
Basic and Clinical

367

May & June 2024, Vol 15, No. 3

Research Paper
fMRI-Based Multi-class DMDC Model Efficiently 
Decodes the Overlaps between ASD and ADHD 

Zahra Zolghadr1 , Seyed Amir Hossein Batouli2 , Hamid Alavi Majd1 , Lida Shafaghi2 , Yadollah Mehrabi3*  

1. Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 
2. Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
3. Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

* Corresponding Author: 
Yadollah Mehrabi, Professor.
Address: Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Tel: +98 (912) 3849707
E-mail: mehrabi@sbmu.ac.ir

Introduction: Neurodevelopmental disorders comprise a group of neuropsychiatric 
conditions. Presently, behavior-based diagnostic approaches are utilized in clinical settings, 
but the overlapping features among these disorders obscure their recognition and management. 
Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) 
have common characteristics across various levels, from genes to symptoms. Designing a 
computational framework based on the neuroimaging findings could provide a discriminative 
tool for ultimate more efficient treatment. Machine learning approaches, specifically 
classification methods are among the most applied techniques to reach this goal.

Methods: We applied a novel two-level multi-class data maximum dispersion classifier 
(DMDC) algorithm to classify the functional neuroimaging data (utilizing datasets: ADHD-200 
and autism brain imaging data exchange (ABIDE)) into two categories: Neurodevelopmental 
disorders (ASD and ADHD) or healthy participants, based on calculated functional connectivity 
values (statistical temporal correlation).

Results: Our model achieved a total accuracy of 62% for healthy controls. Specifically, it 
demonstrated an accuracy of 51% for healthy subjects, 61% for autism spectrum disorder, and 
84% for ADHD. The support vector machine (SVM) model achieved an accuracy of 46% for 
both the healthy control and ASD groups, while the ADHD group classification accuracy was 
estimated to be 84%. These two models showed similar classification indices for the ADHD 
group. However, the discrimination power was higher in the ASD class. 

Conclusion: The method employed in this study demonstrated acceptable performance in 
classifying disorders and healthy conditions compared to the more commonly used SVM method. 
Notably, functional connections associated with the cerebellum showed discriminative power.
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1. Introduction

utism spectrum disorder (ASD) and atten-
tion-deficit/hyperactivity disorder (ADHD) 
are heterogeneous states with develop-
mental origins and significantly heritable 
patterns (Thapar & Rutter, 2015). ASD is 
characterized by age-inappropriate levels 

of persistent impaired attention and/or hyperactivity and 
impulsivity, while ADHD encompasses a specific set of 
disorders characterized by poor social communication/
interaction, stereotypical behaviors, and a restricted range 
of interests (Guha, 2014). These two diagnoses widely 
affect various dimensions of patients’ lives, may persist 
into adulthood, and often co-occur (Brookman-Frazee et 
al., 2018); approximately thirteen percent of participants 
in an epidemiological study on ADHD were diagnosed 
with ASD simultaneously (Zablotsky et al., 2020). Other 
reports have also shown that about 13% of individuals 
with ADHD receive an ASD diagnosis (Jensen & Stein-
hausen, 2015). Another study indicated that more than 
one-fifth of individuals diagnosed with ASD also exhibit 
ADHD-associated traits; impulsion and inattention are 
often present in ASD. Regarding heritability, family 

studies have reported that having relatives with ASD in-
creases the likelihood of receiving an ADHD diagnosis 
(Ghirardi et al., 2018; Ghirardi et al., 2019; Jokiranta-
Olkoniemi et al., 2016; Musser et al., 2014). Although 
numerous investigations have consistently demonstrated 
shared genetic components, endophenotypic attributes, 
and autism-related phenomena in children and adoles-
cents with confirmed ADHD diagnoses and vice versa 
(Gadowet al., 2006; Simonoff et al., 2008; Yerys et al., 
2009), the distinctions in the core psychopathologies of 
these disorders are well-established (Clark et al., 1999; 
Grzadzinski et al., 2011; Grzadzinski et al., 2016; Kotte 
et al., 2013; Kröger et al., 2011; Martin et al., 2014; Mul-
ligan et al., 2009). However, the significant interconnect-
edness between core behavioral symptoms and certain 
types of comorbidities (e.g. depression, anxiety, and 
sleep disturbances) of ADHD and ASD complicates dif-
ferential diagnosis, prognosis (Grzadzinski et al., 2016), 
and treatment outcomes; therefore, more clarification of 
the neuropathophysiological aspects of ADHD, ASD, 
and ASD+ADHD could be crucial (Craig et al., 2015). 

Highlights 

• Two-level multi-class data maximum dispersion classifier (DMDC) outperforms support vector machine (SVM) in 
autism spectrum disorder attention-deficit hyperactivity disorder (ASD-ADHD) classification. 

• fMRI-based functional connectivity aids ASD-ADHD classification. 

• Cerebelum.4.5. l - supramarginal.L is the most discriminative connection.

Plain Language Summary 

Neurodevelopmental disorders, such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum 
disorder (ASD), can be challenging to diagnose because they share many symptoms. Traditionally, doctors rely on 
behavioral assessments, but these can be imprecise due to overlapping characteristics. Our study explores a new way 
to distinguish between these disorders using brain imaging and advanced computer algorithms. We used a method 
called two-level multi-class DMDC to analyze brain scans from people with ADHD, ASD, and healthy individuals. 
These scans measure functional connectivity, which shows how different parts of the brain communicate. We aimed 
to see if our method could better identify which brain patterns correspond to ADHD or ASD compared to a commonly 
used method called support vector machine (SVM). Our results showed that the two-level multi-class DMDC method 
performed better than SVM in distinguishing between the disorders. It accurately identified healthy individuals 51% 
of the time, people with ASD 61% of the time, and those with ADHD 84% of the time. The SVM method was less 
accurate for healthy individuals and those with ASD but matched the accuracy for ADHD. This study is significant 
because it suggests that using advanced brain imaging analysis could improve how we diagnose neurodevelopmental 
disorders. Better diagnosis means more targeted and effective treatments for those affected by ADHD and ASD. For 
the public, this research highlights the potential of technology to enhance healthcare, leading to better outcomes for 
individuals and families dealing with these conditions.
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There is limited overlap in neural correlates between 
individuals with ADHD and those with ASD concerning 
resting-state connectivity or functional network organiza-
tions. Recognizing brain connectivity patterns is a promis-
ing approach for the characterization, diagnosis, and pre-
diction of pathologies linked to the abnormal functional 
or structural organization of the brain. Functional connec-
tivity refers to the temporal correlation of oscillatory ac-
tivities within the BOLD signal related to distinct nodes of 
the cerebrum. Recent evidence suggests that connectivity 
between brain regions significantly contributes to under-
standing emotional regulation and the hierarchy of cogni-
tive processing. Despite methodological variations, exist-
ing research findings (Bethlehem et al., 2017; Di Martino 
et al., 2013) suggest that ADHD and ASD could be consid-
ered large-scale brain connectivity disorders, albeit with 
insignificant similarities in the specific regions, as con-
firmed by meta-analyses (Dougherty et al., 2016; Rom-
melse et al., 2017). The attention-related insufficiencies 
(sustained attention and attentional shifts) are proposed as 
frequently observed links between ASD and ADHD. No-
tably, analyzing functional neuroimaging investigations 
yields high-dimensional data for a typically small number 
of subjects, necessitating novel computational approaches.

Classification is a crucial task in statistics and supervised 
machine learning with numerous applications in various 
basic and clinical fields (diagnostic and therapeutic), such 
as image processing. Extensive literature reviews have 
identified numerous research works on the application of 
classification methods for discriminating ADHD and Au-
tism based on functional neuroimaging data (Abraham et 
al., 2017; Itani et al., 2018; Liber et al., 2015; Nielsen et 
al., 2013). These studies, with varying levels of accuracy, 
have indicated some specific dimensions of functional 
neural correlates regarding neurodevelopmental disorders, 
such as the role of the cerebellum, prefrontal cortices, and 
temporal lobe contributions to pathogenesis. Some studies 
have compared both disorders simultaneously but in sepa-
rate settings without integration (Ghiassian et al., 2016), 
contrasting ADHD vs Healthy and ASD vs (not ADHD/
ASD vs Healthy). The current modeling aims to integrate 
and compare both disorders with their corresponding 
healthy states in a unified framework. Specifically, a data-
set is represented as an n×d matrix X, consisting of n data 
vectors xi (i ∈ {1, 2, . . ., n}) with d features and a class 
label yi ∈{-1, +1}. Two sets (classes) of d-dimensional 
training vectors are the starting point of the two-class dis-
crimination process. The discrimination procedure aims to 
design a rationale to attribute the labels of -1 or 1 to the 
vectors of newly added data (the vectors might be “closer 
to class +1” or “closer to class −1”) (Zou, 2019). 

Support vector machine (SVM) is a widely applied 
method for classifying structural and functional neuro-
imaging-derived variables in the clinical setting, as it 
avoids over-fitting even with a smaller number of sam-
ples and delivers high classification accuracy Bledsoe et 
al., 2020). It also provides individual classification (pa-
tient vs control) according to a boundary that is called a 
decision boundary (i.e. hyperplane) that separates data 
into two groups. The linear SVM seeks a hyperplane 
{x:=0} that maximizes all data points’ smallest margin 
(Cortes & Vapnik, 1995). 

Performance degradation is a recurring challenge in 
conventional machine learning methods, making it a spe-
cific concern in statistics when analyzing high-dimen-
sion low–sample size (HDLSS) datasets. When working 
with HDLSS, and specifically during the data projection 
onto the normal vector of the separating hyperplane, data 
pilling occurs; which in some HDLSS situations, might 
influence the SVM performance (Zou, 2019). The data 
maximum dispersion classifier (DMDC), applicable 
to general data, especially HDLSS, serves as a novel 
linear binary classifier. DMDC notably increases data 
dispersion, thereby inhibiting data pilling. Moreover, it 
performs well on HDLSS, remains invariant to the in-
tercept term, and involves a straightforward implemen-
tation process with minimal computational loads (Shen 
& Yin, 2020). Another critical aspect is constituting a 
reasonable interpretation of the ultimate coefficients. 
The models mentioned earlier and their improved ver-
sions could classify the high dimensional observations, 
but since the standard SVM-based models employ all the 
variables due to the L2-norm penalty (‖β‖2), providing an 
appropriate description of the findings and making the 
results more interpretable requires approaching toward 
L1-norm regularized method. In these sparse methods, 
some entries of β are set to zero, facilitating interpreta-
tion as only a subset of input features is deemed relevant 
for the final predictive algorithm. In 2003, Zhu et al. de-
veloped and introduced the sparse version of the support 
vector machine (Zhu et al., 2003), proving beneficial 
for the neuroscience domain. One recent study, Sen et 
al. (2018) aimed to identify and classify neuroimaging 
data using structural and functional connectivity charac-
teristics, exploring a series of three learners. Addition-
ally, Ghiassian et al. proposed a classification method 
based on MRI-derived histograms of oriented gradients 
(HOG) features and personal information, describing an 
algorithm capable of efficacious classification for ASD 
and ADHD. Their framework achieved 69.6% accuracy 
in classifying ADHD from controls (over a baseline of 
55.0%) (Ghiassian et al., 2016). 
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Since all existing investigations have applied two-class 
classification techniques (ADHD/ASD vs healthy con-
trols) that are not entirely able to categorize disorders 
and decode the ambiguities in neural correlates between 
ADHD and ASD, we aimed to apply a novel multi-class 
classification model called DMDC (Shen & Yin, 2020), 
on publicly available functional neuroimaging datasets 
of these two disorders and their healthy counterparts. 
Through the current project, primarily, we extended bi-
nary DMDC to a multiclass version for discrimination 
between more than two classes, and then we developed 
a two-level classification model based on this multiclass 
DMDC algorithm. This model could help solve the prob-
lem of data pilling and efficient interpretation of the find-
ings. Then we applied a version of the sparse modified 
SVM model to find the discriminative functional links 
between different states (ADHD vs ASD, disordered vs 
healthy conditions). 

2. Materials and Methods

Datasets 

The entire methodology is depicted in Figure 1. In this 
research, we analyzed ADHD-200 and ABIDE (autism 
brain imaging data exchange) datasets that are publicly 
accessible at NITRC. The data collection procedures 
adhered to predefined approval criteria, and to ensure 
confidentiality, the collecting institutions anonymized 
all participant data before making them publicly acces-
sible. Both datasets included resting-state fMRI and T1-
weighted images. The ADHD-200 dataset comprised 
939 subjects (357 with ADHD and 582 healthy controls) 
from North America, Europe, and China, with diagnoses 
made based on algorithmic criteria. The Autism brain 
imaging data exchange (ABIDE I) dataset was another 
included dataset. Currently, this collection also com-
prises resting-state fMRI and T1-weighted structural 
MRI scans from 1112 participants (573 healthy con-
trols (HC) and 539 patients with autism diagnosis), ac-
quired from standard institutions in North America and 
Europe. Diagnostic characteristics are available on the 
referenced websites. To ensure consistency in diagnostic 
criteria, we reviewed the criteria of all imaging sites and 
excluded collections that had not assessed the presence 
of comorbid ADHD according to standard procedures. 
This process resulted in 388 individual data (217 healthy 
controls, 171 ASD) remaining for analysis. Similarly, 
we applied this criterion to the ADHD-200 dataset and 
limited the data to two sites (253 healthy controls and 
249 ADHD patients). Subsequently, we combined the 
two datasets (ADHD-200 and ABIDE I) and randomly 
partitioned this combination into 332, 119, and 171 in-

dividual data for training procedures respectively for 
healthy control, ASD, and ADHD groups. For testing 
partition, 138, 52, and 78 subjects were assigned to the 
healthy control, ASD, and ADHD groups, respectively. 
Ultimately, we allocated 30% of the final data for testing 
and 70% for the training procedure. 

Preprocessing

After downloading both datasets, sequential prepro-
cessing steps were performed using FSL software. In 
order to remove non-brain tissue parts from the struc-
tural images, we randomly selected images of three sub-
jects and applied various sets of parameters to identify 
the most optimized parameters for each data acquisition 
center. Then MCflirt and rigid body motion correction 
methods with six specific parameters were performed. 
In addition, the process of slice-timing correction was 
performed based on the specific conditions of imaging 
procedures mentioned in the data acquisition description 
of each data center. The fMRI data was also motion-
corrected, and the voxel intensity was normalized. The 
band-pass filter was determined to be within the range 
of 2.8-60 Hz and registered to the MNI-152. Spatial 
smoothing was performed using full width with half 
maximum equal to 6 mm. In order to standardize and 
automate the data preparation process as much as pos-
sible, a bash code system was used that was applied to 
preprocess steps based on the appropriate parameters for 
each data center. 

Feature extraction

The parcellation part was based on the automated ana-
tomical labeling (AAL 116) atlas (the fMRI volumes were 
segmented into 116 regions through masking the ALL). 
Functional connectivity metric provides an index of the 
level of co-activation of brain regions based on the time 
series of rs-fMRI brain imaging data. From the regional 
time series (nt time-points×np regions), time points were 
variable among different centers, and np was equal to 
116. We computed the pairwise inter-regional covari-
ance matrix for each participant. Since the covariance 
matrix and its inverse are symmetric, the upper triangu-
lar elements of these matrices are considered. By add-
ing variables of individual characteristics and the state 
of communication of the regions, the structures of the 
datasets were prepared for classification. Also, due to 
different scattering of fMRI data and individual char-
acteristics (gender, age, and handedness), the values of 
quantitative variables were standardized by dividing the 
deviation of each observation from its mean to the stan-
dard deviation. 
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Parameter tunning

We used a 10-fold cross-validation design for pa-
rameter tuning. The training data were divided into 10 
folds, such that each fold approximately encompassed 
one-tenth of the training data in a random way to dis-
cover the optimum parameter across eleven considered 
parameters. Through every iteration process, 9 folds of 
the data were considered as training and this modeling 
was performed with every 11 parameters. Subsequently, 
the BCR (balanced classification rate: The average ac-
curacy across classes) index was calculated within that 
single fold of test data. Ultimately, the parameter with 
the highest value in each test fold would be selected for 

the subsequent step. Overall, the mode of the parameter 
with maximum BCR was obtained and considered as 
the optimum parameter. This cross-validation process 
was then performed for either two-level DMDC or SVM 
models. Furthermore, the current models exhibited ac-
ceptable stability during iterations, with insignificant 
variations in accuracies (below 5%). 

Multiclass DMDC

The computational cost of implementing DMDC is 
low, as it involves solving the convex quadratic pro-
gramming formulation similar to SVM (Equation 1):

Figure 1. Diagram of the methodology

Note: This process comprises data splitting, feature extraction, parameter tuning, modeling, and visualization, respectively.
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In this equation, uj represents the mean of training samples from the jj-th class, where j = 1, 2. The term AT β is utilized to manage 

the training samples. Following optimization and the formation of f(x), if f(x)>0, the new sample would be classified as belonging 

to classy=+1, otherwise, it would be classified as belonging to classy=-1 (Shen & Yin, 2020). 

As the current output variable (y) encompasses more than two classes and cannot be modeled by binary DMDC, we used a novel 

methodological framework derived from a one-vs-one strategy. This approach splits the multiclass dataset into one binary 

classification problem for each pair of classes. By applying our method, any two classes of output variables are defined based on 

the binary DMDC model; then, we will have 𝑘𝑘(𝑘𝑘 − 1)
2�    binary classification (k is the number of classes in the target variable 

space). Consequently, for each observation, there will be an equal number of predicted classes. To determine the classification for 

an observation, the class with the highest frequency is considered as the final predicted label, employing a majority voting approach.  

When multiple classes show the same frequency, the observations are allocated to the class with a maximum absolute value of f(x). 

Through applying this technique, more precise classifications will be achieved. We also compared the classic SVM and the DMDC 

models to ensure better accuracy representation.  
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(2) 

In this equation, uj represents the mean of training 
samples from the jj-th class, where j=1, 2. The term AT 
β is utilized to manage the training samples. Follow-
ing optimization and the formation of f(x), if f(x)>0, 
the new sample would be classified as belonging to 
classy=+1, otherwise, it would be classified as belong-
ing to classy=-1 (Shen & Yin, 2020).

As the current output variable (y) encompasses more 
than two classes and cannot be modeled by binary 
DMDC, we used a novel methodological framework de-
rived from a one-vs-one strategy. This approach splits 
the multiclass dataset into one binary classification prob-
lem for each pair of classes. By applying our method, 
any two classes of output variables are defined based on 
the binary DMDC model; then, we will have 

(k(k-1))⁄2 binary classification (k is the number of 
classes in the target variable space). Consequently, for 
each observation, there will be an equal number of pre-

dicted classes. To determine the classification for an ob-
servation, the class with the highest frequency is consid-
ered as the final predicted label, employing a majority 
voting approach. When multiple classes show the same 
frequency, the observations are allocated to the class 
with a maximum absolute value of f(x). Through apply-
ing this technique, more precise classifications will be 
achieved. We also compared the classic SVM and the 
DMDC models to ensure better accuracy representation. 

Moreover, we designed a two-level DMDC model. In 
the first level, using the training data, a binary DMDC 
model discriminates between two states (in this case, 
healthy control and disordered conditions). In the second 
level, observations that the designed model assigned the 
disorder label undergo classification using a multiclass 
DMDC. This process categorizes healthy states (non-
accurately assigned), ASD, and ADHD categories. Sub-
sequently, this two-level classification process is applied 
to the test dataset and yields an ultimate predicted label, 
which is then compared with the actual diagnostic labels 
to assess classification performance to evaluate this two-
level classification process. 

Regarding the applied SVM model, we calculated the 
non-zero coefficients as the discriminative links and 
connections. 

3. Results

We summarized sex, handedness, and age distribution 
by groups in Table 1. 

Table 1. Sex, handedness, and age distribution by groups

Variables Categories
No. (%)

HC ASD ADHD Total

Sex
Female 164(34.9) 21(12.3) 43(17.3) 128(25.6)

Male 320(65.10) 150(87.7) 206(82.7) 662(74.4)

Handedness

Right 252(53.6) 78(45.6) 123(49.4) 453(50.9)

Left 109(23.2) 8(4.7) 126(50.6) 243(27.3)

Ambidextrous 8(1.7) 7(4.1) 0(0.0) 15(1.7)

Unknown 101(21.5) 78(45.6) 0(0.0) 179(20.1)

Age (y)

Minimum 6.47 7.13 7.24 6.47

Maximum 30.78 31 17.61 31

Mean±SD 13.35±4.63 15.57±6.16 11.49±2.47 13.25±4.71
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Comparison of two models (DMDC vs SVM)

Applying the DMDC model to the test data resulted in 
a total accuracy of 62%. The model achieved accuracies 
of 51%, 61%, and 84% for the control, autism spectrum 
disorder, and ADHD groups, respectively. In the SVM 
model, an accuracy of 46% was obtained for the healthy 
control and autism spectrum disorder groups, while an 
84% accuracy was observed for ADHD. As shown in 
Table 2, these two models exhibit similar performance 
parameters in the ADHD group; however, the discrimi-
nation power is higher in the ASD group.

In the context of healthy versus disordered states, the 
total accuracy was 53%. Specifically, within the healthy 
group, the accuracy was 45%, and within the disordered 
group, it was 61%. Overall, around twenty-six connec-
tivity paths exhibited non-zero coefficients. 

The model differentiated between Autism and con-
trol fMRI datasets with a total accuracy of 73%. More 
specifically, within the control group, the accuracy was 
68%, and within the autism spectrum disorder group, it 
was 87%. Overall, around thirteen connectivity paths ex-
hibited non-zero coefficients (Table 3). In the compari-
son between ADHD and Control groups, the total accu-
racy was 76%. Specifically, within the control group, the 
accuracy was 72%, and within the ADHD group, it was 
84%. Overall, approximately thirteen connectivity paths 
showed non-zero coefficients (Table 3).

The total accuracy was 98%, with a specific accura-
cy of 98% within the ASD group and 99% within the 
ADHD group. Overall, approximately thirteen connec-
tivity paths exhibited non-zero coefficients (Table 4). 

The recognized patterns based on non-zero coefficients 
are visualized in Figures 2 and 3, as functional connec-
tivity maps.

4. Discussion

ASD and ADHD are neurodevelopmental abnormali-
ties that frequently occur together with below-threshold 
cross-disorder manifestations (the existence of symp-
toms of the other one despite not receiving the diagnostic 
label) (Syed et al., 2017). Since there are ambiguities in 
diagnosis and subsequent treatment options, in the cur-
rent study, we used a novel two-level multi-class DMDC 
algorithm to classify the functional connectivity values 
for each state of ADHD, ASD, or healthy participants. 
The obtained values showed that this model might be 
an efficient extension of the previous support vector ma-
chines and could be applied to other disordered states 
with more than two or even more classes. The total ac-
curacy was 62%, 51% for healthy control subjects, 61% 
for ASD, and 84% for ADHD. Functional connections of 
the cerebellum exhibited discriminative features for the 
two datasets of ADHD-200 and ABIDE. 

Table 2. The metrics of the models in the test dataset

Models
% No. 

Total Acc ASD Acc ADHD Acc Healthy Control
Acc 

Non-zero Coeffi-
cients

Two-level Multi-class DMDC 62 61 84 51 6670

LASSO SVM 59 46 84 46 6670

SVM
ASD vs control

73 87 - 68 13

DMDC 74 85 69 6670

SVM
ADHD vs control

76 - 84 72 13

DMDC 77 - 85 73 6670

SVM
ASD vs ADHD

98 98 99 - 13

DMDC 98 98 99 - 6670

SVM
Healthy vs disordered

53 61 45 26

DMDC 60 83 40 6670

Acc: Accuracy.�
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Table 3. Results of DMDC classification for autism and ADHD vs control and disordered vs healthy controls distinctive con-
nectivity maps

Disordered vs Healthy Autism vs Healthy ADHD vs Healthy

Total Accuracy: 53% Total Accuracy: 73% Total Accuracy: 76%

Connections Coeff Connections Coeff Connections Coeff

Insula.l - cerebelum.3. l -0.5924 Angular.r - cerebelum.7b. r -0.0238 Cerebelum.6. l - hippocampus.l 0.0144

Frontal.sup. medial.l - amygdala.r -0.4112 Occipital.sup. l - cerebelum.10. r -0.6073 Cerebelum.6. l - vermis.1.2 0.0000

Cerebelum.crus2. r - precuneus.l -0.4070 Cerebelum.8. l - paracentral.
lobule. r -0.3375 Frontal.sup. orb.l - thalamus.r 0.0005

Cerebelum.crus1. l - temporal.
inf.r. r -0.2829 Frontal.med. orb.l - cingulum.

ant. l -0.0733 Frontal.inf. oper.r - occipital.
sup. l 0.0005

Vermis.10 - caudate.r -0.2370 Vermis.9 - Frontal.Sup. Orb.R -0.0456 Precentral.l - vermis.7 0.0020

Vermis.1.2 - calcarine.r -0.1517 Cuneus.r - occipital.mid. r -0.0431 Frontal.sup. orb.l - precuneus.l 0.0039

Cerebelum.9. r - paracentral.
lobule. r -0.1224 Caudate.l - occipital.sup. l 0.0039 Frontal.mid. orb.l - occipital.inf. l 0.1144

Cuneus.r - rectus.l -0.1043 Insula.r - putamen.r 0.0172 Cerebelum.7b. l - frontal.med. 
orb.l 0.1163

Heschl.l - insula.l -0.0827 Insula.l - olfactory.l 0.0813 Cerebelum.crus2. l - calcarine.r 0.2363

Cingulum.ant. l - frontal.med. 
orb.l -0.0703 Frontal.inf. tri.l - cingulum.post. r 0.0830 Cuneus.r - occipital.Inf. R 0.2897

Cerebelum.8. l - cerebelum.4.5. r -0.0648 Parahippocampal.l - frontal.sup. 
orb.r 0.1400 Frontal.mid. orb.l - olfactory.l 0.3584

Heschl.r - vermis.4.5 -0.0555 Frontal.inf. tri.l - cerebelum.8. r 0.2061 Thalamus.l - hippocampus.r 0.3814

Temporal.inf. l - vermis.6 -0.0186 Cerebelum.7b. l - 
parahippocampal.l 0.5579 Frontal.sup. l - vermis.1.2 0.4490

Cerebelum.8. l - paracentral.
lobule. r -0.0123

Cerebelum.4.5. r - temporal.inf. r -0.0096

Vermis.7 - parahippocampal.r 0.0276

Parahippocampal.l - rolandic.
oper. r 0.0429

Cingulum.post. l - cuneus.l 0.0468

Cerebelum.7b. l - 
parahippocampal.l 0.0754

Frontal.med. orb.l - precuneus.l 0.0791

Supp.motor. area.l - supp.motor. 
area.r 0.1629

Cerebelum.7b. l - angular.r 0.2091

Paracentral.lobule. l - vermis.1.2 0.2165

Cerebelum.3. r - frontal.mid. 
orb.r 0.2311

Insula.l - olfactory.l 0.3779

Occipital.sup. l - caudate.l 0.4455

Insula.l - cerebelum.3. l -0.5924

Coeff: Coefficients.�
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The currently available diagnostic attitudes that ex-
clusively rely on behavioral findings could provide dif-
ferentiation; however, there has been evidence support-
ing the insufficiencies. The shared properties of genetic 
composition and intermediate phenotypes might blur 
the diagnostic procedures that depend on subjective 
clinical judgments, particularly for children and young 
adolescents exhibiting overlapping symptoms that do 
not neatly align with the combined form of disorders 
(ADHD+ASD). Furthermore, accurately expressing in-
ternally perceived symptoms can be challenging. Incor-
porating objective parameters derived from diagnostic 
tools alongside diagnosis and prognosis processes can 
potentially enhance treatment approaches. Structural and 
functional magnetic resonance imaging leverage brain 
tissue attributes to non-invasively map structural and 
functional characteristics’ spatial distribution. Regard-
ing neuromodulation, understanding the precise location 
of the interventions (either transcranial direct current 
stimulation or transcranial magnetic stimulation) (Cao 
et al., 2019; Barreiros et al., 2019) assists in determin-
ing the pattern of the stimulation, cognitive changes, and 
probable side effects. While known functional and struc-
tural brain abnormalities exist in ASD and ADHD, they 
alone cannot fully elucidate the disorders’ fundamental 
aspects. Given the high-dimensional nature of brain con-

nectivity data, designing a computational framework for 
precise big data identification is imperative. 

Several studies have applied machine learning tech-
niques toward diagnosing neurodevelopmental disor-
ders. Nielsen et al. (2013) obtained 60 % accuracy for 
classifying ASD and typically developed controls using 
the ABIDE dataset; Abraham et al. (2017) designed indi-
vidual FC matrices, achieving 67% classification accu-
racy. Jin et al. (2015) reached a classification accuracy of 
76% using a multi-kernel SVM. Additionally, Libero et 
al. used multimodal data to perform ASD classification 
(Libero et al., 2015). More recently, Agastinose Ronicko 
et al. (2020) examined several classifiers and different in-
put parameters, obtaining 65%-70% accuracy. SVM has 
also been extensively used in the ADHD classification 
with different fMRI findings and variables. Dos Santos 
Siqueira et al. (dos Santos Siqueira et al., 2014) designed 
a functional brain graph according to the classical tem-
poral correlation between nodes and applied SVM-based 
classification; the highest achieved accuracy value was 
65%. Moreover, Itani et al. (2018) extracted statistical-
focused parameters from functional imaging data and de-
mographic information, achieving accuracies of 68.3% 
and 82.4% for the two applied datasets. Despite numer-
ous investigations for each dataset (ABIDE and ADHD-

Table 4. Results of the DMDC classification for Autism vs ADHD

Connections Coefficients

Cerebelum.4.5. l - supramarginal.l -0.3847

Cerebelum.8. r - frontal.inf. oper.r -0.3375

Frontal.sup. orb.r - paracentral.lobule. l -0.2329

Cerebelum.10. r - hippocampus.r -0.0908

Calcarine.l - rolandic.oper. r -0.0578

Olfactory.l - cerebelum.7b. r -0.0315

Pallidum.l - supramarginal.r -0.0096

Cerebelum.10.r - occipital.mid.r -0.0008

Cerebelum.crus2. l - calcarine.r 0.1372

Cerebelum.7b. l - frontal.med. orb.l 0.2560

Frontal.sup. l - vermis.1.2 0.2620

Frontal.sup. orb.l - precuneus.l 0.2705

Cuneus.r - occipital.inf. r 0.4654

Cerebelum.4.5. l - supramarginal.l -0.3847
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200), only two studies have combined these datasets in 
one paper. The following studies have approached the 
discrimination framework but toward a two-class classi-
fication (ADHD vs healthy controls and ASD vs healthy 
controls). The currently presented model has integrated 
the classes of ADHD, ASD, and healthy controls to com-
pare the functional neural correlates in a more compre-
hensive manner (achieving a total accuracy of 62% and 
51% for healthy controls, 61% for ASD, and 84% for 
ADHD). Compared to the DMDC, the SVM model pro-
vided accuracies of 46% for the healthy control group, 
46% for ASD, and 84% for ADHD. As far as we know, t 
similar merger work has not been previously conducted; 
however, two modeling-based assessments have yielded 
acceptable accuracies for ADHD vs healthy controls 
and ASD vs healthy controls. Sen et al. in their 2018 
investigation used structural texture and functional con-

nectivity features obtained from anatomical images and 
functional scans. They achieved an accuracy of 67.3% 
on the ADHD-200 data and 64.3% on the ABIDE data. 
Their modeling algorithm identified key components 
for ADHD, including nodes of the default mode net-
work, peristriate area, lateral and superior occipital gy-
rus, frontal and occipital lobe, pons, and temporal lobe. 
Regarding the ABIDE database, they found remarkable 
discriminative components comprising the visual areas, 
with relative similarities to some default mode network-
associated areas and motor networks (Sen et al., 2018). 
Similarly, by applying structural imaging parameters 
and demographic data, Ghiasian et al. (2016) achieved 
69.6% accuracy. They provided an accuracy of 65.0% 
on a holdout set that was better than that of Nielsen et 
al (2013). The image features used by their classifiers 
encompassed the cortical/subcortical and cerebellar re-

(a)

(b) (c)

(d)

(e)
(f)

Figure 2. Autism and ADHD vs control: Distinctive connectivity maps

Notes: (a), (b) and (c) respectively show sagittal, axial, and frontal views of autism vs control distinctive connectivity. Also, 
(d), (e), and (f) represent sagittal, axial, and frontal views of ADHD vs control distinctive connectivity respectively. The size of 
the node indicates the number of connections linking the associated node to other nodes (visualized with BrainNetViewer). 
The size of the node means the number of connections that link the associated node to other nodes (visualized with BrainNet-
Viewer). The width of the edge represents the value of the connection weight, where yellow links show positive coefficients 
and blue links show negative ones. 
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gions. The proposed hypothesis was that patients with 
ADHD show differences in resting-state connections, 
specifically in the sensorimotor network, default mode 
network, attention network, striatum, and cerebellum  
(Cao et al., 2014). Reduced functional connectivity val-
ues in the default mode network have been evidenced in 
subjects with ASD (Minshew & Keller, 2010). Given the 
relatively shared pathophysiological nature of these two 
neurodevelopmental disorders, there is a need to model 
these states together through multiclass classification. 

Based on previous findings, there is both contradic-
tory and supportive evidence regarding neurobiological 
differences between ASD/ADHD and healthy controls. 
Briefly, decreased functional connectivity (FC) in ASD 
was investigated by findings obtained from functional 
imaging data (resting-state and task-based) (Just et al., 

2004; Villalobos et al., 2005; Welchew et al., 2005). 
These studies have identified decreased connectivity 
values across nodes of the default mode network (Cher-
kasskyet al., 2006; Di Martino et al., 2014; Kennedy 
& Courchesne, 2008), social brain (Gotts et al., 2012; 
von dem Hagen et al., 2013), and attentional networks 
(Koshino et al., 2005). However, contrary reports have 
shown either higher or unchanged FC values (Müller 
et al., 2011), particularly in corticostriatal connections 
(Di Martino et al., 2011), visual search regions (Keehn 
et al., 2013), and brain network-level metrics (Anderson 
et al., 2013; Lynch et al., 2013) in individuals with au-
tism spectrum disorder. The interpretation of this con-
tradiction in the current findings becomes even more 
complicated when we consider the chronological altera-
tions as well. The frontostriatal circuit, which includes 
areas such as the dorsolateral prefrontal cortex and dor-

Figure 3. ADHD vs autism and healthy vs disordered states: distinctive connectivity maps

Notes: (a),(b) and (c) respectively show sagittal, axial, and frontal views of ADHD vs autism distinctive connectivity, respec-
tively. Also (d), (e), and (f) represent sagittal, axial, and forontal views of healthy control vs disordered states distinctive con-
nectivity respectively. The size of the node is proportional to the number of connections linking the corresponding node to oth-
ers (visualized with BrainNetViewer). The width of the connection is proportional to the absolute value of the corresponding 
weight. Yellow links show positive coefficients and blue links show negative ones.

(a) (b)
(c)

(d)

(e) (f)
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sal striatum, plays a crucial role in shaping behavioral 
components and various cognitive abilities (Rubia ert 
al., 2014). disruptions in the fronto-cerebellar circuit, 
involving the cerebellum, are frequently observed in 
ADHD, particularly in the posterior parts of the vermis 
(Bledsoe et al., 2009). Also, the attentional circuitry of 
the brain, mainly comprising prefrontal cortices and the 
dorsal anterior cingulate, is often disrupted in children 
with ADHD (Bush, 2010). 

As indicated by the present results, different connec-
tions with the cerebellum could be considered as discrim-
inative features and connectivities. Regarding healthy 
controls and all the disordered states (ADHD+ASD), 
the insular-cerebellum connection has been the most 
correlated one. Cerebellum connections with the an-
gular area and hippocampus were other distinguishing 
connections, respectively, for autism vs control and 
ADHD vs typically developed subjects. The cerebel-
lum is composed of cerebellar lobules and the vermis. 
The precise functioning framework of these divisions is 
not identified. However, it is suggested that lobules I-V 
and VIII may process sensorimotor information, while 
lobules VI and VII play roles in cognition, and lobules 
IX and X contribute to visual guidance and vestibular 
organization, respectively (Stoodley & Schmahmann, 
2018). Recognized as a node in the attentional network 
(Mannarelli et al., 2019), the cerebellum’s involvement 
in neurodevelopmental disorders with attention difficul-
ties is not surprising (Mannarelli et al., 2019; van der 
Heijden et al., 2021).

A whole-brain, voxel-wise meta-analysis comparing 
ASD vs healthy control revealed higher activation in the 
inferior-posterior cerebellum (Hodge et al., 2010). The 
regions with the most prominent hypoactivation levels 
were in the default mode network (DMN) and cerebellar 
crus I. Hodge et al. indicated that the posterior lateral cer-
ebellum was remarkably associated with the frontal parts 
of the cerebrum, including Broca’s area, contributing to 
the fronto-cortico-cerebellar language network (Hodge 
et al., 2010). Autistic participants exhibited cerebrocer-
ebellar hypoconnectivity during a finger-tapping task 
(Mostofsky et al., 2009). However, significant degrees 
of hyperactivity in cerebellothalamic circuitry were ob-
served in individuals with ASD during a saccade-based 
task (Takarae et al., 2008). 

In 2003, Hill et al. reported that the group with ADHD 
diagnosis showed area reduction in cerebellar lobules 
VIII to X and I to V (Hill et al., 2003). Further studies 
have exhibited a lower volume of the inferior vermis, 
which was correlated with inattention, hyperactivity, 

and impulse control scores. Also, fMRI studies have 
demonstrated overactivation of the posterior cerebellum 
coupled with frontal lobe underactivation when perform-
ing attention-related tasks (Berquin et al., 1998; Cubillo 
et al., 2014; Mostofsky et al., 1998; Rubia et al., 2009) 
and also lower activation in right crus I and left lobule 
VI during memory processing (Durston, 2003). More-
over, task-negative functional imaging reports showed 
ADHD-associated disturbances in cerebrocerebellar 
connectivity (Konrad & Eickhoff, 2010). 

We encountered some limitations, there are critical 
missing data regarding the IQ level; thus, it could not be 
considered for interpretations. In other words, there were 
no scores of cognitive states, impeding a complete un-
derstanding of neurocognitive conditions, which could 
be quite crucial. Variations in age distribution are also a 
significant limitation that could affect the outcomes and 
interpretations. Longitudinal investigations are recom-
mended to provide a comprehensive assessment, along 
with age-related considerations. A noticeable limitation 
of these types of works that also applies to the current 
research, is the multicenter nature of the acquired data, 
resulting in differences in imaging facilities and proto-
cols. While this diversity could enhance the generaliz-
ability of the results, mild variations in imaging param-
eters might interfere with the study goals. Accordingly, 
we attempted to mitigate the influence of these factors 
through careful preprocessing steps. Moreover, incorpo-
rating other categories of neurodevelopmental disorders, 
such as obsessive-compulsive disorder and some milder 
forms of intellectual disability might provide a more ac-
curate distinction for these disorders. Additionally, the 
available diagnosis tools for the subjects of the datasets 
were not fully explained, so there might be traits of other 
neurodevelopmental disorders in the “other” category 
that encompass the structural and functional neural cor-
relates and subsequently affect the classification process 
and outcomes. Although the aim of this study was to 
design a supervised classification, performing a parallel 
clustering method and modeling could reveal more as-
pects regarding the different categories of disorders and 
sets of brain connectivities.

5. Conclusion

Neurodevelopmental disorders are a group of neuro-
psychiatric anomalies that share genetic and endopheno-
typic correlates. Behavior-based diagnostic approaches 
are currently used in clinical settings, but the overlap-
ping features among the disorders vague the recognition 
and management of these disorders. Machine learn-
ing approaches based on functional neuroimaging data 
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could provide a computational setting for discriminating 
between different states of health and disorder. DMDC 
showed promising results for classification, with the cer-
ebellum and its attributed connections exhibiting accept-
able classifying characteristics. 
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