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Introduction: Functional neuroimaging has developed a fundamental ground for 
understanding the physical basis of the brain. Recent studies have extracted invaluable 
information from the underlying substrate of the brain. However, cognitive deficiency has 
insufficiently been assessed by researchers in multiple sclerosis (MS). Therefore, extracting 
the brain network differences among relapsing-remitting MS (RRMS) patients and healthy 
controls as biomarkers of cognitive task functional magnetic resonance imaging (fMRI) data 
and evaluating such biomarkers using machine learning were the aims of this study. 

Methods: In order to activate cognitive functions of the brain, blood-oxygen-level-dependent 
(BOLD) data were collected throughout the application of a cognitive task. Accordingly, a 
nonlinear-based brain network was established using kernel mutual information based on 
the automated anatomical labeling atlas (AAL). Subsequently, a statistical test was carried 
out to determine the variation in brain network measures between the two groups on binary 
adjacency matrices. We also found the prominent graph features by merging the Wilcoxon 
rank-sum test with the Fisher score as a hybrid feature selection method. 

Results: The results of the classification performance measures showed that the construction 
of a brain network using a new nonlinear connectivity measure in task-fMRI performs better 
than the linear connectivity measures in terms of classification. The Wilcoxon rank-sum test 
also demonstrated a superior result for clinical applications.

Conclusion: We believe that non-linear connectivity measures, like KMI, outperform 
linear connectivity measures, like correlation coefficient in finding the biomarkers 
of MS disease according to classification performance metrics.
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1. Introduction

ultiple sclerosis (MS) is an unforeseeable 
sickness that disrupts the function of the 
central nervous system (CNS) with an 
inflaming mechanism. MS obstructs the 
flow of information within the brain and 

between the brain and body. It is thought that MS is the 
most prevalent autoimmune disease among young adults 
affecting the CNS, which is characterized by the develop-
ment of lesions in vital nerves (Lucchinetti et al., 2000; 
Mitolo, 2015; Nelson et al., 2017). MS patients may ex-
perience several types of symptoms, including motor, 
cognitive, and neuropsychiatric disorders. In this regard, 
a significant number of MS patients suffer from cogni-
tive impairment (Ruano et al., 2017). Patients experience 
such deficits from the beginning of the disease, which 
leads to permanent disability. Cognitive impairment usu-
ally involves several functions of the brain (Ruano et 
al., 2017) that strongly affect several aspects of patients’ 
personal lives, and may finally, cause the reduction of 
life’s overall quality. Hence, early identification of the 
inflammatory mechanism allows patients to start therapy 
with an immunomodulatory agent well before receiving 
a clinical diagnosis of definitive MS, thus slowing the de-
generative advancement of MS (Miller, 2004).

Tissue damage is prevalent among MS patients. If the 
compensatory brain processes cannot counter tissue 
damage, MS may enter the irreversible disability phase. 
Accordingly, functional magnetic resonance imaging 

(fMRI), as a promising modality, reveals the brain’s 
functional network reorganization when the compensa-
tory processes are still efficient at the initial phases of the 
disease. Therefore, fMRI can be utilized for diagnosis 
in the initial phases of the disease. In this regard, blood 
oxygen level-dependent (BOLD) can record the data 
(Faivre et al., 2016). Specific tasks may be practical for 
the activating cognitive functions of the brain in fMRI 
sessions, among which the paced auditory serial addition 
test (PASAT) is prominent for the case of MS disease. 
Multiple cognitive domains are measured using PASAT 
(Sandry et al., 2016). As a result, the gray matter atrophy 
in MS is related to functional connectivity reorganiza-
tion during the PASAT implementation (Baltruschat et 
al., 2015).

The performance of the human brain in a particular 
task is associated with the brain network. In recent stud-
ies, analysis of the brain networks through connectivity 
is of great concern. Brain connectivity analysis is an 
eminent concept for obtaining information from the ce-
rebral network’s neural organization and assessing the 
brain’s performance. One well-known non-linear func-
tional connectivity method is mutual information (MI), 
which led to reliable results in previous studies (Cas-
sidy et al., 2014; Dimitriadis et al., 2018; Thompson & 
Fransson, 2015). According to the non-linear nature of 
the BOLD time series (Heinzle et al., 2016; Logothetis 
et al., 2001), MI is more likely to provide reliable results 
rather than linear connectivity measures. In addition, MI 
offers invaluable information about the linear properties 

Highlights 

• The performance of some brain regions (the hippocampus, parahippocampus, cuneus, pallidum, and two segments 
of the cerebellum) is different between healthy and MS people.

• Non-linear connectivity measures, such as Kernel mutual information, perform better than linear connectivity mea-
sures, such as correlation coefficient, in finding the biomarkers of MS disease.

Plain Language Summary 

Multiple sclerosis (MS) can disrupt the function of the central nervous system. The function of brain network is 
impaired in these patients. In this study, we evaluated the change in brain network based on a non-linear connectiv-
ity measure using cognitive task-based fMRI data between MS patients and healthy controls. We used Kernel mutual 
information (KMI) and designed a graph network based on the results of connectivity analysis. The the paced auditory 
serial addition test was used to activate cognitive functions of the brain. The classification was employed for the results 
using different decision tree -based technique and support vector machine. KMI can be considered a valid measure of 
connectivity over linear measures, like the correlation coefficient. KMI does not have the drawbacks of mutual infor-
mation technique. However, further studies should be implemented on brain data of MS patients to draw more definite 
conclusions.
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of the data as well (Cohen, 2014). Several studies have 
analyzed fMRI or EEG data using MI to investigate the 
brain. For instance, Dimitriadis et al. (2018) used sym-
bolic MI and showed that impaired children demonstrate 
a less effective network compared with healthy subjects 
in terms of cross-frequency interactions between brain 
regions. Gong et al. (Gong et al., 2018) used MI to study 
the physiologic pattern of motor imagery in four tasks. 
Cassidy et al. (Cassidy et al., 2014) used partial coher-
ence obtained by sparse vector autoregressive (VAR) 
models to calculate the MI. However, MI has a poten-
tial drawback in that it is sensitive to the number of se-
lected bins (Cohen, 2014). Moreover, MI is based on 
histograms, which are discontinuous, and may provide 
erroneous results due to the continuous nature of neu-
ral time series. Kernel MI (KMI) is a consistent method 
that does not have the drawbacks of MI. This method is 
insensitive to the choice of the origin, and more compli-
cated window shapes may be conducted. Furthermore, it 
provides an enhanced mean square error in converging 
the estimation of the data. Therefore, KMI outperforms 
MI in terms of neural data analysis (Moon et al., 1995). 
In this regard, Wang et al. (2015). demonstrated that MI 
estimation using kernel functions is consistent with the 
symptoms of Alzheimer’s disease (AD). 

One of the most intricate networks discovered is the 
human brain. In this regard, roughly 86 billion neurons 
allow the transmission of electrical and chemical signals 
in the brain. It is widely assumed that the graph theory 
development establishes a fundamental framework for 
gaining a deep comprehension of the brain, and provides 
exquisite insights into the biological process of the hu-
man brain in cognition (Farahani et al., 2019). There 
have been few studies on the brain network of MS pa-
tients. For example, graph theory was implemented via 
resting-state fMRI to assess alteration in the brain net-
works among relapsing-remitting MS (RRMS) patients 
and healthy controls and the results demonstrated that 
the efficiency decreased in RRMS individuals. Also, the 
mean connectivity strength identified RRMS subjects 
and clinically isolated syndrome (CIS) individuals from 
healthy subjects with a 77% accuracy in each category 
(Liu et al., 2017). Ashtiani et al. (2018) also used graph 
theory for assessing MS disease. They reported several 
informative regions between healthy and MS subjects. 
They also discovered that small worldness and cluster-
ing coefficient were greater in healthy controls (HCs) 
compared to RRMS patients. Welton et al. (2020) used 
multiple cognitive tasks to test the reliability of network 
measures in predicting cognitive performance. They 
showed that damaged network structures can predict 

cognitive impairment in MS and that monitoring is ac-
curate for one month.

The present study aimed to evaluate the alteration in 
brain network based on a non-linear connectivity mea-
sure using cognitive task-fMRI data between MS pa-
tients at initial phases and HCs. In this regard, discrimi-
native graph measures and informative regions must be 
specified using a prominent statistical test. Moreover, the 
particular features for data classification must be chosen. 
Hence, a robust method for feature selection and classi-
fication must be proposed. According to the literature, no 
research used KMI via task data to present cognitive im-
pairment in MS patients using graph measures. Hence, 
we conducted KMI in this study and constructed a graph 
network using the results of connectivity analysis using 
BOLD fMRI data, and used PASAT in the experimen-
tation to activate cognitive functions of the brain. The 
brain time series was extracted from each region using 
automated anatomical labeling (AAL) atlas. Afterward, 
network measures in each subject were extracted. The 
best size of the kernel window was found using searching 
over a wide range of kernel widths according to the best 
result of the classification section. Then, a between-class 
significance test was implemented on the data between 
patients and HCs. The classification was employed on 
the results using different hyperparameters of the deci-
sion tree and support vector machine (SVM). The results 
obtained in the present study were compared with the 
previous study with the same data (Ashtiani et al., 2018) 
using classification performance metrics.

2. Materials and Methods

Dataset description

Twenty subjects participated in the present study, in-
cluding eight patients (seven women and one man) in 
the initial phases, and 12 HCs (eight women and four 
men). All participants were right-handed, determined by 
McDonald’s criteria (Polman et al., 2005). The patients 
suffered from RRMS. All patients were between 26 and 
44 years old. Patients were diagnosed an average of 30 
months before the trial (ranging from 8 to 60 months). 
HCs were between 23 to 40 years old with a mean age 
of 30.67. The expanded disability status scale (EDSS) 
score was below 3.5 for patients. This means patients 
had a minimal physical disability and were in the ini-
tial phases. It is essential to note that patients with <5 
years of diagnosis of the disease were chosen for this 
study. Furthermore, the participants filled out a consent 
form before the experiment. The patients were not in the 
attack phase during the experimental procedure, and at 
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least three weeks had passed since the last hospitaliza-
tion for the experiment. 

Experimental paradigm

PASAT was used to test memory, executive function-
ing, and information processing as cognitive functions. 
The modified version of the PASAT was used in this 
study. In the original version, a digit between 0 and 9 is 
played every 3 seconds using an audio headset, and the 
participant has to press a response box key if the summa-
tion of two sequential numbers is below ten, while they 
have to prevent doing such action, otherwise. The sum-
mation number was altered to 11 in this experiment, and 
the language of the test was Persian. We used the block 
design to conduct the experiment by implementing the 
active and rest stages. The duration of each stage was 30 
seconds. In the active stage, the participants had to per-
form the PASAT procedure. However, they had to close 
their eyes in the resting stage and try to think about noth-
ing. The total duration of the experiment was 6 minutes, 
including six times at each stage. As a result, 12 phases 
were employed in the experimentation of each subject. 

In this experiment, a 3 Tesla Siemens Tim Trio sys-
tem was employed to obtain structural and functional 
MRI images. Echo planar imaging (EPI) was used for 
functional images (repetition time 2 s, echo time=30 
ms, field of view=192 mm2, and flip angle=90°) and the 
structural images were constructed by means of a high-
resolution T1-weighted MPRAGE pulse sequence (rep-
etition time=1.8 s, echo time=3.44 ms, flip angle=7° ). A 
detailed description of the experimental paradigm can be 
found in a previous study (Ashtiani et al., 2018).

Data analysis pipeline 

The procedure of data analysis is illustrated in Figure 1. 
A hybrid feature selection method was implemented in 
the present study using the Wilcoxon rank-sum test with 
the Fisher score. The same procedure has been repeated 
using the correlation and MI-based network to compare 
the classification results of the correlation and MI-based 
networks and KMI-based networks.

Preprocessing

FEAT fMRI analysis was used to conduct preprocess-
ing on FSL (FMRIB’s Software Library). The prepro-
cessing pipeline is demonstrated in Figure 2. MCFLIRT, 
BET, and FLIRT (Jenkinson et al., 2002; Jenkinson & 
Smith, 2001; Smith, 2002) options were used to imple-
ment the preprocessing stage. The detailed steps of pre-

processing are described in a previous study (Ashtiani et 
al., 2018).

Brain network construction via kernel estimation 
of MI

Neuroimaging studies often require dividing the brain 
into parcels (regions) with homogenous properties The 
AAL atlas was utilized in order to parcellate the brain 
into 116 regions of interest (ROIs). The averaging meth-
od was implemented to obtain the signal of each par-
cel. The brain connectivity of each pair of parcels was 
determined after the signals of regions were extracted. 
Having two signals, X and Y, the MI between X and Y is 
defined as Equation 1:

1.
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         Where, 𝑝𝑝𝑥𝑥(𝑥𝑥) is the marginal probability of X and 𝑝𝑝𝑦𝑦(𝑦𝑦) is the marginal probability Y. 

Also,𝑝𝑝𝑥𝑥𝑦𝑦(𝑥𝑥, 𝑦𝑦) is the joint probability of X and Y. The probability values in the above statement 

are estimated by binning the distributions and creating a histogram (Cover & Thomas, 2012). KMI, 

however, applies the Gaussian kernel function rather than binning the distribution (Beirlant, 
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Here, h is a parameter for controlling the width of the kernel, which is defined based on σ, the 

standard deviation of the kernel. KMI can be used as a functional connectivity method, in which 
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We used each brain’s whole time series as X and Y and constructed connectivity matrices for 

all of the subjects using KMI in the whole 12 phases of active and rest. Therefore, the brain network 

of each subject will be constructed. Assuming σ as the standard deviation of the Gaussian Kernel, 

various standard deviations, including 2, 1.5, 1, 0.5, 0.25, and 0.125, were used in this method. 

However, we considered σ equal to 0.25 for reporting the results since the best classification 

accuracy was achieved in such a condition. We considered each ROI as a node and measures of 

connectivity as edges of a graph for each subject and constructed the connectivity matrices. The 

(2) 

(3) 

(4) 

(5) 

Where, px(x) is the marginal probability of X and 
py(y) is the marginal probability Y. Also pxy(x, y) is the 
joint probability of X and Y. The probability values in 
the above statement are estimated by binning the dis-
tributions and creating a histogram (Cover & Thomas, 
2012). KMI, however, applies the Gaussian kernel func-
tion rather than binning the distribution (Beirlant et al., 
1997). The Equations 2, 3, 4 statements show the prob-
abilities employed using Gaussian kernel functions:
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Here, h is a parameter for controlling the width of the 
kernel, which is defined based on σ, the standard devia-
tion of the kernel. KMI can be used as a functional con-
nectivity method, in which interdependence between 
regions is extracted. KMI can be defined as Equation 5:
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accuracy was achieved in such a condition. We considered each ROI as a node and measures of 
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We used each brain’s whole time series as X and Y and 
constructed connectivity matrices for all of the subjects 
using KMI in the whole 12 phases of active and rest. 
Therefore, the brain network of each subject will be con-
structed. Assuming σ as the standard deviation of the 
Gaussian kernel, various standard deviations, including 

2, 1.5, 1, 0.5, 0.25, and 0.125, were used in this method. 
However, we considered σ equal to 0.25 for reporting 
the results since the best classification accuracy was 
achieved in such a condition. We considered each ROI as 
a node and measures of connectivity as edges of a graph 
for each subject and constructed the connectivity ma-
trices. The KMI was employed using FastPairMI.m for 
extracting the connectivity matrices (Qiu et al., 2009).

Thresholding and extracting the graph measures 

Thresholding, selecting the most consistent set of edges 
that jointly construct the graph, is a typical analysis stage 
in forming a functional graph. Each subject’s network is 
different from other numbers and weighs on the edges 
(Wen et al., 2011). Proportional thresholding (PTh) is a 
prominent matching strategy prior to statistical and ma-
chine learning implementations. In this approach, a spec-
ified number of the most robust connections are chosen 
as network edges to ensure equal network density across 
participants’ brain networks (Gamboa et al., 2014). The 
PTh method was used in this study in the range of 0.06 
to 0.3 with steps equal to 0.01 to threshold the adjacency 
matrices. Then, each of the resulting matrices was trans-
formed into binary. Afterward, we extracted brain graph 
measures from binary matrices. Using the BrainNet 
viewer, Figure 3 displays the full mesh graph and thresh-
old network of a single subject at a PTh value equal to 
0.19 (Xia et al., 2013).

Brain networks are commonly described using graph 
theory measures to show the properties of the brain struc-
ture. It is widely assumed that the brain’s substrate is a 
complex network. This concept is represented through 
several graph measures in this study. Accordingly, as-
sortativity, characteristic path length, global efficiency, 
mean clustering coefficient, modularity, and transitivity 
were used as global measures. In addition, the between-
ness centrality, degree, eigenvector centrality, k-coreness 
centrality, PageRank centrality, participation coefficient, 
and sub-graph centrality were employed as local mea-
sures.

Significance test, feature ranking, and classifica-
tion 

Comparing two groups is a prevalent type of scientific 
experimentation The Wilcoxon rank-sum test is a well-
known nonparametric test for non-normal distributions, 
which was the case for the obtained graph measures. 
This test was applied to the extracted graph measures 
(P<0.05). The criterion for considering a measure as 
discriminating was that it was statistically significant at 

 

Figure 1. The flowchart of the data analysis
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more than 12 threshold numbers (approximately half the 
range) in each global measure or measurement area for 
local measures.

Significant features were considered as the input of the 
feature ranking method. Multiple feature ranking meth-
ods were employed on graph measures, yet none was as 
robust as the Fisher score. Fisher score is a feature selec-
tion algorithm independent of class distribution that can 
specify the distinction power of each feature between the 
classes (Duda et al., 2012). The best combination of dis-
criminative features was selected using the Fisher score 
by ranking the features. Afterward, we selected various 
combinations of the best features ranging from 1 to 10 to 
avoid overfitting regarding the sample size. These fea-
tures were used for classification using different param-
eters of SVM and the decision tree. The optimal feature 
set is the combination, by which the highest accuracy 
could be obtained (Acharya et al., 2015; Ahmadi et al., 
2020; Ahmadi et al., 2019). Fisher score was used within 
the leave-one-subject-out-cross validation (LOOCV) to 
avert interdependency. In other words, the Fisher score 
was implemented on the training set in each fold sepa-
rately, and the selected features were then used on the 
test data in that fold. Standard performance metrics of 

classification, such as accuracy, sensitivity, specificity, 
as well as Cohen’s kappa coefficient were employed in 
this study. In this regard, Cohen’s kappa measures the 
agreement among two raters that classify N items into C 
mutually individual categories. This measure is strong-
ly recommended when the labels are imbalanced. The 
rate of agreement categorization is previously discussed 
(McHugh, 2012).

3. Results

We obtained the graph features of the brain by con-
structing the networks via KMI. The statistical test was 
then used between the groups to obtain informative re-
gions and discriminative features. Afterward, we used a 
combination of a statistical test and feature ranking as a 
hybrid feature selection method.

Hypothesis testing of global features 

Altered global measures between the two groups can 
demonstrate changes in networks and the topology of the 
brain. In this study, significant values were not obtained 
in such measures. Table 1 demonstrates the lowest P in 
each measure and the corresponding PTh. 

Figure 2. The preprocessing pipeline
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Hypothesis testing of local features 

Damaged areas can alter brain topology and subse-
quently change local properties obtained from the men-
tioned areas. The degree, k-coreness centrality, between-
ness centrality, participation coefficient, eigenvector 
centrality, PageRank centrality, and subgraph centrality 
were discriminative within several areas. Such measures 
and their corresponding informative regions are listed in 
Table 2. The P and the corresponding threshold are re-
ported for each region. Figure 4 also shows all discrimi-
native regions. 

Classification performance

Based on the Fisher score, we picked the best combi-
nation of features from 1-10 features for each classifi-
cation method in order to avoid overtraining. The high-
est classification outcome investigated by the optimum 
parameters of each classifier via the graph measures 
of KMI-based networks is shown in Table 3. Radial 
basis function SVM (RBF-SVM) had the greatest ac-
curacy (95%) (PTh=0.09). The accuracy of RBF-SVM 
(PTh=0.09) in different combinations of measures is 
shown in Figure 5. The corresponding procedures were 
implemented using correlation coefficient and MI for 
comparison, and the results are reported in Tables 4 and 

 

(a)                                                                                                 (b) 

                                                  (c)                                                                                                   (d)                    

Figure 3. Full-mesh network and threshold graph at PTh=0.19 for a healthy subject

a) Full-mesh network, b) Threshold network, c) Full-mesh connectivity matrix, d) Threshold connectivity matrix

Note: Connections are shown with a color map as the strength of the connection in each image, and non-existent connections 
are shown as white color in connectivity matrices.
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Table 1. The list of minimum significant P for each global measure and the corresponding value

Global Measure Minimum P PTh

Assortativity 0.5628 0.06

Characteristic path length 0.1418 0.23

Clustering coefficient 0.1325 0.3

Global efficiency 0.1418 0.23

Modularity 0.2318 0.3

Transitivity 0.5628 0.07

Table 2. Significant regions in local graph measures among the patients and healthy individuals 

Region Degree PageRank 
Centrality

Eigenvector 
Centrality

Subgraph 
Centrality

K-coreness 
Centrality

Participation 
Coefficient

Betweenness 
Centrality

Frontal_Inf_Tri_R P=0.0028(0.23)

Frontal_Inf_Orb_R P=0.0127(0.27)

Hippocampus_L P=0.0085(0.29) P=0.0061(0.08) P=0.0078(0.3) P=0.0097(0.12) P=0.0085(0.29)

Parahippocampal_L p=0.0007(0.14) P=0.0008(0.14) P=0.0009(0.14) P=0.0014(0.13) P=0.0007(0.14) P=0.0002(0.24)

Parahippocampal_R P=0.0133(0.2) P=0.0122(0.09) P=0.0121(0.3) P=0.0150(0.16) P=0.0133(0.2)

Cuneus_R P=0.0167(0.23) P=0.0038(0.13) P=0.0186(0.12) P=0.0049(0.09) P=0.0211(0.22)

Postcentral_L P=0.0043(0.3) P=0.0038(0.26) P=0.0049(0.22) P=0.02300.1) P=0.0043(0.3) P=0.0024(0.2)

Paracentral_
Lobule_L P=0.0186(0.29) P=0.0186(0.25) P=0.0186(0.27) P=0.0228(0.1) P=0.0183(0.11) 

Pallidum_L P=0.0029(0.28) P=0.0030(0.18) P=0.0030(0.28) P=0.0048(0.13) P=0.0029(0.28) P=0.0065(0.2) P=0.0298(0.16)

Temporal_Pole_
Sup_L P=0.0076(0.08) P=0.0078(0.08) P=0.0049(0.09) P=0.0085(0.08) P=0.0028(0.08) P=0.0095(0.06)

Cerebelum_Crus1_R P=0.0134(0.22) P=0.0122(0.15) P=0.0122(0.28) P=0.0097(0.25) P=0165(0.3)

Vermis_1_2 P=0.0120(0.22)

The threshold was in the range of 0.06 to 0.3 (P<0.05)  

Note: In more than half of the thresholds, there was a significant difference between the two classes among the regions. The 
table shows the minimum P and the resulting PTh.

Table 3. The performance of each classification method using the optimum parameters in significant graph measures con-
structed by the KMI

Classifier Accuracy Sensitivity Specificity Cohen’s Kappa

Radial basis function-support vector 
machine (c=1, sigma=1) 95 87.5 100 0.8936*

Decision tree 90 100 83.33 0.8000*

Linear support vector machine (c=1) 85 75 100 0.7826**

*Almost perfect agreement,**Substantial agreement. 
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Figure 4. Significant regions between patients and controls 

Note Over more than half of the thresholds were in the range of 0.06 to 0.3 and these nodes were shown to be significantly 
different among the groups.

Figure 5. The accuracy of RBF-SVM (PTh=0.09) in the first 10 combinations of discriminative features 
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5 respectively. The best classification accuracy using the 
correlation coefficient and MI-based method were 85% 
and 90%, respectively. The most repeated measures 
selected using the Fisher score using correlation-based 
networks were left Fusiform in degree and PageRank 
centrality as well as left hippocampus and left parahip-
pocampal in k-coreness centrality, yet the most repeated 
measures selected using the Fisher score in KMI-based 
networks were left Pallidum in degree, eigenvector cen-
trality, k-coreness centrality, and PageRank centrality as 
well as left parahippocampal in eigenvector centrality, 
k-coreness centrality, and PageRank centrality. The cor-
responding measures for MI were the right hippocampus 
in betweenness centrality and the left pallidum in eigen-
vector centrality.

Significance test on connectivity

The significant difference in connectivity matrices was 
achieved using the Wilcoxon rank-sum test (P<0.05, 
FDR corrected). The number of significant connections 
was 3446 without FDR correction. However, this value 
decreased to five via FDR correction. The connectivity 
measure between the left medial orbitofrontal cortex and 
right cuneus, right middle occipital gyrus, left postcen-
tral gyrus and, right crus I of the cerebellar hemisphere 

and right cuneus and right crus I of the cerebellar hemi-
sphere were significantly different. Figure 6 also shows 
the significant connections in a brain sample.

Classification accuracy and feature selection of 
connectivity

The method for classifying connectivity values is the 
same as the process for classifying network measures. 
The Wilcoxon rank-sum test was used to derive the dis-
criminative connectivity values. Then, we used the Fish-
er score to classify the data by using LOOCV. Tables 6, 7, 
8 show the best classification outcome for connectivity 
measures. The findings suggest that in terms of classifi-
cation, connectivity values are not as reliable as network 
measures. However, Liu et al. (2020) mentioned that 
functional connectivity is a more discriminatory method 
than traditional activity patterns in an fMRI study.

4. Discussion 

The present study aimed to assess the brain graph’s al-
teration in the early phases of MS compared to a healthy 
brain, primarily to assess the cognitive effects of the 
disease. Hence, we used fMRI during the performance 
of PASAT to analyze the brain network of MS patients 

Table 4. The performance of each classification method using the optimum parameters in significant graph measures con-
structed by mutual information

Classifier Accuracy Sensitivity Specificity Cohen’s Kappa

Linear support vector machine (c=1) 90 100 83.33 0.8000*

Radial basis function-support vector 
machine (c=1, sigma=5) 85 75 91.67 0.6809*

Decision tree 85 75 91.67 0.6809**

*Almost perfect agreement,**Substantial agreement 0. 

Table 5. The performance of each classification method using the optimum parameters in significant graph measures con-
structed by correlation coefficient

Classifier Accuracy Sensitivity Specificity Cohen’s Kappa

Linear support vector machine (c=1) 85 75 91.67 0.6809**

Radial basis function-support vector 
machine (c=1, sigma=5) 85 75 91.67 0.6809**

Decision tree 85 75 91.67 0.6809**

RBF SVM (c=1, sigma=5) 85 87.5 83.33 0.6939

Linear SVM (c=1) 80 75 83.33 0.5833

Decision tree 75 62.5 83.33 0.4681

**Substantial agreement. 
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compared to HCs. The classification was implemented 
to test the validity of the discriminative graph measures.

It is widely assumed that the BOLD fMRI time series 
contains non-linear properties. Accordingly Lahaye et 
al. (2003) found that connectivity measures obtained 
from the BOLD fMRI time series are unlikely to contain 
only linear instantaneous information. As a result, a non-
linear connectivity measure was employed in this study 
for constructing subjects’ brain networks. Non-linear 
connectivity measures have superior performance over 
linear measures (Deshpande et al., 2006; Karanikolas et 
al., 2016; Li et al., 2010). In addition, Zhao et al. (2019) 
demonstrated the excellent performance of non-linear 
connectivity analysis in an electroencephalogram (EEG) 

study. Yang et al. (2016) also proved that the incorpo-
ration of higher-order non-linearities offers a complete 
inference of the phase coupling. Using a kernel function, 

as a non-linear approach, has a promising result in the 
network analysis of AD by Ahmadi et al. (2020), and 
leads to a robust distinction between HCs and patients 
in fMRI analysis. Non-linear connectivity measures, like 
KMI, outperform linear measures using EEG data (Af-
shani et al., 2015). 

Several centrality measures, including the degree, 
PageRank centrality, eigenvector centrality, subgraph 
centrality, and k-coreness centrality, were discriminative 
in almost the same regions. Central nodes are the most 
critical nodes of the graph in terms of interaction with 

Table 7. The performance of each classification method using the optimum parameters in mutual information connections

Classifier Accuracy Sensitivity Specificity Cohen’s Kappa

Radial basis function-support vector 
machine (c=1, sigma=5) 85 87.5 83.33 0.6939

Linear support vector machine (c=1) 80 75 83.33 0.5833

Decision tree 75 62.5 83.33 0.4681

RBF SVM (c=1, sigma=10) 85 87.5 83.33 0.6939

Linear support vector machine (c=5) 75 62.5 83.33 0.4681

Decision tree 75 62.5 83.33 0.4681

Table 8. The performance of each classification method using the optimum parameters in correlation coefficient connections

Classifier Accuracy Sensitivity Specificity Cohen’s Kappa

Linear support vector machine (c=1) 80 75 83.33 0.5833

Radial basis function-support vector 
machine (c=1, sigma=10) 80 75 83.33 0.5833

Decision tree 75 62.5 83.33 0.4681

Table 6. The performance of each classification method using the optimum parameters in KMI connections

Classifier Accuracy Sensitivity Specificity Cohen’s Kappa

Radial basis function-support vector 
machine (c=1, sigma=5) 85 87.5 83.33 0.6939

Linear support vector machine (c=1) 80 75 83.33 0.5833

Decision tree 75 62.5 83.33 0.4681
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other nodes, which can be demonstrated as the degree of 
a node in the simplest form. In other words, most cen-
trality measures demonstrate the amount of node par-
ticipation in short paths. Many studies have assessed the 
brain in terms of centrality measures in MS; for example, 
Eijlers et al., 2017 found that several regions showed al-
tered degree and eigenvector centrality in cognitively 
impaired MS patients. The obtained regions were re-
markably in line with our found regions. The PageRank 
centrality is similar to the eigenvector centrality, includ-
ing a damping factor on contributing neighbors. Ashtiani 
et al. 2018 reported that the PageRank centrality altered 
in the hippocampus and segments of the cerebellum 
between the MS group and HCs. They also discovered 
that the sub-graph centrality, a graph measure that de-
scribes the contribution of every node in all subgraphs, 
was altered between MS patients and controls in the hip-
pocampal, parahippocampal, postcentral, and cerebellar 
regions as well. The k-coreness centrality was assessed 
in AD several times previously, which resembles MS 
as to the cognitive effects of the disease. Khazaee et al. 
(2017) found that the k-coreness centrality is a relatively 
robust feature in identifying AD patients in resting-state 
fMRI. Sheng et al. (2019) also used the k-coreness for 
training a novel human connectome project multi-modal 
parcellation (HCPMMP) method in classifying MS pa-
tients from HCs. Ashtiani et al. (2018) also found that the 
k-coreness centrality is informative in MS.

In this study, merging the Wilcoxon rank-sum test with 
the Fisher score, as a hybrid approach, led to superior 
accuracy. According to our previous study (Azarmi et 
al., 2019) and the achieved results, it stands to reason 
that when the outputs of the Wilcoxon rank-sum test are 

used as the input of the Fisher score, greater accuracy 
may be obtained rather than using the Fisher score alone. 
The most particular features are elected using the Fisher 
score from the discriminative features via the mentioned 
approach. As a result, the obtained features are the most 
independent ones for classification.

The non-linearity of classification systems is an es-
sential aspect of the present research. In non-linear 
classification, the boundary for separating categories is 
much more complex than in linear systems. Therefore, 
non-linear classification, as opposed to linear classifi-
cation, is more flexible and less biased (Mørch et al., 
1997). Accordingly, the RBF-SVM outperformed linear 
SVM based on our findings. In an fMRI study, Schmah 
et al. (2010) reported that non-linear classifiers, like 
RBF-SVM or second-degree polynomial SVM, outper-
formed linear SVM due to changes in brain connectivity. 
In another study, Yourganov et al. (2014) also reported 
that the results could be used for a wide range of con-
nectivity deficit studies. MS is also a neurodegenerative 
disease that causes connectivity deficits in the brain’s 
connections. The decision tree was another classification 
method, which was used in this study. Zhao and Zhang, 
(2008) reported that decision trees are unstable, and a 
minor difference in the training data will lead to different 
attribute selections at each choice point in the tree. As 
a result, a significant impact may occur, since attribute 
choices influence all descendent subtrees. The decision 
tree performed better than linear SVM, yet it had a lower 
accuracy compared to RBF-SVM based on our results. It 
is worth noticing that the graph features picked using the 
proposed feature selection approach varied from those 
selected using correlation and MI with KMI-based net-
works.

The decision tree had a greater sensitivity compared 
to RBF-SVM. It is thought that identifying patients cor-
rectly is crucial in neuroscientific studies rather than 
HCs. In other words, detecting patients as HCs is a criti-
cal limitation in such studies. As a result, the decision 
tree might be a superior classification system compared 
to RBF-SVM from this perspective. The specificity of 
SVM in both kernels was 100%, which is consistent with 
our previous research (Azarmi et al., 2019). 

According to Duda et al. (2012), when the data’s di-
mensionality is staggering, the Fisher score is one of 
the most prominent feature selection techniques. We 
implemented various methods of feature selection but 
finally, the Fisher score was selected. Thus, the accuracy 
of classification showed a prominent value. Khazaee et 
al. (2015) also used various feature selection methods 

Figure 6. Significant connections between the patients and 
healthy controls using KMI-based networks
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and gained the best accuracy using fisher score in a rest-
ing-state fMRI study, which aligns with our results. It is 
worth mentioning that the present study aimed to deter-
mine the discriminative network measures and informa-
tive ROIs, which could classify HCs from MS patients. 
Moreover, dimensionality reduction methods convert 
the space of the features to another space. Hence, imple-
menting the mentioned methods would not benefit us in 
gaining promising results.

Cohen’s kappa is a popular statistic for inter-rater and 
intra-rater checking in reliability (McHugh, 2012). Ac-
cording to the results, RBF-SVM and decision tree were 
in perfect agreement using the measures of KMI-based 
networks, and linear SVM was in substantial agreement. 
In addition, linear SVM was in perfect agreement using 
MI-based networks. However, all classification systems 
were in substantial agreement with the measures of cor-
relation-based networks. The results showed that KMI 
outperforms the correlation coefficient as a measure of 
connectivity using a prominent classification metric.

The results obtained from KMI showed a more remark-
able performance in accuracy, sensitivity, specificity, and 
Cohen’s kappa compared to the correlation coefficient. 
Accordingly, KMI can be considered a valid measure of 
connectivity over linear measures, like the correlation 
coefficient. Overall, the results are expected according 
to the non-linear properties of KMI as well as the BOLD 
time series. Additionally, KMI does not have the draw-
backs of MI, which is choosing the origin in binning 
and discontinuity. Moreover, it is computationally less 
complex than mode-based effective methods. Therefore, 
KMI is preferred to the mentioned methods. However, it 
is thought that multiple studies should be implemented 
on brain data in order to gain valid results. 

Parahippocampal and pallidum regions were among 
the regions that were selected multiple times using the 
Fisher score. These regions were obtained several times 
in graph measures obtained by KMI or correlation coef-
ficient. The function of the parahippocampal region is 
memory encoding and retrieval. Therefore, it can be as-
sumed that this region is related to cognitive functions. 
Pallidum was chosen only via the KMI method and is 
related to voluntary movement. The hippocampus and 
fusiform were repeated several times using the correla-
tion coefficient. The former plays a crucial role in mem-
ory functions, while the latter is related to word and face 
recognition. Both of these regions’ tasks are related to 
cognitive function.

Twelve ROIs were identified as discriminative regions 
in various local graph measures, and each of these re-
gions has a particular functionality. All mentioned re-
gions were associated with the impacts of MS, which are 
described in detail in the following sections. 

Regions 14 and 16 of the AAL atlas were discrimina-
tive solely in participation coefficient and betweenness 
centrality, respectively. In this regard, the triangular part 
of the right inferior frontal gyrus is related to the go/no 
go task, which is significantly different in our study. A 
powerful response, like pressing a button or prevent-
ing performing such an action must be banned in this 
task. Accordingly, the go/no go task is similar to PASAT. 
Hence, we believe that this region might be involved 
in causing MS disease. Mainero et al. (2004) also re-
ported a significant difference in the activation of this 
area among MS individuals and HCs while performing 
a recall task using fMRI data. The orbital part of the 
inferior frontal gyrus is also reported to be involved in 
causing autism, which is a neurodevelopmental disor-
der as well. Charil et al. (2007) reported an alteration 
in the thickness of the inferior frontal gyrus in RRMS 
patients. Trapp et al. (2018) also reported that demy-
elination and neuronal loss would happen in this area 
during MS progress. Chen et al. (2018) reported a sig-
nificant difference in seed-based functional connec-
tivity between the MS group and HCs in this region. 

The hippocampus in both hemispheres of the brain and 
the parahippocampal gyrus in the right hemisphere were 
significantly different in our study, consistent with many 
previous studies (Kern et al., 2015; Koenig et al., 2018; 
Rocca et al., 2018; Vacchi et al., 2017; van Geest et al., 
2018). The hippocampus is a critical region in transfer-
ring information from short-term to long-term memory 
as well as the organization of new memories from past 
experiences. This region is one of the first segments of 
the brain, which is damaged in AD. This region has a 
leading role in epilepsy and schizophrenia. In addition, 
the parahippocampal gyrus has a central role in memory 
encoding and recovery. These functions are of much 
importance when cognitive impairment occurs. The 
superior temporal pole was also reported as a region 
related to MS in other studies. For example, Vacchi et 
al. (2017) demonstrated that this region is involved in 
relapse-onset MS as a factor for memory dysfunction in 
the N-back task during the fMRI experiment. In another 
study, Tommasin et al. (2018) stated that the right supe-
rior temporal gyrus and left cerebellum VI lobule have 
different connectivity values between new MS patients 
and progressed MS patients, which means that the region 
contributes to MS during the progress of the disease. 
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One of the significant symptoms of MS patients is in 
movement control. The paracentral lobule is a supple-
mentary motor area (SMA) segment, which contrib-
utes to motor functions. Four hypothesized functions 
are defined for SMA: The control of postural stability 
during stance or walking, temporal sequences of action 
coordination, bimanual coordination, and the initiation 
of internally generated as opposed to stimulus-driven 
movement. This region was reported to be related to MS 
several times in previous studies of fMRI (Boutière et 
al., 2017; Cui et al., 2017; Nelson et al., 2017; Spiteri, 
et al., 2017). It also is assumed that pallidum contributes 
to voluntary human movement. This region also plays a 
crucial role in MS. Tacchino et al. (2018) showed a nega-
tive correlation between the index of success and palli-
dum in RRMS patients as a function of disease severity 
in motor imagery. Meijer et al. (2018) also found that the 
connectivity attained by putamen–cortex and pallidum-
cortex had an increment in deep gray matter-cortex dur-
ing MS progress. In addition, pallidum and paracentral 
lobule are among the regions that contribute to human 
movement. According to the symptoms of MS, the men-
tioned regions demonstrate segments of the brain, which 
affect the MS patients’ movement throughout the disor-
der. Dysmetria, or lack of coordination of movement, is 
prevalent among MS patients that might be related to the 
mentioned regions.

It is thought that the cuneus is involved in visual pro-
cessing, and is also modulated to extra-retinal effects, 
like attention and visual processing. Droby et al. (2016) 
also reported that the cuneus is involved in MS as a dam-
aged region. Zurita et al. (2018) demonstrated that the 
cuneus is an effective region in RRMS in an MRI study. 
The postcentral gyrus was an informative region among 
the groups. This finding is consistent with several previ-
ous studies. For example, Sbardella et al. (2017) reported 
that the mentioned region is significantly different be-
tween the MS group and healthy individuals in a multi-
modal MRI study. In another study, Cirillo et al. (2016)
found that the resting-state connectivity increased in 
MS patients between the left precentral and postcentral 
gyrus using MRI. Tavazzi et al. (2018) also reported a 
decreased activation relevant to the motor task and an in-
crement of functional connectivity in the precentral and 
post-central gyrus, bilaterally via fMRI in a neuroreha-
bilitation test of MS patients.

The cerebellum is one of the significant parcels of the 
brain, which is involved in MS disorder. Cirillo et al. 
(2016) reported that resting-state functional connectiv-
ity of the cerebellum changes as nuclei in MRI images 
of MS patients. Parmar et al. (2018) also stated that the 

cerebellum has dysfunctions during MS progress. Weier 
et al. (2015) stated that progressive MS has extensive 
cortical demyelination in the cerebellum, which was re-
vealed by MRI and is in line with our study. Ashtiani 
et al. (2019) also found this region to be discriminative 
among RRMS patients and HCs.

5. Conclusion

We extracted functional connectivity network mea-
sures derived from fMRI data of early MS patients and 
healthy subjects during a specific cognitive task by ap-
plying the graph theory via a non-linear connectivity 
measure. Wilcoxon rank-sum test was employed to find 
the discriminative features as biomarkers of MS. In ad-
dition, classification was performed on the discrimina-
tive features using the proposed hybrid feature selection 
method. Several regions, including the hippocampus, 
parahippocampal region, cuneus, and pallidum, and two 
segments of the cerebellum were discriminative in lo-
cal measures. Almost all these regions were the same in 
different centrality measures. Moreover, combining the 
outputs of the Wilcoxon rank-sum test and Fisher score 
as a hybrid method led to a superior classification result 
(accuracy=95%), which outperformed the same proce-
dure of analysis using MI (accuracy=90%) and Pear-
son’s correlation coefficient (accuracy=85%). In conclu-
sion, we believe that non-linear connectivity measures, 
like KMI, outperform linear connectivity measures, like 
correlation coefficient in finding the biomarkers of MS 
disease according to classification performance metrics.
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