

above diagnosed with MCI 29. The study's results revealed that 44.7% progressed to dementia, while 

55.3% maintained an MCI diagnosis. Noteworthy associations were found between dementia cases and 

advanced age, vascular diseases, and shorter education duration. Additionally, patients with dementia 

exhibited a notably higher prevalence (94.1%) of vascular systemic diseases compared to those 

persisting with MCI. This prolonged study duration allows for a comprehensive examination of the 

factors influencing MCI outcomes. Transitioning to another longitudinal study by H Xue et al., 

encompassing a 5-year biannual follow-up of 437 MCI patients 17, 24.3% progressed to AD. This study 

identified transition risk factors, including gender, age, reading habits, smoking, drinking, 

cerebrovascular disease, hyperlipidemia, and diabetes. Moreover, it highlighted education as a 

protective factor, while advanced age and the presence of cerebrovascular disease significantly 

influenced the transitions from MCI to AD and death. This nuanced exploration of various factors 

affecting MCI outcomes contributes to a richer understanding of the complexities involved. Finally, RO 

Roberts spearheaded a study involving thorough assessments of residents aged 70 to 89 16. This 

comprehensive evaluation covered demographic information, memory inquiries, clinical ratings, and 

neuropsychological tests. MCI classifications included amnestic and non-amnestic MCI, along with 

single- and multiple-domain MCI. Participants underwent assessments at 15-month intervals, 
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uncovering an elevated risk of dementia in those with a history of MCI, particularly among women aged 

80 to 89. This community-based approach, coupled with detailed assessments, provides a bridge 

between community-based surveys and more targeted clinical investigations, offering a holistic view of 

MCI progression. 

Recent investigations have adopted multimodal strategies to predict AD progression by integrating 

neuroimaging, genetic data, and neurocognitive assessments, which closely aligns with our methodology 

of utilizing PET, MRI, genotyping, and neurocognitive tests to differentiate between sMCI and pMCI 30-33. 

Techniques such as MRI have demonstrated efficacy in detecting structural and functional brain 

changes, while the incorporation of MRI with genetic markers has significantly improved prediction 

accuracy for AD progression31. Longitudinal studies combining structural MRI with neurocognitive 

assessments or PET biomarkers have also shown enhanced predictive capacity for neuropsychological 

outcomes 32,33. Additionally, approaches information with advanced methods such as 3D-convolutional 

neural networks have further refined the ability to predict conversion from MCI to AD34. A systematic 

review of deep learning approaches how the combination of MRI and clinical data can yield early 

predictions of conversion from MCI to AD35. Our study further extends this work by employing a robust 

statistical framework for a comprehensive evaluation of these multimodal features, underscoring the 

importance of integrated and longitudinal approaches for early diagnosis and targeted therapeutic 

interventions. 

Concluding this integrated discussion, SJ Lee's study utilizing data from ADNI-1 focused on 382 

participants with amnestic MCI 36 . Over a 2.9-year follow-up, 46.9% progressed to probable AD. Factors 

influencing progression encompassed demographic, symptomatic, functional, and neuropsychiatric 

domains. The clinical index, though less accurate than the full index with neuroimaging measures, 

underscored the importance of their inclusion for heightened predictive precision. This transition from 

community-based assessments to more refined clinical investigations demonstrates the intricate 

interplay of factors influencing MCI outcomes, showcasing the complexity of predicting progression to 

dementia. 

We employ an innovative approach, delving into various modules to foster a holistic understanding of 

the intricate interplay among demographics, PET, genotyping, MRI, and neurocognitive tests. This 

comprehensive exploration seeks to identify effective markers that distinguish participants into two 

cohorts: those consistently maintaining a MCI diagnosis, termed stable MCI (sMCI), and those 

progressing from MCI to AD, known as progressive MCI (pMCI). Each module serves as a unique lens for 

our investigation: demographics enhance our understanding of prevalence and risk, PET sheds light on 

functional and metabolic nuances, genotyping delves into genetic and molecular realms, MRI unveils 

intricate structural details, and neurocognitive tests assess cognitive function. Our exhaustive statistical 

scrutiny rigorously evaluates the significance of these modalities, pinpointing their value in identifying 

AD within the spectrum of MCI. This holistic exploration, empowered by statistical methods, enables us 

to distill the most potent predictive markers, refining early detection strategies for AD. By navigating 

diverse modalities and conducting a nuanced analysis, our innovative investigation aims to uncover 

optimal predictors for AD within the context of MCI, contributing to a more profound comprehension of 

the disease and advancing early detection efforts. 
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Materials and Methods 

ADNI: Cohort Collaboration, Data Integration, and Access Protocols 

The ADNI initiative stands as a groundbreaking collaborative effort, aiming to revolutionize our 

understanding of AD by advancing early diagnostic capabilities, standardizing data sharing, enhancing 

clinical trial methodologies, and fostering collaborative research endeavors. Integral to this initiative, the 

ADNI-MERG dataset plays a pivotal role in consolidating a diverse array of data into a unified repository. 

The manuscript's framework provides efficient access to a comprehensive dataset, including 

demographic information, PET, genotyping, MRI, and neurocognitive assessments, minimizing the need 

for complex data integration. Each dataset entry corresponds to a participant's visit across different 

ADNI phases, providing crucial details like participant ID, site visited, examination date, original study 

protocol, and data collection study protocol. Furthermore, the dataset includes extensive baseline data 

from all tests conducted during each participant's visit, establishing a robust groundwork for focused 

exploration of patterns and relationships aligned with the study's objectives. Accessing ADNI data 

involves submitting a formal request to the ADNI team, and outlining research goals and methodologies. 

Following a thorough approval procedure, the ADNI team grants necessary permissions for data access. 

Inside ADNI MERG Data: Exploration, Cleaning, and Trajectory Insights 

The ADNI-MERG dataset includes a comprehensive array of data types, with baseline (BL) fields 

extending beyond demographic information. Time-related fields, such as visit codes and examination 

dates, provide a longitudinal perspective, while "Update_stamp" fields offer insights into the last 

modification of entries. The "DX" column indicates diagnostic categories, with "NA" denoting missing 

values, underscoring the need for careful analysis, and prompting researchers to consider imputation 

techniques or exclusion criteria. 

The dataset encompasses essential demographic variables, including AGE (Mean Age), PTEDUCAT 

(Participant’s Years of Education), PTETHCAT (Participant’s Ethnic Category), PTGENDER (Participant’s 

Gender), PTMARRY (Participant’s Marital Status), and PTRACCAT (Participant’s Racial Categories). 

Cognitive assessments comprise ADAS11 (11 items), ADAS13 (13 items), and ADASQ4 (Cognitive 

Subscale Question 4) from the Alzheimer's Disease Assessment Scale, along with CDRSB (Clinical 

Dementia Rating - Sum of Boxes), DIGITSCOR (Digit Symbol Substitution Test), FAQ (Functional 

Assessment Questionnaire), LDELTOTAL (Logical memory I and II, delayed recall), MMSE (Mini‐Mental 

State Examination), TRABSCOR (Trail Making Test-B-Score), MOCA (Montreal Cognitive Assessment), 

mPACCtrailsB (ADNI modified Preclinical Alzheimer Cognitive Composite with Trails B), and mPACCdigit 

(ADNI modified Preclinical Alzheimer Cognitive Composite with Digit Symbol Substitution). Also  

RAVLT.immediate (RAVLT Immediate), RAVLT.learning (RAVLT Learning), RAVLT.forgetting (RAVLT 

Forgetting), and RAVLT.perc.forgetting (RAVLT Percent Forgetting) from the Rey Auditory Verbal 

Learning Test. Everyday cognition test Participant Self-Report assessments encompass EcogPtMem 

(EcogPT Memory test), EcogPtLang (EcogPT Language test), EcogPtVisspat (EcogPT Visual-spatial and 

perceptual abilities test), EcogPtPlan (EcogPT Planning test), EcogPtOrgan (EcogPT Organization test), 

EcogPtDivatt (EcogPT Divided attention test), and EcogPtTotal (EcogPT Total test mean score). 

Additionally, EcogSPMem (EcogSP Memory test), EcogSPLang (EcogSP Language test), EcogSPVisspat 

(EcogSP Visual-spatial and perceptual abilities test), EcogSPPlan (EcogSP Planning test), EcogSPOrgan 

(EcogSP Organization test), EcogSPDivatt (EcogSP Divided attention test), and EcogSPTotal (EcogSP Total 

test mean score) represent assessments from the Everyday Cognition Study Partner Report. PET and 
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genotype features encompass AV45 (Florbetapir), FBB (Florbetaben), FDG (Fluorodeoxyglucose), PIB 

(Pittsburgh Compound B), APOE4 (Apolipoprotein E), ABETA (Amyloid β peptide), PTAU (Blood 

phosphorylated tau), and Total tau (TAU). Brain region volume measurements include Entorhinal 

(Entorhinal cortex), Fusiform (Fusiform gyrus), Hippocampus, ICV (Intracranial Volume), MidTemp 

(Middle temporal gyrus), Ventricles (Brain ventricles), and Whole Brain. 

The meticulous preparation of the dataset involved a rigorous data cleaning process to enhance its 

quality and relevance. Duplicate entries were systematically eradicated using participant ID (RID) and 

visit code as distinctive identifiers to guarantee the distinctiveness of each participant's visit. Coherence 

was enhanced by excluding subjects lacking a diagnosis, while the omission of participants with a 

solitary diagnosis enriched dataset diversity and encompassed a broader spectrum of diagnostic 

transitions. The exclusion of rows with complete missing values was essential to maintain the accuracy 

and integrity of the data set. These judiciously applied criteria contribute to a meticulously curated 

dataset, void of redundancies, inclusive of participants with meaningful diagnostic information, and 

devoid of incomplete or uninformative entries, aligning with the precise goals and analytical requisites 

of the study. Significant work on the ADNI-MERG dataset included the implementation of enhancements 

to enrich the understanding of participant trajectories and diagnostic alterations within the ADNI study. 

These updates provided an in-depth insight into participant involvement and diagnostic shifts, 

introducing additional metrics such as visit frequency, participant engagement duration, and unique visit 

identifiers. This not only enriched the dataset but also expanded the ability to assess participant 

progressions thoroughly. Incorporating group labels to identify transitions between diagnostic states 

and records of diagnosis conversions significantly fortified the dataset's capability to capture and 

illuminate the intricacies of participants' diagnostic changes. Importantly, the categorization of 

participants into progressive and stable MCI groups provided a more refined analysis of participant 

paths and their diagnostic alterations throughout their involvement in the study, which is discussed in 

detail later. 

Exploring ADNI Data Dynamics: In-Depth Analysis and Visualization 

The baseline diagnoses of 2070 participants in the ADNI dataset include various cognitive states, with 

Late Mild Cognitive Impairment (LMCI) being the most prevalent diagnosis (624 individuals), followed by 

Early Mild Cognitive Impairment (EMCI) with 362 participants. Together, LMCI and EMCI form the largest 

group of individuals with MCI, totaling 986 participants. Additionally, there are 485 individuals classified 

as Cognitively Normal (CN), 357 participants diagnosed with AD, and 242 participants with Subjective 

Memory Concerns (SMC). Figure 1(a) illustrates these baseline diagnoses, providing essential context for 

understanding the cognitive states of participants, which is crucial for subsequent analyses of cognitive 

decline. Figure 1(b) shows how these baseline diagnoses are distributed across different ADNI phases: 

ADNI1 predominantly includes LMCI, CN, and AD diagnoses; ADNI2 has a broader distribution with 

significant numbers of EMCI, AD, and SMC cases; ADNI3 has a notable prevalence of SMC cases; and 

ADNIGO primarily features EMCI, underscoring the variability in diagnoses across the ADNI phases. 
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(a) (b) 
Fig1. a) Visualizing baseline diagnosis distribution in the ADNI cohort b) Baseline diagnosis distribution across ADNI phases 

 

The visit progress for selected participants within the ADNI study is presented in Figure 2, which 

illustrates participant retention and transitions across various ADNI study phases. The figure highlights 

the longitudinal participation of individuals starting from baseline in each ADNI phase (ADNI1, ADNIGO, 

ADNI2, ADNI3), showing how participants move through sequential visits over time. For example, ADNI1 

initially enrolled 786 participants, and as the study progressed, a portion of these participants 

transitioned to subsequent phases such as ADNIGO, ADNI2, and ADNI3. ADNI GO began with 121 

participants, ADNI2 with 742, and ADNI3 with 421. The plot effectively visualizes participant follow-up 

within and across these phases, as indicated by the continuous lines. Larger, bolded dots represent 

baseline visits for each ADNI phase, while smaller points indicate follow-up visits over time. This figure 

underscores the continuity of the cohort and the attrition or retention of participants as they progress 

through the study phases. 

 

Figure 2: Participant distribution across ADNI phases. The x-axis represents time points for each phase (ADNI1, ADNIGO, ADNI2, 

ADNI3), with enrollment numbers of 819, 110, 730, and 410, respectively. Bold dots indicate baseline visits, while continuous 

lines track participant follow-up and transitions across phases, illustrating longitudinal retention. 

Examining diagnosis conversions during participant visits in the ADNI study reveals notable patterns. The 

frequent transitions from MCI to MCI (3635 instances) and CN to CN (2971 instances) suggest prevalent 

stability in cognitive states across visits. These repeated transitions indicate that many participants 
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remained in the same cognitive state over multiple visits, reflecting either the slow progression of the 

disease or a lack of significant change in their condition during the observation period. Additionally, the 

persistence of AD to AD transitions (1590 instances) underscores the stability of this cognitive state. Of 

particular interest is the MCI to Dementia transition (419 instances), signifying a substantial progression 

in cognitive decline. Conversely, rare transitions, such as CN to Dementia (6 instances) and Dementia to 

CN (1 instance), raise concerns about potential reporting errors or misclassifications. The presence of NA 

values (1180 instances) further complicates the analysis, emphasizing the challenges in accurately 

categorizing cognitive changes. 

ADNI Group Distinction: Categorizing Cognitive Progression Paths 

In this phase, we undertake the categorization of participant groups within our dataset, with a specific 

focus on individuals initially diagnosed with MCI. Within this subgroup, our attention is directed towards 

two distinct cohorts: those who consistently maintain an MCI diagnosis throughout their visits and those 

who undergo a conversion from MCI to AD. For the MCI to MCI group, we apply stringent criteria. 

Participants are required to have a minimum of one year's worth of available data, ensuring a 

comprehensive temporal perspective. Furthermore, their diagnosis should consistently remain MCI from 

baseline through all available records, precluding any transitions to alternative states such as normal 

cognition. 

In contrast, the MCI to AD group was meticulously selected based on specific criteria, requiring 

participants to exhibit an MCI to Dementia conversion and maintain a consistent diagnosis post-

conversion. This approach aims to derive meaningful insights from the dataset regarding the trajectories 

and factors associated with these cognitive progression paths. Table 1 provides an overview of the 

number of participants in various diagnostic transition groups, emphasizing the 'MCI to MCI' and 'MCI to 

AD' categories. These groups represent distinct cognitive progression paths, with the former indicating 

individuals who remained stable in the MCI category across visits and the latter depicting those who 

progressed from MCI to AD. The total number of participants included in the analysis is 835, with each 

category carefully selected based on specific criteria related to cognitive progression. 

 

Table 1. Number of participants in groups 

Group Number of participants 
MCI to MCI 487 
MCI to AD 348 

Total number 835 
 

 

Defining Stable and Progressive MCI States: Precision in Labeling for Insights 

In the process of labeling the data for pMCI and sMCI, we shift our focus from participants to individual 

records, recognizing the multifaceted nature of participants' cognitive trajectories. Within the MCI to 

MCI group, every record is uniformly designated as sMCI, irrespective of the participant's visit duration, 

ensuring a consistent representation of the sustained MCI state for each recorded visit, even if the 

engagement extends beyond three years. On the other hand, for the MCI to AD group, a precise 
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temporal criterion guides the labeling. Only records preceding the AD diagnosis and those within the 

three-year window before the conversion event receive labels.  

In conclusion, the comprehensive analysis of the ADNI-MERG dataset, from exploration and cleaning to 

the categorization of cognitive progression paths, is succinctly depicted in Figure 3, providing a visual 

representation of the intricate flow of our study. 

 

Figure3: Flowchart describing the process of study selection and their relevance to the approach taken in the manuscript 

 

Statistical analyses 

In the statistical analysis, we utilized descriptive statistics such as distribution histograms and box plots 

to compare the cognitive impairment patterns between sMCI and pMCI groups. Employing the Wilcoxon 

test37 in R version 4, we scrutinized differences in the AUC, setting a stringent significance level (alpha) 

at 0.005. Our hypothesis testing aimed at detecting significant disparities in AUC, considering values 

approaching 1 as indicating more statistically significant differences. Ethical considerations guided our 

research, ensuring informed consent within the ADNI, upholding strict privacy measures, and prioritizing 

participant confidentiality and welfare throughout the analysis. 

Result 

In this section, we dedicate our focus to a comprehensive exploration of the ADNI Merge dataset, 

specifically examining patterns and differences between individuals diagnosed with sMCI and pMCI. Our 

approach involves meticulous labeling and stratification of the dataset based on these diagnostic 

categories. The analysis is organized into five key domains that are critical for understanding cognitive 

impairment: demographics, PET imaging, genotyping, MRI brain analysis, and neurocognitive tests. To 

facilitate a clear and effective comparison between the sMCI and pMCI groups, we present the data 

through a comprehensive box plot figure (Figure 4). This visualization illustrates the distribution of key 

variables across the two groups, highlighting the 5th to 95th percentiles and offering a clear depiction of 

group mean differences and variability in each domain. These visual aids play a crucial role in revealing 
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the differences across cognitive, imaging, and genetic measures, enhancing our understanding of the 

factors that distinguish sMCI from pMCI. 
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Figure 4: Consolidated box plots for all variables comparing sMCI and pMCI. This figure provides a comparative analysis using 

box plots for all examined variables, highlighting group mean differences and distributions between sMCI and pMCI, facilitating 

a comprehensive understanding of group differences. 

 

Following the box plot analysis, we present an extensive statistical evaluation in Table 2, which provides 

AUC values and corresponding p-values for the key features in the dataset. This table highlights the 

discriminative power of clinical features between the sMCI and pMCI groups, particularly in cognitive 

assessments such as mPACCtrailsB, ADAS13, and LDELTOTAL, alongside memory-related tasks like RAVLT 

immediate and RAVLT learning. The high AUC values demonstrate the robust capability of these features 

to differentiate between cognitive statuses, reinforcing their relevance in understanding cognitive 

decline and its progression. 
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Table 2: AUC and p-values analysis for discrimination of features in the ADNI dataset. This table highlights the discriminative power of various 

features in different categories, with AUC values indicating the accuracy of each metric in differentiating between sMCI and pMCI groups, and 

p-values assessing statistical significance 

 
Features AUC p_value 
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AGE 

 
 

0.56 

 
 

0.005 

PTEDUCAT 0.51 0.356 

PTETHCAT 0.5 0.352 

PTGENDER 0.49 0.53 

PTMARRY 0.49 0.191 

PTRACCAT 0.49 0.023 
 

 
Features AUC p_value 

M
R
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Entorhinal 0.73 0.005 

Fusiform 0.69 0.005 

Hippocampus 0.75 0.005 

ICV 0.54 0.005 

MidTemp 0.71 0.005 

Ventricles 0.6 0.005 

WholeBrain 0.61 0.005 
 

 Features AUC p_value 

R
ey

 A
u

d
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o
ry

 V
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b
al

 

Le
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n
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g 
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st
 

 
 
 

immediate 

 
 
 

0.77 

 
 
 

0.005 

learning 0.72 0.005 

forgetting 0.57 0.005 

perc.forgetting 0.75 0.005 

 

   

 Features AUC p_value 

C
o
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CDRSB 0.8 0.005 

DIGITSCOR 0.63 0.005 

FAQ 0.8 0.005 

LDELTOTAL 0.82 0.005 

MMSE 0.76 0.005 

TRABSCOR 0.67 0.005 

MOCA 0.77 0.005 

mPACCtrailsB 0.83 0.005 

mPACCdigit 0.82 0.005 
 

 Features AUC p_value 
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EcogPtMem 

 
 
 
 

0.58 

 
 
 
 

0.005 

EcogPtLang 0.5 0.819 

EcogPtVisspat 0.55 0.005 

EcogPtPlan 0.58 0.005 

EcogPtOrgan 0.55 0.001 

EcogPtDivatt 0.49 0.393 

EcogPtTotal 0.55 0.005 
 

 Features AUC p_value 
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o
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d
y 

P
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EcogSPMem 

 
 
 
 

0.82 

 
 
 
 

0.005 

EcogSPLang 0.74 0.005 

EcogSPVisspat 0.77 0.005 

EcogSPPlan 0.76 0.005 

EcogSPOrgan 0.76 0.005 

EcogSPDivatt 0.74 0.005 

EcogSPTotal 0.81 0.005 
 

   

 Features AUC p_value 

A
lz

h
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sm

en
t 
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ADAS11 

 
 
 

0.8 

 
 
 

0.005 

ADAS13 0.83 0.005 

ADASQ4 0.82 0.005 

 

 Features AUC p_value 

G
en

o
ty

p
in

g 

 
 
 

ABETA 

 
 
 

0.72 

 
 
 

0.005 

PTAU 0.72 0.005 

TAU 0.7 0.005 

 

 Features AUC p_value 

P
ET

 B
ra

in
 A

n
al

ys
is

 

 
 

AV45 

 
 

0.77 

 
 
 

0.005 

FBB 0.84 0.005 

FDG 0.75 0.005 

PIB 0.66 0.015 
 

 

 

The subsequent sections will explore the detailed findings for each domain, discussing the specific 

results and their implications for differentiating between sMCI and pMCI, while providing insights into 

potential early markers of Alzheimer’s disease. In the cognitive assessment domain, a range of tests, 

including ADAS11, ADAS13, and ADASQ4, demonstrates significant potential in identifying individuals at 

risk for Alzheimer's disease (AD) within the MCI spectrum. With AUC values of 0.80, 0.83, and 0.82, 

respectively, these tests effectively differentiate between sMCI and pMCI participants, with the pMCI 

group consistently showing higher median scores across the board. Other cognitive measures, such as 

mPACCdigit, mPACCtrailsB, FAQ, and LDELTOTAL, further highlight the divergence between the two 

groups, as evidenced by their non-overlapping distributions. Additionally, TRABSCOR, MMSE, CDRSB, 

and MOCA provide clear separation between sMCI and pMCI cohorts, underscoring the value of these 

cognitive variables in differentiating individuals with varying degrees of cognitive impairment. The 
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RAVLT group also reveals consistent disparities in cognitive function, with individuals in the pMCI group 

exhibiting greater forgetfulness, lower immediate recall, and more difficulty in learning new information 

compared to those with sMCI. 

In the EcogPt assessments, individuals with sMCI report slightly better performance in memory, 

language, and planning than those with pMCI. While differences in organization, language, and divided 

attention are subtle, the overall cognitive functioning, reflected by EcogPtTotal, shows clearer 

distinctions between the groups. Study partner reports provide stronger evidence of cognitive 

impairments in individuals with pMCI across multiple domains compared to those with sMCI. AUC values 

for these assessments range from moderate to good accuracy, suggesting the utility of study partner 

evaluations in detecting cognitive decline. Both EcogPt and EcogSP total scores indicate cognitive 

difficulties in the pMCI group, though study partner reports exhibit greater sensitivity in identifying 

cognitive impairment. 

Beyond cognitive tests, analyses of demographic, PET imaging, genotyping, and MRI brain data offer 

additional insights. Demographic factors, such as age and PTEDUCAT, serve as moderate predictors of 

cognitive impairment, with AUC values of 0.56 and 0.51, illustrating their limited standalone predictive 

strength. PET imaging variables, particularly FBB and AV45, emerge as promising markers for 

distinguishing between sMCI and pMCI, with FBB scores elevated in the pMCI group and AV45 scores 

declining in the sMCI group, pointing to their utility in monitoring MCI progression. Genotyping 

variables, including ABETA, PTAU, and TAU, show consistent AUC values around 0.70-0.72, further 

supporting their relevance in cognitive impairment. Lastly, MRI brain analysis uncovers structural 

differences between the two groups, with higher Ventricles scores and lower Hippocampus scores in the 

pMCI group, suggesting potential structural changes associated with cognitive decline, particularly in 

midbrain regions. 

We further employed the Wilcoxon rank-sum test to statistically compare AUC values greater than 0.8 

between different diagnostic groups. The results indicated that AUC values exceeding 0.8, with p-values 

below 0.005, were significantly distinct from each other, confirming meaningful differences in the 

discriminatory power of these features. Moreover, the statistical significance of these metrics, reflected 

in low p-values, strengthens the confidence in their ability to differentiate between cognitive statuses. In 

conclusion, this comprehensive analysis highlights the broad range of features that contribute to the 

identification and differentiation of cognitive status within the ADNI dataset, offering valuable insights 

for both future research and potential clinical applications. 

Discussion 

Decoding ADNI-MERG: Patterns, Implications, and Cognitive Assessment Dynamics 

The exhaustive exploration of the ADNI-MERG dataset aimed at understanding patterns among 

individuals diagnosed with sMCI and pMCI. Our methodology involved meticulous labeling and 

stratification, enabling a detailed analysis across various domains. Various studies, such as those by Hu 

et al. 28, Gao et al. 38, Hu et al. 39, and Pandya et al. 40, report varying ratios of MCI to AD progression 

(34%, 4%, 35%, and 17.5%, respectively). These disparities may stem from differences in diagnostic 

criteria, assessment processes, regional variations, and participant backgrounds. However, the collective 

emphasis on understanding MCI to AD progression underscores the significance of continuous research 

efforts in this critical domain. The intricate dynamics within the ADNI cohort highlight a nuanced 
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landscape of cognitive decline. Assessments such as ADAS13, mPACCtrailsB, and FBB exhibit 

discriminative prowess, emphasizing the importance of diverse tools to capture distinct facets of 

cognitive impairment. While our analysis focuses on individual features, acknowledging the holistic 

nature of cognitive decline, it is noteworthy that some studies explore interactions among features, 

emphasizing the potential benefits of a more comprehensive evaluation 41,42. Furthermore, classifying 

MCI to AD participants into strong and weak categories provides an additional layer of insight, with the 

strong group representing cases of consistent AD progression and the weak group indicating fewer clear 

trajectories, which may warrant a focused analysis to understand differing contributing factors. 

 

Comprehensive Insights: Unraveling Cognitive, Demographic, Imaging, and Genetic Factors in 

Cognitive Impairment 

In our study, akin to previous research 43,44, MoCA and MMSE scores prove crucial in discerning MCI 

converters from non-converters. Our study aligns with a systematic review45 emphasizing the 

significance of cognitive tests, such as RAVLT, in predicting dementia with high sensitivity and specificity. 

The contrasting patterns in participant self-reports and study partner reports highlight the subjective 

nature of cognitive experiences, offering valuable insights into an individual's perception of cognitive 

function. Despite modest AUC values for age 46, education 47, and marriage status 28, our findings concur 

with established literature, affirming the influential roles of female sex and lower educational levels in 

facilitating conversion. Demographic factors, though playing a role, have limited standalone predictive 

strength. The combined influence of age and year of education underscores the intricate relationship 

between individual characteristics and broader cognitive trends.  

Our study demonstrates a significant AUC value of 0.75 for FDG features, aligning with the emphasis on 

FDG's pivotal role in MCI diagnosis and risk prediction in a related study 48. Nevertheless, in line with 

recommendations from another survey49, we recognize the imperative of judicious FDG-PET use, 

especially in cases with less certain risk. The inclusion of neuroimaging biomarkers, such as FBB from PET 

brain analysis and structural metrics from MRI brain analysis, adds a visual dimension to our 

understanding. FBB's exceptional discriminative power suggests its potential as a key marker for early 

detection, aligning with the increasing importance of imaging techniques in identifying cognitive 

impairment. The presence of White Matter Hyperintensities (WMH) appears linked to dementia 

progression in older adults with MCI 50,51. The resilience of structural metrics, as illustrated by the 

Hippocampus 51 and Entorhinal 41 in my study, aligns with observations from two supplementary studies. 

This coherence underscores the essential contribution of alterations in brain structures to cognitive 

status determination, establishing a pivotal link between neuroimaging and cognitive assessments. 

Specific genetic differences could influence the chances of MCI advancing to AD 52. Genotyping variables, 

including ABETA, PTAU, and TAU, introduce a genetic layer to our exploration. Their consistent relevance 

implies a shared role in the development of cognitive impairment, suggesting a convergence of various 

factors contributing to the complexity of cognitive decline. 

Navigating Cognitive Complexity for Optimized Clinical Strategies 

Comparing the various facets, it becomes clear that no single measure possesses universal 

discriminatory strength. Instead, a comprehensive understanding of cognitive decline emerges from 

combined insights from demographics, PET, genotyping, MRI, and neurocognitive tests. The integration 
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of multiple modalities provides significant advantages, as it captures the diverse aspects of Alzheimer's 

disease progression, making it more robust than relying solely on individual markers. FBB's prominence 

in PET brain analysis and the collective strength of certain cognitive assessments indicate potential 

avenues for prioritizing markers in future diagnostic strategies. However, our approach also presents 

drawbacks, including the potential for increased complexity and the necessity for comprehensive data 

that may not always be available in all clinical settings. The need for integrating multiple data types, 

while advantageous for accuracy, also presents logistical challenges related to data availability, cost, and 

computational resources. From a clinical perspective, understanding the performance of specific tests in 

different groups enables targeted and informed decision-making. Clinicians can enhance predictive 

accuracy by prioritizing assessments with higher AUC values, exemplified by ADASQ4, and mPACCtrailsB. 

The distinction between strong and weak groups plays a pivotal role in the performance of machine 

learning models. Machine learning models should be trained and validated with careful consideration of 

these nuances, incorporating a dynamic approach that accounts for the varying strengths of predictors. 

Focusing on specific features or subsets of the dataset, especially those from the strong group, may 

enhance model accuracy and reliability. Additionally, addressing potential challenges posed by the weak 

group, such as employing tailored imputation techniques or adjusting decision thresholds, could further 

improve the model's predictive capabilities. In summary, the intricate relationships observed among 

various factors emphasize the necessity for a holistic approach to understanding and addressing 

cognitive decline. Integrating diverse assessments, along with a nuanced interpretation of subjective 

and objective measures, forms a foundation for developing targeted interventions and diagnostic 

strategies tailored to the unique profiles of individuals at different stages of cognitive impairment within 

the ADNI cohort. The motivation behind this work is to enhance clinical decision-making through a 

deeper understanding of the predictive power of various markers and to ultimately contribute to more 

personalized and effective treatment strategies for Alzheimer's disease. 

Limitations 

It is crucial to recognize the constraints of our study. The modest sample sizes within specific groups 

may compromise the statistical power required for discerning significant differences, particularly in the 

context of utilizing AUC for distinctions. As a result, the applicability of our findings to broader 

populations is circumscribed, necessitating further validation in more extensive cohorts 

Suggestions for Future Research 

In future studies, a comprehensive strategy entails concurrently analyzing cognitive facets such as all 

ADAS features or RAVLT scores. Moreover, exploring synergies by combining factors across diverse 

cognitive dimensions could unveil valuable insights, while understanding the temporal evolution of this 

conversion process over time remains essential for enhancing our understanding of predictive markers 

for dementia. 

Conclusion 

In conclusion, our exploration of the MCI to AD transition underscores the critical importance of a 

holistic perspective in understanding and addressing cognitive decline. By investigating data from 

multiple modules including demographics, PET, genotyping, MRI, and neurocognitive tests within the 

ADNI cohort, we unveiled distinct cognitive patterns distinguishing sMCI from pMCI, encompassing a 

total of 50 features. The investigation into AUC values for individual features across diverse groups 



 

18 
 

sheds light on the nuanced predictive potential within the transition from MCI to AD. In the 

demographic group, features display modest predictive values, suggesting a limited impact of 

demographic factors on AD prediction, with AUC ranging from 0.49 to 0.56. The MRI and PET groups 

demonstrate diverse AUC ranges, substantiating their respective performances. In the realm of MRI 

features, the AUC spans from 0.54 to 0.75, with the Hippocampus exhibiting the highest AUC value. 

Meanwhile, PET features showcase an AUC range of 0.66 to 0.84, with FBB presenting the highest AUC 

value in this group. The genotyping group, including features like ABETA and PTAU, falls within an 

intermediate AUC range of 0.70 to 0.72. In neurocognitive tests, the ADAS group demonstrates robust 

predictive power (AUC range from 0.80 to 0.83). Diverse AUC values within the cognitive tests group, 

including CDRSB, FAQ, and mPACCtrailsB, collectively enhance predictive capability, with AUC ranging 

from 0.63 to 0.83. The RAVLT group shows moderate predictive capability, with AUC ranging from 0.57 

to 0.77. EcogPT features align with modest predictive capability, with AUC ranging from 0.49 to 0.58. 

Conversely, the EcogSP group exhibits high individual predictive values, contributing to commendable 

performance, with AUC ranging from 0.74 to 0.82. Features with high individual predictive power, such 

as those from neurocognitive tests including the ADAS, cognitive tests, EcogSP, and PET, play pivotal 

roles in enhancing the overall predictive capability of their respective groups. However, it's essential to 

note that not all groups exhibit equally strong predictive capabilities. In particular, the demographic and 

EcogPT groups, characterized by lower individual predictive values, reflect a comparatively modest 

overall predictive performance. Consequently, this nuanced analysis underscores the varied 

contributions of different modalities, guiding a refined understanding of the complex interplay between 

diverse assessments in predicting the MCI to AD transition. These insights contribute to a refined 

understanding of the intricate interplay between diverse assessments, guiding future research and 

personalized approaches for early AD diagnosis and intervention strategies. 
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