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Introduction: Currents in the brain flow inside neurons and across their boundaries into 
the extracellular medium, create electric and magnetic fields. These fields, which contain 
suitable information on brain activity, can be measured by electroencephalography (EEG), 
magnetoencephalography (MEG), and direct neural imaging. 

Methods: In this paper, we employed an electromagnetic model of the neuron activity and 
human head to derive electric and magnetic fields (brain waves) using a full-wave approach 
(ie. without any approximation). Currently, the brain waves are only derived using the quasi-
static approximation (QSA) of Maxwell’s equations in electromagnetic theory. 

Results: As a result, source localization in brain imaging will produce some errors. So far, 
the error rate of the QSA on the output results of electric and magnetic fields has not been 
investigated. This issue has become more noticeable due to the increased sensitivity of modern 
electroencephalography (EEG) and magnetoencephalography (MEG) devices. This work 
introduces issues that QSA encounters in this problem and reveals the necessity of a full-wave 
solution. Then, a full-wave solution of the problem in closed-form format is presented for the 
first time. This solution is done in two scenarios: the source (active neurons) is in the center of a 
sphere, and when the source is out of the center but deeply inside the sphere. The first scenario 
is simpler, but the second one is much more complicated and is solved using a partial-wave 
series expression. 

Conclusion: One of the significant achievements of this model is improving the interpretation 
of EEG and MEG measurements, resulting in more accurate source localization.
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1. Introduction 

urrents in the brain flow inside neurons 
and across their boundaries into the extra-
cellular medium, create electric and mag-
netic fields. These fields, which contain 
suitable information on brain activity, can 
be measured by electroencephalography 
(EEG), magnetoencephalography (MEG), 

and direct neural imaging. One of the important issues 
in recognizing brain disorders and cognitive functions is 
detecting the location and distribution of active neurons 
in the brain based on the measured electric and magnetic 
fields. This process is known as the inverse problem. To 
handle an inverse problem, it is necessary to provide a 
mathematical model that links neuronal sources to mea-
sured signals. This measurement is a forward problem 
that calculates the electric and magnetic field produced 
by a predefined neuronal current in a special location 
(Supek, 2016; Ito, 2015).

Over the past few decades, several mathematical-elec-
tromagnetic models have been used in analytical stud-
ies to explain the forward problem (Geselowitz, 1970; 
Cuffin & Cohen, 1977; Sarvas, 1987). A crucial part of 
all these models is a volume conductor model that char-
acterizes the effect of head conductivity and permittivity 
profile on neutrally driven electric currents. The analytic 
solutions are given for different conductivity profiles, 
including a single homogenous sphere (Heller, 2004), 

multilayer non-isotropic sphere (Petrov, 2012; Nieminen 
& Stenroos, 2016), and even for slightly more realistic 
spheroidal (Huerta & Gonzalez, 1983; De Munck, 1988; 
De Munck et al., 1988) and ellipsoidal (Giapalaki & 
Kariotou, 2006) geometries.

Due to the low-frequency nature of brain activity, all of 
these models have been derived only by quasi-static ap-
proximation (QSA) of Maxwell equations (Malmivuo, 
2012). QSA simplifies Maxwell’s equations by ignor-
ing capacitive, inductive, and wave propagation effects 
(Bossetti et al., 2007). While the extracellular potential 
is thought to be exclusively generated by the transmem-
brane currents, recent studies suggest that the extracellu-
lar diffusive, advective, and displacement currents may 
contribute considerably to extracellular potential record-
ings (Gratiy et al., 2017; Bédard & Destexhe, 2009; Jain 
& Wiart, 2015). However, QSA implicitly assumes that 
the tissue conductivity is independent of the physiologi-
cal range frequency and that the diffusion, advection, 
and displacement currents are negligible compared to 
the conductive return current (Gratiy et al., 2017).

To overcome QSA’s issues, we derived a full-wave 
analytical expression for a current dipole’s electric and 
magnetic fields positioned into a homogenous conductor 
sphere. The full-wave analysis results in the enrichment 
of information obtained from EEG/MEG measurements. 
To start the full-wave solution, we assume the source is 
a small current dipole placed into the scatterer (sphere). 

Highlights 

• Currently, the brain waves are only derived using the quasi-static approximation of Maxwell's equations in electro-
magnetic theory. As a result, source localization in brain imaging can produce some errors

• This study provides an electromagnetic model of the neuron activity and human head to derive electromagnetic 
fields using a full-wave approach (without any approximation).

• One of the significant results of the proposed model is improvement in the interpretation of electroencephalography 
(EEG) and magnetoencephalography (MEG) measurements, resulting in more accurate source localization.

Plain Language Summary 

One of the important issues in recognizing brain disorders and cognitive functions is detecting the location and 
distribution of active neurons in the brain based on the measured electromagnetic fields. To deal with this inverse 
problem, it is necessary to provide a mathematical model that links neuronal sources to measured signals. Due to the 
low-frequency nature of brain activity, all of these models have been derived only by quasi-static approximation of 
Maxwell equations. This study provides an electromagnetic model of the neuron activity and human head to derive 
electromagnetic fields using a full-wave approach (without any approximation). This method can lead to significant 
improvement in the interpretation of EEG and MEG measurements, resulting in more accurate source localization.
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Due to the angular dependence of the field components 
in the boundary, this issue is explored by utilizing the 
partial-wave series expression (PWSE) technique. The 
technique solves scattering problems by decompos-
ing constituent angular components of fields to apply 
boundary conditions (Balanis, 2012; Mitri, 2015).

This paper is organized as follows. Section 2 presents 
the background knowledge about the generation of EM 
fields by the neurons. Then, the traditional role of QSA 
in the solution of EM fields and related references is 
introduced. Next, some landmark notes and objections 
about applying QSA in EEG/MEG forward problems are 
discussed. In section 3, the theoretical equations for the 
full-wave EEG/MEG forward problem are developed. 
This part is done in two scenarios: The centered and off-
centered sources. For this purpose, the scattering prob-
lem for a current dipole inside a sphere is solved using 
the PWSE technique. Section 4 represents the numeri-
cal computations and simulation results to illustrate the 
theory. Section 5 deals with the convergence of the addi-
tion theorem as one of the main challenges of this work. 
Finally, in the section 6, the conclusions are presented.

2. Problem Overview

Proposed scheme

This section introduces the electromagnetic model of 
an active neuron inside the brain. When a neuron is ac-
tivated, a primary current (JP) flows into it. Because the 
neurons are located in an electrically conducting medi-
um, the extracellular current, the return current (JR), fol-
lows a path that depends upon the conductivity profile of 
the extracellular medium. The return current is the ohmic 

current that is taken to be the product of the local con-
ductivity σ and the electric field E (JR=σE). So, the total 
current is J=JP+σE. The primary and return currents form 
the electric and magnetic fields. Figure 1 shows an active 
neuron with primary and return currents with induced 
electric and magnetic fields around it.

Since the length of a neuron is negligible compared 
with the head size, it is assumed that all the primary 
current is concentrated at a single position r′ and has a 
moment of p. Thus, the primary current is described by 
equivalent current dipole and mathematically is writ-
ten as JP(r)=pδ3(r-r′) where δ is the Dirac delta function. 
Among different ways to model neurons as the current 
source, the equivalent current dipole is widely used in 
clinical applications (Koubeissi & Azar, 2017).

In the forward problem, the electric and magnetic fields 
are determined from the neuronal current distribution. 
This calculation is done by the classical electromagnetic 
theory that is described in Maxwell’s equations as fol-
lows:

1.
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distribution. This calculation is done by the classical electromagnetic theory that is described in 
Maxwell’s equations as follows: 

∇ × 𝐸𝐸 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕   ,   ∇ × 𝜕𝜕 = 𝜇𝜇𝜇𝜇 + 𝜇𝜇 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕    ,   ∇ ∙ 𝜕𝜕 = 0  , ∇ ∙ 𝜕𝜕 = 0                                                 (1) 

, where E, B, J, and 𝜕𝜕𝑫𝑫
𝜕𝜕𝜕𝜕  are the electric field, magnetic field, current source density, and 

displacement current density, respectively. Because of the low frequency of neuronal activities, the 
formulations are traditionally done based on the QSA, ie, ignoring time-varying terms (ie, 𝜕𝜕𝑩𝑩

𝜕𝜕𝜕𝜕  and 𝜕𝜕𝑫𝑫
𝜕𝜕𝜕𝜕 ) 

in the Maxwell’s equations in all corresponding articles and books. The argument is that because the 
two inequalities 2𝜋𝜋𝜋𝜋𝜋𝜋/𝜎𝜎 ≪ 1 and 𝜇𝜇0𝜎𝜎2𝜋𝜋𝜋𝜋𝑅𝑅2 ≪ 1 are hold, we can use QSA. In those two 
inequalities, 𝜋𝜋 is the frequency of neuronal activity, 𝜇𝜇0, 𝜋𝜋  and  𝜎𝜎  are the constitutive parameters of 
the brain tissue, and R is the radius of the human head (Zakharova, Karpov, & Bugaevskii, 2017; 
Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). 

Based on QSA, the analytic solution of a forward problem for special geometries of the head 
model has been introduced (Geselowitz D. B., 1967; Zhang, 1995). One of the most important shapes 
is a sphere in which the electrical conductivity is assumed to depend only on the distance from the 
origin (Doschoris & Kariotou, 2017). This shape approximates the shape of the human head and can 
serve as a basis for understanding the measurements of the brain's electric and magnetic fields (Cuffin 
& Cohen, 1977).  Basically, the starting point to derive these field equations is attempting to solve 
the problem for a simple homogeneous sphere (Cuffin & Cohen, 1977). Derivation of analytical 
solutions for simplified geometries (such as a sphere) has important roles in EEG/MEG test 
interpretation, leading to valuable rules-of-thumb, calibration of EEG/MEG equipment, verifying 
numerical methods for realistic model geometries, and so on. 
 
2.2. QSA Challenges 

As mentioned earlier, due to the low-frequency nature of neuron activities, the time-varying terms in 
Maxwell’s equations are ignored, resulting in QSA being used. However, QSA has some objections 
and significant challenges, which are listed below. 

First, in physical problems, when a datum is the sum of two or more components so that one of 
them is much smaller than the other, from an engineering point of view, the smallest component is 
usually ignored (such as ignoring high-order sentences in Taylor's expansion). In the literature from 
1967 (Plonsey & Heppner, 1967) till now, it is argued that the time-variant terms in Maxwell’s 
equations (ie, 𝜕𝜕𝑩𝑩

𝜕𝜕𝜕𝜕  and 𝜕𝜕𝑫𝑫
𝜕𝜕𝜕𝜕  terms in Equation 1) is negligible, and the form of Maxwell’s equations is 

reduced to the quasi-static form. Although it simplifies solving the problem, valuable information 
may be lost. However, this ignorance should be quantitatively investigated to evaluate the electric 
and magnetic fields. No report uses the perfect form of Maxwell’s equations (full-wave form) to 
measure the quasi-static errors. Recent advances in neuronal current imaging using more sensitive 
EEG/MEG devices and better shielding techniques have made measuring the smallest changes in 
electric and magnetic fields possible. Recently, there have been an EEG with an accuracy level of 
2.7𝑛𝑛𝑛𝑛/√𝐻𝐻𝐻𝐻 (Scheer, Fedele, Curio, & Burghoff, 2011; Fedele, Scheer, Burghoff, Curio, & & Körber, 
2015) and an MEG with an accuracy level of 0.01𝜋𝜋𝑓𝑓 √𝑐𝑐𝑐𝑐3/𝐻𝐻𝐻𝐻 (Dang, Maloof, & Romalis, 2010; 
Baranga, 2010). So, if the difference between the quasi-static and full-wave results is too low, it is 
detectable with today's modern devices.  
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∂t  and/are the electric field, magnetic 

field, current source density, and displacement current 
density, respectively. Because of the low frequency of 
neuronal activities, the formulations are traditionally 
done based on the QSA, ie, ignoring time-varying terms 
(ie, ∂B

∂t  and ∂D
∂t

) in the Maxwell’s equations in all cor-
responding articles and books. The argument is that be-
cause the two inequalities 2πfε/σ«1 and μ0 σ2πfR2«1 are 
hold, we can use QSA. In those two inequalities, f is the 
frequency of neuronal activity, μ0,ε and σ are the consti-
tutive parameters of the brain tissue, and R is the radius 
of the human head (Zakharova et al., 2017; Hämäläinen 
et al., 1993).

Based on QSA, the analytic solution of a forward prob-
lem for special geometries of the head model has been 
introduced (Geselowitz, 1967; Zhang, 1995). One of the 
most important shapes is a sphere in which the electrical 
conductivity is assumed to depend only on the distance 
from the origin (Doschoris & Kariotou, 2017). This 
shape approximates the shape of the human head and 
can serve as a basis for understanding the measurements 
of the brain’s electric and magnetic fields (Cuffin & Co-
hen, 1977). Basically, the starting point to derive these 
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Figure 1. A conceptual representation of an active neuron 
with volume current distribution and electric and magnetic 
fields
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field equations is attempting to solve the problem for a 
simple homogeneous sphere (Cuffin & Cohen, 1977). 
Derivation of analytical solutions for simplified geome-
tries (such as a sphere) has important roles in EEG/MEG 
test interpretation, leading to valuable rules-of-thumb, 
calibration of EEG/MEG equipment, verifying numeri-
cal methods for realistic model geometries, and so on.

QSA challenges

As mentioned earlier, due to the low-frequency nature 
of neuron activities, the time-varying terms in Maxwell’s 
equations are ignored, resulting in QSA being used. 
However, QSA has some objections and significant chal-
lenges, which are listed below.

First, in physical problems, when a datum is the sum 
of two or more components so that one of them is much 
smaller than the other, from an engineering point of 
view, the smallest component is usually ignored (such as 
ignoring high-order sentences in Taylor's expansion). In 
the literature from 1967 (Plonsey & Heppner, 1967) till 
now, it is argued that the time-variant terms in Maxwell’s 
equations(ie,∂B

∂t  and ∂D
∂t  terms in Equation 1) is negli-

gible, and the form of Maxwell’s equations is reduced 
to the quasi-static form. Although it simplifies solving 
the problem, valuable information may be lost. Howev-
er, this ignorance should be quantitatively investigated 
to evaluate the electric and magnetic fields. No report 
uses the perfect form of Maxwell’s equations (full-wave 
form) to measure the quasi-static errors. Recent advances 
in neuronal current imaging using more sensitive EEG/
MEG devices and better shielding techniques have made 
measuring the smallest changes in electric and magnetic 
fields possible. Recently, there have been an EEG with 
an accuracy level of 2.7 nv/√Hz (Scheer et al, 2011; Fe-
dele et al., 2015) and an MEG with an accuracy level of 
0.01fT √cm3/Hz (Dang et al., 2010; Baranga, 2010). So, 
if the difference between the quasi-static and full-wave 
results is too low, it is detectable with today's modern 
devices. 

Second, it has already been mentioned that one of the 
conditions that establish a quasi-static approximation is 
2πfε
σ 1«  (Hämäläinen et al., 1993). Unlike the outside, 

this condition is correct for inside the head. Because in 
the outside of the head, σ=0 and then 2πfε/σ→∞. Thus, 
for the outside of the head, time-varying terms are con-
siderable.

Third, Gratiy et al. emphasized that the displacement 
current (∂D/∂t) in Ampere–Maxwell’s law is responsible 
for the capacitive charging of neural membranes and 

cannot be neglected (Gratiy et al., 2017). Furthermore, 
Albanese and Monk. (2006) stated that “since the goal of 
the inverse source problem was the monitor of dynamic 
neuronal events (an action potential has a rise time on 
the order of 0.5 ms (Wilson, 1999), it might be that the 
displacement current is not negligible. This problem has 
already been pointed out in studies of source problems 
related to monitoring neurons in the arm (Kuiken et al., 
2001)”. 

Fourth, in all argumentations presented to ignore time-
varying terms in Maxwell equations, it is assumed that 
the brain media is linear, isotropic, and homogeneous. 
While the human brain does not really have these prop-
erties (Vorwerk et al., 2014). 

These uncertainties encourage us, for the first time, to 
solve the forward problem using the full-wave method 
instead of QSA. Obviously, the full-wave solution of an 
electromagnetic problem gives the full solution (includ-
ing time-varying terms), not an approximation. Thus, 
the above issues have been automatically resolved. In 
the next section, we establish the full-wave analysis 
formulation of the problem for two scenarios: One for a 
centered source and another for an off-centered source.

3. The Full Wave Solution of the Forward 
Problem

In this section, we want to introduce the convenient re-
lationships for solving the scattering of waves emanating 
from a finite source placed in a spherical object (scat-
terer). Let us consider a homogenous conductor sphere 
of radius R and the electromagnetic parameters of εr and 
σ. Assume that the medium outside the sphere is free 
space (wave number β0) and inside is a lossy dielectric 
(wave number β̇d) represented by a relatively complex 
permittivity ε̇d ( ε̇d=ε0 εr-j σ/ω). The formulation path can 
be different depending on the source location inside the 
sphere (either centered or out of center). For this reason, 
we represent our formulations in two scenarios: One for 
a centered source and another for an off-centered source. 
These scenarios are shown in the Figure 2.

Source origin 

We start the problem’s solution in the simplest situa-
tion, ie, a source in the center of the desired sphere. Fig-
ure 2a shows the geometry of the problem. As can be 
seen, a current dipole, ie, a very thin linear electric cur-
rent element of very short length (l<<λ) and a constant 
current I, as a neuron source, is positioned at the center 
of the sphere. The problem is finding the EM field inside 
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and outside the conductor sphere. To this end, we use the 
magnetic vector potential A defined in electromagnetic 
terminology. The dipole’s incident field can be repre-
sented by A (Harrington, 2001):

2.
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outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
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, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
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In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

, where β ̇ d=ω√(με̇r) is the wave number, Ĥ1
(2) is 

Schelkunoff spherical Hankel function of the second 
kind, P1 is the Legendre function of the first kind, and 
Il is the current dipole moment. The index i in Ar

i is re-
ferred to the incident field from the source to the bound-
ed media. Upon the interaction of the electromagnetic 
wave with the sphere in its boundary, the scattered beam 
is composed of two parts: Inside scattered wave (Ar

s-) 
and outside scattered wave (Ar

s+). Because the field must 
be finite everywhere in the sphere, including r=0, and 
has a standing form, the inside scattered wave is written 
as follows:

3. 
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𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

In the outside of the sphere, the field must have a trav-
eling form as follows:
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

In these equations, b and c are the sphere scattering 
coefficients to be determined by applying appropriate 

boundary conditions. The total vector potential is Ar
t-

)=Ar
i+Ar

s- inside the sphere and Ar
t+=Ar

s+ outside it. Thus, 
the electric and magnetic fields are obtained from the 
following equations by eliminating the zero components 
(Harrington, 2001).
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
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, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 
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In the outside of the sphere, the field must have a traveling form as follows: 
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In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟
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𝑠𝑠− inside the sphere and 
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𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 
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𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2
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𝑟𝑟
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𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

5 
 

sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

In which, ψ equals Ar
t- for r≤R and ψequals Ar

t+ for r>R. 
The tangential components of the fields inside and out-
side the sphere are derived as follows:

6.
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟
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𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
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𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
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By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 
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The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 
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In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
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𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
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𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
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inside and outside the sphere are derived as follows: 
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𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
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𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1
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𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 
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, where 
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𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0
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𝑡𝑡+ = 1
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𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1
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By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 
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𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑
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𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏
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                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
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(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
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𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
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𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  
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𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

5 
 

sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  
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Figure 2. The current dipole in the structure under study

a) The Current dipole in the center, b) The current dipole in the arbitrary off-centered location
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

By applying the boundary conditions on r=R:

10.

5 
 

sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

The coefficients and are determined as:

11.
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1
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𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
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(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1
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𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1
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By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
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                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

, where
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sphere. Figure 2-a shows the geometry of the problem. As can be seen, a current dipole, ie, a very 
thin linear electric current element of very short length (𝑙𝑙 ≪ 𝜆𝜆) and a constant current I, as a neuron 
source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
electromagnetic terminology. The dipole’s incident field can be represented by A  (Harrington, 
2001): 

𝑨𝑨 = 𝐴𝐴𝑟𝑟
𝑖𝑖 𝒂𝒂𝒓𝒓 = 𝑎𝑎�̂�𝐻1

(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝒂𝒂𝒓𝒓,                𝑎𝑎 = 𝑗𝑗𝜇𝜇0�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋                                                                  (2) 

, where �̇�𝛽𝑑𝑑 = 𝜔𝜔√𝜇𝜇𝜀𝜀�̇�𝑟 is the wave number, �̂�𝐻1
(2) is Schelkunoff spherical Hankel function of the 

second kind, 𝑃𝑃1 is the Legendre function of the first kind, and 𝐼𝐼𝑙𝑙 is the current dipole moment. The 
index i in 𝐴𝐴𝑟𝑟

𝑖𝑖  is referred to the incident field from the source to the bounded media. Upon the 
interaction of the electromagnetic wave with the sphere in its boundary, the scattered beam is 
composed of two parts: inside scattered wave (𝐴𝐴𝑟𝑟

𝑠𝑠−) and outside scattered wave (𝐴𝐴𝑟𝑟
𝑠𝑠+). Because the 

field must be finite everywhere in the sphere, including r=0, and has a standing form, the inside 
scattered wave is written as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠− = 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                    (3) 

In the outside of the sphere, the field must have a traveling form as follows: 

𝐴𝐴𝑟𝑟
𝑠𝑠+ = 𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑃𝑃1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)                                                                                                (4) 

In these equations, 𝑏𝑏 and 𝑐𝑐 are the sphere scattering coefficients to be determined by applying 
appropriate boundary conditions. The total vector potential is 𝐴𝐴𝑟𝑟

𝑡𝑡− = 𝐴𝐴𝑟𝑟
𝑖𝑖 + 𝐴𝐴𝑟𝑟

𝑠𝑠− inside the sphere and 
𝐴𝐴𝑟𝑟

𝑡𝑡+ = 𝐴𝐴𝑟𝑟
𝑠𝑠+ outside it. Thus, the electric and magnetic fields are obtained from the following equations 

by eliminating the zero components (Harrington, 2001). 

𝐸𝐸𝑟𝑟 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀 ( 𝜕𝜕2

𝜕𝜕𝑟𝑟2 + 𝛽𝛽2) 𝜓𝜓, 𝐸𝐸𝜃𝜃 = 1
𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀

1
𝑟𝑟

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑟𝑟𝜕𝜕𝑐𝑐,         𝐻𝐻𝜑𝜑 = − 1

𝜇𝜇
1
𝑟𝑟

𝜕𝜕𝜓𝜓
𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  
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source, is positioned at the center of the sphere. The problem is finding the EM field inside and 
outside the conductor sphere. To this end, we use the magnetic vector potential A defined in 
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𝜕𝜕𝑐𝑐                                     (5) 

In which, 𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟
𝑡𝑡− for 𝑟𝑟 ≤ 𝑅𝑅 and 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐 𝐴𝐴𝑟𝑟

𝑡𝑡+ for 𝑟𝑟 > 𝑅𝑅. The tangential components of the fields 
inside and outside the sphere are derived as follows: 
 
𝐸𝐸𝜃𝜃

𝑡𝑡− = 1
𝑗𝑗𝑗𝑗𝜇𝜇𝜀𝜀𝑑𝑑

1
𝑟𝑟 [−𝑎𝑎𝛽𝛽𝑑𝑑�̂�𝐻0

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑎𝑎
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 +
𝑏𝑏
𝑟𝑟 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                                                   (6)  

𝐸𝐸𝜃𝜃
𝑡𝑡+ = 1

𝑗𝑗𝜔𝜔𝜇𝜇𝜀𝜀0

1
𝑟𝑟 [−𝑐𝑐𝛽𝛽0�̂�𝐻0

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑐𝑐
𝑟𝑟 �̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                    (7) 

𝐻𝐻𝜑𝜑
𝑡𝑡− = − 1

𝜇𝜇
1
𝑟𝑟 [−𝑎𝑎�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 − 𝑏𝑏𝐽𝐽1(𝛽𝛽𝑑𝑑𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                 (8) 

𝐻𝐻𝜑𝜑
𝑡𝑡+ = − 1

𝜇𝜇
𝑐𝑐
𝑟𝑟 [−𝑐𝑐�̂�𝐻1

(2)(𝛽𝛽0𝑟𝑟)𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐]                                                                                                                                (9) 

By applying the boundary conditions on 𝑟𝑟 = 𝑅𝑅: 

𝐸𝐸𝜃𝜃
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐸𝐸𝜃𝜃

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)    ,   𝐻𝐻𝜑𝜑
𝑡𝑡+(𝑟𝑟 = 𝑅𝑅) = 𝐻𝐻𝜑𝜑

𝑡𝑡−(𝑟𝑟 = 𝑅𝑅)                                        (10) 

The coefficients 𝑏𝑏 and 𝑐𝑐 are determined as: 

𝑏𝑏 = 𝑀𝑀𝑏𝑏 + 𝑁𝑁𝑏𝑏
𝑂𝑂𝑏𝑏 + 𝑃𝑃𝑏𝑏

 ,                        𝑐𝑐 = 𝑀𝑀𝑐𝑐 + 𝑁𝑁𝑐𝑐
𝑂𝑂𝑐𝑐 + 𝑃𝑃𝑐𝑐

                                                          (11) 

, where 

𝑀𝑀𝑏𝑏 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅) − 𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                     (12)  

13.
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

14.

6 
 

𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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6 
 

𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

6 
 

𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

17.

6 
 

𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

6 
 

𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

18.

6 
 

𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

6 
 

𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

19.
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −
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(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

Source off-origin 

Now we assume that the source is positioned out of the 
center in point r'=(r', θ', φ') and oriented along the z-axis. 
Figure 2b shows the structure. Note that the assumption 
of the removable z-directed dipole in the problem does 
not detract from the generality of the problem because 
the sphere is perfectly symmetrical. The magnetic vector 
potential is as follows (Harrington, 2001):

20.
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𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

, where h0
(2) is a spherical Hankel function of the sec-

ond kind. When dealing with spherical wave scattering 
of waves generated by current dipole radiator located 
away from the origin at r', it is convenient to express 
its radiation in terms of spherical wave function arising 
from the origin of the coordinate system. It can be ac-
complished using the “addition theorem” of spherical 
wave functions, which states that Equation 20 can be 
expressed as follows (Harrington, 2001):

21.
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𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −
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(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
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(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
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𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 
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(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
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𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′
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        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 
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𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
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cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′
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, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞
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𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
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3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
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(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
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cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′
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, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 
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𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     
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𝑛𝑛
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cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
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scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
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∞
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, 𝑟𝑟 < 𝑟𝑟′
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        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 
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cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
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oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
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(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
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, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 
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𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))
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𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

, where

Samadi., et al. (2024). A Solution of Deep Sources in the Lossy Human Head to Accurate EEG and MEG. BCN, 15(2), 247-260..
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′
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𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

Also, Pn
m (.) is the associated Legendre function. The 

reason for choosing a z-directed representation of A in-
stead of radially directed shows that the addition theo-
rem for its radially directed representation is not found. 
Bessel functions jn (βr) were selected to represent the 
fields for r<r' because the field must be finite every-
where, including r=0, and Hankel functions were chosen 
for r>r' to represent the traveling nature of the wave. The 
expression for the inside scattered wave (As-) will be of 
similar forms as the first expression of Equation 21 and 
for the outside scattered wave (As+) will be of similar 
forms as the second expression of Equation 21 and writ-
ten as follows:

22.
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                              (14) 

𝑃𝑃𝑏𝑏 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 23.
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𝑁𝑁𝑏𝑏 = −𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +
𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅)                                 (13) 

𝑂𝑂𝑏𝑏 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
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(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                           (15) 

𝑀𝑀𝑐𝑐 = 𝜀𝜀0𝛽𝛽𝑑𝑑�̂�𝐻0
(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀0
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (16) 

𝑁𝑁𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽𝑑𝑑𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽𝑑𝑑𝑅𝑅)                                          (17) 

𝑂𝑂𝑐𝑐 = 𝜀𝜀𝑑𝑑𝛽𝛽0�̂�𝐻0
(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅) −

𝜀𝜀𝑑𝑑
𝑅𝑅 �̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)                                             (18) 

𝑃𝑃𝑐𝑐 = −𝜀𝜀0𝛽𝛽𝑑𝑑𝐽𝐽0(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1
(2)(𝛽𝛽0𝑅𝑅) +

𝜀𝜀0
𝑅𝑅 𝐽𝐽1(𝛽𝛽𝑑𝑑𝑅𝑅)�̂�𝐻1

(2)(𝛽𝛽0𝑅𝑅)                                            (19) 

3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 
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3.2. Source Off-Origin  

Now we assume that the source is positioned out of the center in point 𝒓𝒓′ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) and 
oriented along the z-axis. Figure 2-b shows the structure. Note that the assumption of the removable 
z-directed dipole in the problem does not detract from the generality of the problem because the 
sphere is perfectly symmetrical. The magnetic vector potential is as follows (Harrington, 2001): 

𝑨𝑨𝒊𝒊 = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑖𝑖 = �̂�𝒂𝒛𝒛
�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋 ℎ0

(2)(�̇�𝛽𝑑𝑑|𝒓𝒓 − 𝒓𝒓′|)                                                                            (20) 

, where ℎ0
(2) is a spherical Hankel function of the second kind. When dealing with spherical wave 

scattering of waves generated by current dipole radiator located away from the origin at 𝒓𝒓′, it is 
convenient to express its radiation in terms of spherical wave function arising from the origin of the 
coordinate system. It can be accomplished using the “addition theorem” of spherical wave functions, 
which states that Equation 20 can be expressed as follows (Harrington, 2001): 

𝐴𝐴𝑧𝑧𝑖𝑖 =

{
 
 

 
 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)

𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

        (21) 

, where 

𝜀𝜀𝑚𝑚 = {1, 𝑚𝑚 = 0
2, 𝑚𝑚 ≠ 0   ,      𝑂𝑂𝑛𝑛𝑚𝑚 =

(𝑛𝑛 −𝑚𝑚)!
(𝑛𝑛 + 𝑚𝑚)!    ,    𝑎𝑎𝑛𝑛 = (2𝑛𝑛 + 1)

�̇�𝛽𝑑𝑑𝐼𝐼𝐼𝐼
4𝜋𝜋𝜋𝜋  

Also, 𝑃𝑃𝑛𝑛𝑚𝑚(. ) is the associated Legendre function. The reason for choosing a z-directed representation 
of A instead of radially directed shows that the addition theorem for its radially directed 
representation is not found. Bessel functions 𝜋𝜋𝑛𝑛(𝛽𝛽𝑟𝑟) were selected to represent the fields for 𝑟𝑟 < 𝑟𝑟′ 
because the field must be finite everywhere, including r = 0, and Hankel functions were chosen for 
𝑟𝑟 > 𝑟𝑟′ to represent the traveling nature of the wave. The expression for the inside scattered wave 
(𝑨𝑨𝒔𝒔−) will be of similar forms as the first expression of Equation 21 and for the outside scattered 
wave (𝑨𝑨𝒔𝒔+) will be of similar forms as the second expression of Equation 21 and written as follows: 

𝑨𝑨𝒔𝒔− = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠− = �̂�𝒂𝒛𝒛 ∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛ℎ𝑛𝑛(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝜋𝜋𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos𝜃𝜃′)𝑛𝑛
𝑚𝑚=0 cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))∞

𝑛𝑛=0     

𝑨𝑨𝒔𝒔+ = �̂�𝒂𝒛𝒛𝐴𝐴𝑧𝑧𝑠𝑠+ = �̂�𝒂𝒛𝒛∑ ∑ 𝜀𝜀𝑚𝑚𝑂𝑂𝑛𝑛𝑚𝑚𝑐𝑐𝑛𝑛ℎ𝑛𝑛(2)(𝛽𝛽0𝑟𝑟)𝜋𝜋𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃)𝑃𝑃𝑛𝑛𝑚𝑚(cos 𝜃𝜃′)
𝑛𝑛

𝑚𝑚=0
cos(𝑚𝑚(𝜑𝜑 − 𝜑𝜑′))

∞

𝑛𝑛=0
          (23) 

, where and are the sphere scattering coefficients to be 
determined by applying appropriate boundary condi-
tions. The superscript minus (-) is used to identify the 
vector potentials and associated fields on and within the 
sphere (r ≤R), while the plus (+) is used to identify those 
on and outside the sphere (r≥R). 

The appropriate boundary conditions must be applied 
on the surface of the sphere and the continuity of the tan-
gential electric and magnetic fields. It must derive the 
total electric and magnetic field inside and outside the 
sphere. Thus, the total vector potential inside the sphere 
(At-) is composed of the incident plus inside scattered 
vector potentials (Ai+As-) and outside the sphere (At+) 
is only outside scattered vector potential (As+). All the 
components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using 
the following equations:

24.
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

25.
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

26.
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

27.
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

In these equations, if we want electromagnetic fields 
inside the sphere, let ψ=Az

t- and for outside the sphere, 
let ψ=Az

t+. The scattering coefficients bn and cn for the 
sphere can now be determined after applying the bound-
ary condition to the total tangent electric field. After sim-
plifying and arrangement, this procedure leads to two 
systems of linear equations, one for Eθ and the other for 
Eφ:

28.
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

29)
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

, where the functions Γnm (θ, φ), Λnm (θ, φ), and Πnm (θ, 
φ) in Equation 28 are expressed, respectively, as follows:

Samadi., et al. (2024). A Solution of Deep Sources in the Lossy Human Head to Accurate EEG and MEG. BCN, 15(2), 247-260..

http://bcn.iums.ac.ir/
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

7 
 

, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

and Ψ_nm (θ, φ), Φnm (θ, φ) and Θnm (θ, φ) in Equation 
29 are expressed, respectively, as follows:

31.
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 
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, where 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are the sphere scattering coefficients to be determined by applying appropriate 
boundary conditions. The superscript minus (-) is used to identify the vector potentials and associated 
fields on and within the sphere (r ≤ R), while the plus (+) is used to identify those on and outside the 
sphere (r ≥ R).  

The appropriate boundary conditions must be applied on the surface of the sphere and the 
continuity of the tangential electric and magnetic fields. It must derive the total electric and magnetic 
field inside and outside the sphere. Thus, the total vector potential inside the sphere (𝑨𝑨𝒕𝒕−) is composed 
of the incident plus inside scattered vector potentials (𝑨𝑨𝒊𝒊 + 𝑨𝑨𝒔𝒔−) and outside the sphere (𝑨𝑨𝒕𝒕+) is only 
outside scattered vector potential (𝑨𝑨𝒔𝒔+). All the components of the total EM fields, as well as incident 
plus scattered, can be found from vector potential using the following equations: 

𝐸𝐸𝑟𝑟 = −𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 cos 𝜃𝜃 +
1
𝑗𝑗𝑗𝑗𝑗𝑗

𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                         (24) 

𝐸𝐸𝜃𝜃 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃 +
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕
𝜕𝜕
𝜕𝜕𝜃𝜃 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                          (25) 

𝐸𝐸𝜑𝜑 =
1

𝑗𝑗𝑗𝑗𝑗𝑗𝜕𝜕 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝜕𝜕 [

cos 𝜃𝜃
𝜕𝜕2

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

2𝑗𝑗) − 1
𝜕𝜕 sin𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠

2𝜃𝜃)]                                                                       (26) 

𝐵𝐵𝑟𝑟 =
𝑗𝑗
𝜕𝜕
𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  , 𝐵𝐵𝜃𝜃 = 𝑗𝑗

cot 𝜃𝜃
𝜕𝜕

𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕  ,      𝐵𝐵𝜑𝜑 =

−𝑗𝑗
𝜕𝜕 [sin𝜃𝜃 𝜕𝜕𝜕𝜕𝜕𝜕 (𝜕𝜕𝑗𝑗) +

𝜕𝜕
𝜕𝜕𝜃𝜃 (𝑗𝑗 cos 𝜃𝜃)]                                        (27)  

In these equations, if we want electromagnetic fields inside the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡− and for outside 
the sphere, let 𝑗𝑗 = 𝐴𝐴𝑧𝑧𝑡𝑡+. The scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 for the sphere can now be determined 
after applying the boundary condition to the total tangent electric field. After simplifying and 
arrangement, this procedure leads to two systems of linear equations, one for Eθ and the other for Eφ: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜃𝜃                                                 (28) 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) = 0      𝑓𝑓𝑓𝑓𝜕𝜕  𝐸𝐸𝜑𝜑                                              (29) 

, where the functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), and Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 28 are expressed, 
respectively, as follows: 

{
Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = cos(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙

{ 
 
  
{
𝐴𝐴𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛

} sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′′(cos 𝜃𝜃) + {
𝐴𝐴𝑛𝑛𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛 + 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐺𝐺𝑛𝑛𝑛𝑛

} cos𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛′(cos 𝜃𝜃) +

{
𝐴𝐴𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐶𝐶𝑛𝑛𝑛𝑛
𝐵𝐵𝑛𝑛𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)

2 − 𝐷𝐷𝑛𝑛𝑛𝑛
𝐹𝐹𝑛𝑛𝑛𝑛(𝛽𝛽0𝑅𝑅)2 − 𝐺𝐺𝑛𝑛𝑛𝑛

}sin 𝜃𝜃 𝑃𝑃𝑛𝑛𝑛𝑛(cos𝜃𝜃)

} 
 
  
                                                      (30) 

and Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕) in Equation 29 are expressed, respectively, as follows: 

{
Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)
Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜕𝜕)

} = sin(𝑚𝑚(𝜕𝜕 − 𝜕𝜕′)) ∙ {{
𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛
𝑚𝑚𝐵𝐵𝑛𝑛𝑛𝑛
𝑚𝑚𝐹𝐹𝑛𝑛𝑛𝑛

}𝑃𝑃𝑛𝑛𝑛𝑛′(cos𝜃𝜃) + {
𝑚𝑚𝐶𝐶𝑛𝑛𝑛𝑛
𝑚𝑚𝐷𝐷𝑛𝑛𝑛𝑛
𝑚𝑚𝐺𝐺𝑛𝑛𝑛𝑛

} 1
tan𝜃𝜃 𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃)}               (31) 

In equations 30 and 31, the coefficients 𝐴𝐴𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝐶𝐶𝑛𝑛𝑛𝑛, 𝐷𝐷𝑛𝑛𝑛𝑛, 𝐹𝐹𝑛𝑛𝑛𝑛, 𝑎𝑎𝑠𝑠𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛 depend only on the 
structure of the problem (eg, source position, source moment, frequency, sphere radius, sphere 
material) as follows: 

In equations 30 and 31, the coefficients 
Anm,Bnm,CnmDnm,Fnm, and Gnm depend only on the struc-
ture of the problem (eg, source position, source moment, 
frequency, sphere radius, sphere material) as follows:

32.
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

33)
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

, where the primes denote a derivative with respect to 
the argument. Note that the functions Γm (θ, φ), Λm(θ, φ), 
Πm (θ, φ), Ψm (θ, φ), Φm (θ, φ), and Θm (θ, φ) are depen-
dent on the polar angle θ and the azimuthal angle φ for a 
fixed frequency or wave number β. The angular depen-
dency must be eliminated to solve the system of linear 
Equations 28 and 29. To this end, first, it is required to 
expand the boundary condition of Equations 28 and 29. 
in PWSEs with separable variables and match each par-
tial wave n, m. Accordingly, Equations 28 and 29. are 
equated to the Laplace series as follows:

38.
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

39.
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

, where Yn
m (θ, φ) is spherical harmonic function. To 

remove the dependence on the polar angle and the azi-
muthal angle, the following orthogonality conditions can 
be applied to equations 38 and 39:

40)
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

, whereYp
q* (θ, φ) denotes the complex conjugate of 

the spherical harmonic function Yp
q (θ, φ) and δ_ij is the 

Kronecker delta function. Equating the left- and right-
hand sides in equations 38 and 39 for each partial wave 
and applying the orthogonality condition of Equation 
40, a new system of linear equations is obtained, which 
allows appropriate determination of the scattering coef-
ficients bn and cn for the sphere. They are now rewritten 
as follows:

Samadi., et al. (2024). A Solution of Deep Sources in the Lossy Human Head to Accurate EEG and MEG. BCN, 15(2), 247-260..

http://bcn.iums.ac.ir/


Basic and Clinical

255

March & April 2024, Vol 15, No. 2

41.

8 
 

𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
equations is obtained, which allows appropriate determination of the scattering coefficients 𝑏𝑏𝑛𝑛 and 
𝑐𝑐𝑛𝑛 for the sphere. They are now rewritten as follows: 

∑ ∑[Δ(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛Υ𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛Ω𝑛𝑛(𝑝𝑝𝑞𝑞)]
𝑝𝑝

𝑞𝑞=0
= 0

∞

𝑝𝑝=0
,       ∑ ∑[W(𝑝𝑝𝑞𝑞) + 𝑏𝑏𝑛𝑛U𝑛𝑛(𝑝𝑝𝑞𝑞) − 𝑐𝑐𝑛𝑛V𝑛𝑛(𝑝𝑝𝑞𝑞)]

𝑝𝑝

𝑞𝑞=0

∞

𝑝𝑝=0
= 0    

= 0                                                                                                                                                       (41)  
, where 

Δ(𝑝𝑝𝑞𝑞) = ∑ ∑ 𝑎𝑎𝑛𝑛 ∫ ∫ Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑                                                                            (42) 

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

, where

42.
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𝐴𝐴𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (32) 

𝐵𝐵𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                      (33) 

𝐶𝐶𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(�̇�𝛽𝑑𝑑𝑅𝑅)𝑗𝑗𝑛𝑛(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (34) 

𝐷𝐷𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀�̇�𝑑𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(�̇�𝛽𝑑𝑑𝑟𝑟′)𝑗𝑗𝑛𝑛
′(�̇�𝛽𝑑𝑑𝑅𝑅)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                     (35) 

𝐹𝐹𝑛𝑛𝑛𝑛 = 𝑗𝑗
𝜔𝜔𝜀𝜀0𝑅𝑅2 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛
𝑛𝑛(cos 𝜃𝜃′)                                                                                        (36) 

𝐺𝐺𝑛𝑛𝑛𝑛 = 1
𝑗𝑗𝜔𝜔𝜀𝜀0𝑅𝑅 𝜀𝜀𝑛𝑛𝑂𝑂𝑛𝑛𝑛𝑛ℎ𝑛𝑛

(2)′
(𝛽𝛽0𝑅𝑅)𝑗𝑗𝑛𝑛(𝛽𝛽0𝑟𝑟′)𝑃𝑃𝑛𝑛

𝑛𝑛(cos 𝜃𝜃′)                                                                                      (37) 

, where the primes denote a derivative with respect to the argument. Note that the 
functions Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑), and Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) are dependent on the 
polar angle 𝜃𝜃 and the azimuthal angle 𝜑𝜑 for a fixed frequency or wave number β. The angular 
dependency must be eliminated to solve the system of linear equations 28 and 29. To this end, first, 
it is required to expand the boundary condition of equations 28 and 29 in PWSEs with separable 
variables and match each partial wave n, m. Accordingly, equations 28 and 29 are equated to the 
Laplace series as follows: 

∑ ∑ 𝑎𝑎𝑛𝑛Γ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Λ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Π𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [Δ𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛Υ𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛Ω𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)                                                                      (38)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
 

∑ ∑ 𝑎𝑎𝑛𝑛Ψ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)
𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
+ 𝑏𝑏𝑛𝑛Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑) − 𝑐𝑐𝑛𝑛Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)

= ∑ ∑ [W𝑛𝑛𝑛𝑛 + 𝑏𝑏𝑛𝑛U𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑛𝑛V𝑛𝑛𝑛𝑛]𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)

𝑛𝑛

𝑛𝑛=0

∞

𝑛𝑛=0
                                                                       (39) 

, where 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑) is spherical harmonic function. To remove the dependence on the polar angle and 

the azimuthal angle, the following orthogonality conditions can be applied to equations 38 and 39: 

∫ ∫ 𝑌𝑌𝑛𝑛
𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝

𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑
𝜋𝜋

0

2𝜋𝜋

0
= 𝛿𝛿𝑛𝑛𝑝𝑝𝛿𝛿𝑛𝑛𝑞𝑞                                                                     (40) 

, where 𝑌𝑌𝑝𝑝
𝑞𝑞∗(𝜃𝜃, 𝜑𝜑) denotes the complex conjugate of the spherical harmonic function 𝑌𝑌𝑝𝑝

𝑞𝑞(𝜃𝜃, 𝜑𝜑) and 𝛿𝛿𝑖𝑖𝑖𝑖 
is the Kronecker delta function. Equating the left- and right-hand sides in equations 38 and 39 for 
each partial wave and applying the orthogonality condition of Equation 40, a new system of linear 
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The procedure for determining 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 requires first the determination of Equation 42 through 
Equation 47 by numerical integration. Once the scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are obtained, they 
can be used to compute the field components by inserting Equation 21 through Equation 23 into 
Equation 24 through Equation 27. 
 
4. Numerical Results and Discussion 

We simulated the magnetic field for a point current dipole with a moment 700 nA.m in a 
homogeneous sphere of radius 8 cm. Also, the conductivity of the sphere is chosen at 0.33 S/m, 
representative of the brain’s white and gray matter based on the available anatomical data (Petrov, 
2012; Nieminen & Stenroos, 2016). 
4.1. Centered Source 

For a centered current source scenario, the coefficients b and c in equations 3 and 4 are calculated 
from Equation 11. The magnetic field distribution in the yz-plane due to a current dipole positioned 
at the center of the sphere is shown in Figure 3 using a MATLAB® code. In this Figure, the values 
are translated to dB for better coloring. 

The magnetic field distribution and pattern in both analyses match, showing that full-wave 
analysis can play a reliable role in future research. As an important note that can be seen from Figure 
3, in quasi-static analysis, the outside magnetic field is zero because, in a quasi-static regime, a radial 
dipole creates no magnetic field outside the conductor (Sarvas, 1987). In applying MEG, the full-
wave analysis shows attainable data out of the head, which contrasts with the QSA method. In other 
words, in full-wave analysis, the field is not zero, and MEG should not be eliminated from the radial 
sources. It is worth noticing that in the present traditional MEG analysis, the radial-oriented neurons 
are not detected at all, while the full-wave analysis can detect these neurons. 
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The procedure for determining 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 requires first the determination of Equation 42 through 
Equation 47 by numerical integration. Once the scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are obtained, they 
can be used to compute the field components by inserting Equation 21 through Equation 23 into 
Equation 24 through Equation 27. 
 
4. Numerical Results and Discussion 

We simulated the magnetic field for a point current dipole with a moment 700 nA.m in a 
homogeneous sphere of radius 8 cm. Also, the conductivity of the sphere is chosen at 0.33 S/m, 
representative of the brain’s white and gray matter based on the available anatomical data (Petrov, 
2012; Nieminen & Stenroos, 2016). 
4.1. Centered Source 

For a centered current source scenario, the coefficients b and c in equations 3 and 4 are calculated 
from Equation 11. The magnetic field distribution in the yz-plane due to a current dipole positioned 
at the center of the sphere is shown in Figure 3 using a MATLAB® code. In this Figure, the values 
are translated to dB for better coloring. 

The magnetic field distribution and pattern in both analyses match, showing that full-wave 
analysis can play a reliable role in future research. As an important note that can be seen from Figure 
3, in quasi-static analysis, the outside magnetic field is zero because, in a quasi-static regime, a radial 
dipole creates no magnetic field outside the conductor (Sarvas, 1987). In applying MEG, the full-
wave analysis shows attainable data out of the head, which contrasts with the QSA method. In other 
words, in full-wave analysis, the field is not zero, and MEG should not be eliminated from the radial 
sources. It is worth noticing that in the present traditional MEG analysis, the radial-oriented neurons 
are not detected at all, while the full-wave analysis can detect these neurons. 
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The procedure for determining 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 requires first the determination of Equation 42 through 
Equation 47 by numerical integration. Once the scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are obtained, they 
can be used to compute the field components by inserting Equation 21 through Equation 23 into 
Equation 24 through Equation 27. 
 
4. Numerical Results and Discussion 

We simulated the magnetic field for a point current dipole with a moment 700 nA.m in a 
homogeneous sphere of radius 8 cm. Also, the conductivity of the sphere is chosen at 0.33 S/m, 
representative of the brain’s white and gray matter based on the available anatomical data (Petrov, 
2012; Nieminen & Stenroos, 2016). 
4.1. Centered Source 

For a centered current source scenario, the coefficients b and c in equations 3 and 4 are calculated 
from Equation 11. The magnetic field distribution in the yz-plane due to a current dipole positioned 
at the center of the sphere is shown in Figure 3 using a MATLAB® code. In this Figure, the values 
are translated to dB for better coloring. 

The magnetic field distribution and pattern in both analyses match, showing that full-wave 
analysis can play a reliable role in future research. As an important note that can be seen from Figure 
3, in quasi-static analysis, the outside magnetic field is zero because, in a quasi-static regime, a radial 
dipole creates no magnetic field outside the conductor (Sarvas, 1987). In applying MEG, the full-
wave analysis shows attainable data out of the head, which contrasts with the QSA method. In other 
words, in full-wave analysis, the field is not zero, and MEG should not be eliminated from the radial 
sources. It is worth noticing that in the present traditional MEG analysis, the radial-oriented neurons 
are not detected at all, while the full-wave analysis can detect these neurons. 
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The procedure for determining 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 requires first the determination of Equation 42 through 
Equation 47 by numerical integration. Once the scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are obtained, they 
can be used to compute the field components by inserting Equation 21 through Equation 23 into 
Equation 24 through Equation 27. 
 
4. Numerical Results and Discussion 

We simulated the magnetic field for a point current dipole with a moment 700 nA.m in a 
homogeneous sphere of radius 8 cm. Also, the conductivity of the sphere is chosen at 0.33 S/m, 
representative of the brain’s white and gray matter based on the available anatomical data (Petrov, 
2012; Nieminen & Stenroos, 2016). 
4.1. Centered Source 

For a centered current source scenario, the coefficients b and c in equations 3 and 4 are calculated 
from Equation 11. The magnetic field distribution in the yz-plane due to a current dipole positioned 
at the center of the sphere is shown in Figure 3 using a MATLAB® code. In this Figure, the values 
are translated to dB for better coloring. 

The magnetic field distribution and pattern in both analyses match, showing that full-wave 
analysis can play a reliable role in future research. As an important note that can be seen from Figure 
3, in quasi-static analysis, the outside magnetic field is zero because, in a quasi-static regime, a radial 
dipole creates no magnetic field outside the conductor (Sarvas, 1987). In applying MEG, the full-
wave analysis shows attainable data out of the head, which contrasts with the QSA method. In other 
words, in full-wave analysis, the field is not zero, and MEG should not be eliminated from the radial 
sources. It is worth noticing that in the present traditional MEG analysis, the radial-oriented neurons 
are not detected at all, while the full-wave analysis can detect these neurons. 
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U𝑛𝑛(𝑝𝑝𝑝𝑝) = ∑ ∫ ∫ Φ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑝𝑝∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0
                                                                                  (46) 

V𝑛𝑛(𝑝𝑝𝑝𝑝) = ∑ ∫ ∫ Θ𝑛𝑛𝑛𝑛(𝜃𝜃, 𝜑𝜑)𝑌𝑌𝑝𝑝
𝑝𝑝∗(𝜃𝜃, 𝜑𝜑) sin 𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑

𝜋𝜋

0

2𝜋𝜋

0

𝑛𝑛

𝑛𝑛=0
                                                                                    (47) 

The procedure for determining 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 requires first the determination of Equation 42 through 
Equation 47 by numerical integration. Once the scattering coefficients 𝑏𝑏𝑛𝑛 and 𝑐𝑐𝑛𝑛 are obtained, they 
can be used to compute the field components by inserting Equation 21 through Equation 23 into 
Equation 24 through Equation 27. 
 
4. Numerical Results and Discussion 

We simulated the magnetic field for a point current dipole with a moment 700 nA.m in a 
homogeneous sphere of radius 8 cm. Also, the conductivity of the sphere is chosen at 0.33 S/m, 
representative of the brain’s white and gray matter based on the available anatomical data (Petrov, 
2012; Nieminen & Stenroos, 2016). 
4.1. Centered Source 

For a centered current source scenario, the coefficients b and c in equations 3 and 4 are calculated 
from Equation 11. The magnetic field distribution in the yz-plane due to a current dipole positioned 
at the center of the sphere is shown in Figure 3 using a MATLAB® code. In this Figure, the values 
are translated to dB for better coloring. 

The magnetic field distribution and pattern in both analyses match, showing that full-wave 
analysis can play a reliable role in future research. As an important note that can be seen from Figure 
3, in quasi-static analysis, the outside magnetic field is zero because, in a quasi-static regime, a radial 
dipole creates no magnetic field outside the conductor (Sarvas, 1987). In applying MEG, the full-
wave analysis shows attainable data out of the head, which contrasts with the QSA method. In other 
words, in full-wave analysis, the field is not zero, and MEG should not be eliminated from the radial 
sources. It is worth noticing that in the present traditional MEG analysis, the radial-oriented neurons 
are not detected at all, while the full-wave analysis can detect these neurons. 

The procedure for determining bn and cn requires first 
the determination of Equation 42 through Equation 47 by 
numerical integration. Once the scattering coefficients bn 
and cn are obtained, they can be used to compute the field 
components by inserting Equation 21 through Equation 
23 into Equation 24 through Equation 27.

4. Numerical Results and Discussion 

We simulated the magnetic field for a point current di-
pole with a moment 700 nA.m in a homogeneous sphere 
of radius 8 cm. Also, the conductivity of the sphere is 

chosen at 0.33 S/m, representative of the brain’s white 
and gray matter based on the available anatomical data 
(Petrov, 2012; Nieminen & Stenroos, 2016).

Centered source

For a centered current source scenario, the coefficients 
b and c in equations 3 and 4 are calculated from Equation 
11. The magnetic field distribution in the yz-plane due 
to a current dipole positioned at the center of the sphere 
is shown in Figure 3 using a MATLAB® code. In this 
Figure, the values are translated to dB for better coloring.

The magnetic field distribution and pattern in both anal-
yses match, showing that full-wave analysis can play a 
reliable role in future research. As an important note that 
can be seen from Figure 3, in quasi-static analysis, the 
outside magnetic field is zero because, in a quasi-static 
regime, a radial dipole creates no magnetic field outside 
the conductor (Sarvas, 1987). In applying MEG, the 
full-wave analysis shows attainable data out of the head, 
which contrasts with the QSA method. In other words, in 
full-wave analysis, the field is not zero, and MEG should 
not be eliminated from the radial sources. It is worth no-
ticing that in the present traditional MEG analysis, the 
radial-oriented neurons are not detected at all, while the 
full-wave analysis can detect these neurons.

For a better comparison of these two solutions, we 
used the relative difference measure (RDM) (Meijs et 
al., 1989).
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Figure 3. The Magnetic Field Pattern of a Current Dipole at the Sphere Center: Up-Right; 2D Simulation by 
Using QSA, up-left; 2D Simulation by Using the Full-Wave Analysis, Down-Right; Sampled Values of 

Quasi-static Magnetic Field on Horizontal Line Passed Through the Sphere Center, Down-Left; Sampled 
Values of Full-Wave Magnetic Field on Horizontal Line Passed Through Sphere Center  

For a better comparison of these two solutions, we used the relative difference measure (RDM) 
(Meijs, Weier, Peters, & Van Oosterom, 1989). 

𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝐵𝐵𝑖𝑖
𝐹𝐹 − 𝐵𝐵𝑖𝑖

𝑄𝑄)2𝑁𝑁
𝑖𝑖=1

∑ (𝐵𝐵𝑖𝑖
𝐹𝐹)2𝑁𝑁

𝑖𝑖=1
                                                                                                                                 (48) 

In Equation 48, i is the number of each node, 𝐵𝐵𝑖𝑖
𝑄𝑄 is the magnetic field obtained from QSA and 𝐵𝐵𝑖𝑖

𝐹𝐹 
is the magnetic field obtained from full-wave analysis. We divided the square of the result in Figure 
3 into N=700×700 nodes and sampled the magnetic field in each node. The full-wave magnetic field 
is saved in different frequencies, from 1 to 1200 Hz, and RDM is calculated for each frequency. 
Figure 4 shows the RDM of the magnetic field as a function of frequency in three conductivity values. 
As seen in this Figure, the difference between QSA and full-wave results has been increased by 
raising the frequency, and the necessity of a full-wave solution is more sensed. We especially see a 
difference between these two in the MEG frequency range (0.1-1000 Hz). Furthermore, the higher 
the conductivity, the greater the difference would be, indicating that the more conductive layers of 
the human head lead to the greater the error in QSA. 

In Equation 48, i is the number of each node, Bi
Q is the 

magnetic field obtained from QSA and Bi
F is the magnet-

ic field obtained from full-wave analysis. We divided the 
square of the result in Figure 3 into N=700×700 nodes 
and sampled the magnetic field in each node. The full-
wave magnetic field is saved in different frequencies, 
from 1 to 1200 Hz, and RDM is calculated for each fre-
quency. Figure 4 shows the RDM of the magnetic field as 
a function of frequency in three conductivity values. As 
seen in this Figure, the difference between QSA and full-
wave results has been increased by raising the frequency, 
and the necessity of a full-wave solution is more sensed. 
We especially see a difference between these two in the 
MEG frequency range (0.1-1000 Hz). Furthermore, the 
higher the conductivity, the greater the difference would 
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be, indicating that the more conductive layers of the hu-
man head lead to the greater the error in QSA.

Off-centered source

In the scenario of an off-centered dipole, the coeffi-
cients and are calculated by developing a Mathematica 
code to obtain the numerical solution of the system of 
linear Equation 41 through Equation 47. Distributions 
of magnetic fields over the sphere’s cross section at yz-
plane produced by a z-directed dipole source (positioned 

at r'=2 cm, θ'=60°, φ'=90°) are shown in Figure 5. The 
right picture is the magnetic field derived from QSA 
based on Equation 7, and the left one is from full-wave 
analysis at 1000 Hz based on the equations included in 
section 3, part B. Both simulations have the same pattern 
and behavior inside and outside the sphere.

To better compare the two methods above, the sampled 
values of fields on a horizontal line passed from the cen-
ter of the sphere, ie, on the line z=0 in the yz-plane, are 
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Figure 4. Relative difference measure between quasi-static and full-wave magnetic field as a function of frequency for three 
values of conductivity

Figure 3. The magnetic field pattern of a current dipole at the sphere center

Up-right) 2D simulation by using QSA, Up-left) 2D simulation by using the full-wave analysis, Down-right) Sampled values 
of quasi-static magnetic field on horizontal line passed through the sphere center, Down-Left) Sampled values of full-wave 
magnetic field on horizontal line passed through sphere center

Samadi., et al. (2024). A Solution of Deep Sources in the Lossy Human Head to Accurate EEG and MEG. BCN, 15(2), 247-260..

http://bcn.iums.ac.ir/


Basic and Clinical

257

March & April 2024, Vol 15, No. 2

shown in Figure 6. The right curve is the magnetic field 
derived from quasi-static approximation, and the left one 
is from full-wave analysis. The comparison of the two 
curves shows that the results obtained by PWSE full-
wave are excellent. In the other off-centered points, we 
have a challenge described in the next section.

These results provide an advanced approach to accu-
rately compute the brain’s electromagnetic fields for a 
relatively simple structure. This outcome shows that for 
more complex structures (e.g. multilayer sphere, etc.) 
and near-surface sources, the error rate of QSA results is 
significant. The accurate resolution of full-wave analysis 
can help people interpret the EEG and MEG data more 
precisely and nearer to real in the inverse problem for 
source localization. Of course, it should be noted that 
the full-wave analysis requires more calculations than 
QSA, which is one of the drawbacks of this approach. 
However, this approach will be under more development 

in the future, and its benefits will become more evident, 
especially with powerful processing and modern mea-
surement equipment.

5. Convergence of Addition Theorem

The addition theorem helps solve electromagnetic and 
acoustic scattering problems. It is a series expansion of 
off-center Bessel and Hankel functions to separate field 
points and source points from each other. In other words, 
the addition theorem transforms the implicit form of 
Bessel and Hankel functions into the explicit form re-
ferred to as the origin. The addition theorem of the spher-
ical Hankel function of zero-order and the second kind is 
given in the Equation 49:

Figure 6. The magnetic field in yz-plane sampled at line z=0

Left) Full-wave, Right) Quasi-static

Figure 5. The magnetic field pattern of a current dipole in a homogenous sphere with conductivity of 0.33 S/m

Right) Quasi-static, Left) Full-wave
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Figure 6. The Magnetic Field in yz-Plane Sampled at Line z = 0: 
Left, Full-Wave; Right, Quasi-static 

These results provide an advanced approach to accurately compute the brain's electromagnetic fields 
for a relatively simple structure. This outcome shows that for more complex structures (eg, multilayer 
sphere, etc.) and near-surface sources, the error rate of QSA results is significant. The accurate 
resolution of full-wave analysis can help people interpret the EEG and MEG data more precisely and 
nearer to real in the inverse problem for source localization. Of course, it should be noted that the 
full-wave analysis requires more calculations than QSA, which is one of the drawbacks of this 
approach. However, this approach will be under more development in the future, and its benefits will 
become more evident, especially with powerful processing and modern measurement equipment. 
5. Convergence of Addition Theorem 

The addition theorem helps solve electromagnetic and acoustic scattering problems. It is a series 
expansion of off-center Bessel and Hankel functions to separate field points and source points from 
each other. In other words, the addition theorem transforms the implicit form of Bessel and Hankel 
functions into the explicit form referred to as the origin. The addition theorem of the spherical Hankel 
function of zero-order and the second kind is given in the following Equation: 

ℎ0
(2) (|𝑟𝑟 − 𝑟𝑟′⃗⃗⃗|) =

{
 
 

 
 ∑(2𝑛𝑛 + 1)ℎ𝑛𝑛(2)(𝑟𝑟′)𝑗𝑗𝑛𝑛(𝑟𝑟)𝑃𝑃𝑛𝑛(cos 𝜉𝜉)

∞

𝑛𝑛=0
, 𝑟𝑟 < 𝑟𝑟′

∑(2𝑛𝑛 + 1)ℎ𝑛𝑛(2)(𝑟𝑟)𝑗𝑗𝑛𝑛(𝑟𝑟′)𝑃𝑃𝑛𝑛(cos 𝜉𝜉)
∞

𝑛𝑛=0
, 𝑟𝑟 > 𝑟𝑟′

 (49) 

, where cos 𝜉𝜉 = cos 𝜃𝜃 cos 𝜃𝜃′ + sin 𝜃𝜃 sin 𝜃𝜃′ cos(𝜑𝜑 − 𝜑𝜑′) and |𝑟𝑟 − 𝑟𝑟′⃗⃗⃗⃗ | = √𝑟𝑟2 + 𝑟𝑟′2 − 2𝑟𝑟𝑟𝑟′ cos 𝜉𝜉.  
In these equations, 𝜉𝜉 is the angle between 𝑟𝑟 and 𝑟𝑟′ and 𝑟𝑟 = (𝑟𝑟, 𝜃𝜃, 𝜑𝜑) and  𝑟𝑟′⃗⃗⃗ = (𝑟𝑟′, 𝜃𝜃′, 𝜑𝜑′) are the 

locations of the field point and source point, respectively. In other words, this equation attributes an 
out-of-center source to the summation of weighted-centered sources. This outcome enables engineers 
to solve many problems related to acoustic and electromagnetic scattering. However, the addition 
theorem encounters a critical problem in the vicinity of 𝑟𝑟′, ie, the lack of convergence in this region. 
To demonstrate this, we evaluate the addition theorem in 𝑟𝑟 = 𝑟𝑟′. Thus, it should be a concern to both 
sides of Equation 49 to consider 𝑟𝑟 equal to 𝑟𝑟′ as derived in below: 

ℎ0
(2) (√𝑟𝑟′2 + 𝑟𝑟′2 − 2𝑟𝑟′𝑟𝑟′ cos 𝜉𝜉) = ∑(2𝑛𝑛 + 1)ℎ𝑛𝑛(2)(𝑟𝑟′)𝑗𝑗𝑛𝑛(𝑟𝑟′)𝑃𝑃𝑛𝑛[cos 𝜉𝜉]

𝑁𝑁

𝑛𝑛=0
 (50) 

On both sides of Equation 50, θ and φ (not 𝑟𝑟′) are variables. For convenience, we named the right-
hand side of this Equation as 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and the left-hand side as 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑). Then, we draw the curve of 
each side of this Equation, ie, the curve of 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑), in terms of θ and at a fix φ. In the 
right-hand side of Equation 50, the number of terms (N) in summation is an important parameter. 

, whereand. 
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Figure 6. The Magnetic Field in yz-Plane Sampled at Line z = 0: 
Left, Full-Wave; Right, Quasi-static 

These results provide an advanced approach to accurately compute the brain's electromagnetic fields 
for a relatively simple structure. This outcome shows that for more complex structures (eg, multilayer 
sphere, etc.) and near-surface sources, the error rate of QSA results is significant. The accurate 
resolution of full-wave analysis can help people interpret the EEG and MEG data more precisely and 
nearer to real in the inverse problem for source localization. Of course, it should be noted that the 
full-wave analysis requires more calculations than QSA, which is one of the drawbacks of this 
approach. However, this approach will be under more development in the future, and its benefits will 
become more evident, especially with powerful processing and modern measurement equipment. 
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The addition theorem helps solve electromagnetic and acoustic scattering problems. It is a series 
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each other. In other words, the addition theorem transforms the implicit form of Bessel and Hankel 
functions into the explicit form referred to as the origin. The addition theorem of the spherical Hankel 
function of zero-order and the second kind is given in the following Equation: 
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locations of the field point and source point, respectively. In other words, this equation attributes an 
out-of-center source to the summation of weighted-centered sources. This outcome enables engineers 
to solve many problems related to acoustic and electromagnetic scattering. However, the addition 
theorem encounters a critical problem in the vicinity of 𝑟𝑟′, ie, the lack of convergence in this region. 
To demonstrate this, we evaluate the addition theorem in 𝑟𝑟 = 𝑟𝑟′. Thus, it should be a concern to both 
sides of Equation 49 to consider 𝑟𝑟 equal to 𝑟𝑟′ as derived in below: 

ℎ0
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𝑛𝑛=0
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On both sides of Equation 50, θ and φ (not 𝑟𝑟′) are variables. For convenience, we named the right-
hand side of this Equation as 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and the left-hand side as 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑). Then, we draw the curve of 
each side of this Equation, ie, the curve of 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑), in terms of θ and at a fix φ. In the 
right-hand side of Equation 50, the number of terms (N) in summation is an important parameter. 
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Figure 6. The Magnetic Field in yz-Plane Sampled at Line z = 0: 
Left, Full-Wave; Right, Quasi-static 

These results provide an advanced approach to accurately compute the brain's electromagnetic fields 
for a relatively simple structure. This outcome shows that for more complex structures (eg, multilayer 
sphere, etc.) and near-surface sources, the error rate of QSA results is significant. The accurate 
resolution of full-wave analysis can help people interpret the EEG and MEG data more precisely and 
nearer to real in the inverse problem for source localization. Of course, it should be noted that the 
full-wave analysis requires more calculations than QSA, which is one of the drawbacks of this 
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become more evident, especially with powerful processing and modern measurement equipment. 
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out-of-center source to the summation of weighted-centered sources. This outcome enables engineers 
to solve many problems related to acoustic and electromagnetic scattering. However, the addition 
theorem encounters a critical problem in the vicinity of 𝑟𝑟′, ie, the lack of convergence in this region. 
To demonstrate this, we evaluate the addition theorem in 𝑟𝑟 = 𝑟𝑟′. Thus, it should be a concern to both 
sides of Equation 49 to consider 𝑟𝑟 equal to 𝑟𝑟′ as derived in below: 
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On both sides of Equation 50, θ and φ (not 𝑟𝑟′) are variables. For convenience, we named the right-
hand side of this Equation as 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and the left-hand side as 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑). Then, we draw the curve of 
each side of this Equation, ie, the curve of 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑), in terms of θ and at a fix φ. In the 
right-hand side of Equation 50, the number of terms (N) in summation is an important parameter. 

In these equations, ξ is the angle between r and r' and 
r=(r, θ, φ) and (r')=(r', θ', φ') are the locations of the field 
point and source point, respectively. In other words, this 
equation attributes an out-of-center source to the summa-
tion of weighted-centered sources. This outcome enables 
engineers to solve many problems related to acoustic and 
electromagnetic scattering. However, the addition theo-
rem encounters a critical problem in the vicinity of r', ie, 
the lack of convergence in this region. To demonstrate 
this, we evaluate the addition theorem in r=r'. Thus, it 
should be a concern to both sides of Equation 49 to con-
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These results provide an advanced approach to accurately compute the brain's electromagnetic fields 
for a relatively simple structure. This outcome shows that for more complex structures (eg, multilayer 
sphere, etc.) and near-surface sources, the error rate of QSA results is significant. The accurate 
resolution of full-wave analysis can help people interpret the EEG and MEG data more precisely and 
nearer to real in the inverse problem for source localization. Of course, it should be noted that the 
full-wave analysis requires more calculations than QSA, which is one of the drawbacks of this 
approach. However, this approach will be under more development in the future, and its benefits will 
become more evident, especially with powerful processing and modern measurement equipment. 
5. Convergence of Addition Theorem 

The addition theorem helps solve electromagnetic and acoustic scattering problems. It is a series 
expansion of off-center Bessel and Hankel functions to separate field points and source points from 
each other. In other words, the addition theorem transforms the implicit form of Bessel and Hankel 
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On both sides of Equation 50, θ and φ (not 𝑟𝑟′) are variables. For convenience, we named the right-
hand side of this Equation as 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and the left-hand side as 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑). Then, we draw the curve of 
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On both sides of Equation 50, θ and φ (not 𝑟𝑟′) are variables. For convenience, we named the right-
hand side of this Equation as 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and the left-hand side as 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑). Then, we draw the curve of 
each side of this Equation, ie, the curve of 𝑓𝑓𝑅𝑅(𝜃𝜃, 𝜑𝜑) and 𝑓𝑓𝐿𝐿(𝜃𝜃, 𝜑𝜑), in terms of θ and at a fix φ. In the 
right-hand side of Equation 50, the number of terms (N) in summation is an important parameter. 

On both sides of Equation 50, θ and φ (not r') are vari-
ables. For convenience, we named the right-hand side of 
this Equation as fR (θ, φ) and the left-hand side as fL (θ, 
φ). Then, we draw the curve of each side of this Equa-
tion, ie, the curve of fR (θ, φ) and fL (θ, φ), in terms of 
θ and at a fix φ. In the right-hand side of Equation 50, 
the number of terms (N) in summation is an important 
parameter. Increasing this parameter reveals the conver-
gence/divergence behavior of summation. The curve of 
real and imaginary parts of fR (θ, φ) and fL (θ, φ)) is plot-
ted in Figure 7 for N=20.

As seen in Figure 7, the real part of the two expres-
sions is exactly equal; thus, the series expansion of the 
off-center spherical Hankel function is convergent. But 
the imaginary part of the series expansion of off-cen-
ter spherical Hankel function fR (θ, φ) has oscillations 
around its analytic formula. A question arises: What are 
the results when N is large? To answer this question, we 
plotted the curves for a larger value of N=50. Figure 8 
shows the result. The imaginary part of the series expan-
sion is divergent and unstable at large N. The curve of 
the imaginary part of both sides of Equation 50 at r=0.9r' 
for N=50 is plotted in Figure 9. This Figure reveals the 
farther we go from the r', the better the convergence situ-
ation. It indicates the improvement of series converges 
as moving away from r'. This challenge stops the extrac-
tion of other point results to compare QSA and full-wave 
PWSE, the subject of our future works. 

6. Conclusion

This paper has opened a new window to investigate 
brain waves using the full-wave method instead of the 
traditional QSA method. We have argued the need for 
full-wave analysis to derivate the brain’s electric and 
magnetic fields. We derived a full-wave solution to ana-
lytically predict the electric and magnetic field from a 
current source (current dipole) inside a spherical con-
ductor. It was done using a formal solution based on 
the auxiliary vector potential and scattering theory. The 
problem was once solved for a centered source and then 
an off-centered source. Thus, we used the PSWE tech-
nique in the off-centered source to apply appropriate 
boundary conditions and eliminate angular dependence. 
The results showed the merits of full-wave solution over 
quasi-static solution and encouraged us to continue in a 

professional format. The difference between these two 
in the MEG frequency range (0.1-100 Hz) shows the im-
portance of the full wave for brain wave analysis. Our 
detailed simulations will be presented in the next article, 
and our goal here was to represent the idea of full-wave 
analysis of brain waves. 
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