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Introduction: Previous studies have reported dorsolateral prefrontal cortex (DLPFC) and 
posterior parietal cortex (PPC) activation during the performance of spatial working memory 
(SWM), therefore this study aims to compare the effect of transcranial direct current stimulation 
(tDCS) between these two areas. 

Methods: Fifty-four healthy right-handed students (27 women, 27 men; age=24.3±0.2 
years) were randomly assigned to an anodal group (n=27) and a sham group (n=27), each of 
these groups was divided into F4 (representing right DLPFC) or P4 (representing right PPC) 
subgroups, respectively. A computerized Corsi block tapping (CBT) task was used to measure 
SWM. The tDCS intervention consisted of five daily sessions with a direct current of 1.5 mA 
for 15 minutes on the F4 or P4 area of the brain at 24-hour intervals. 

Results: Significant enhancement of the SWM span as well as a faster response was observed 
after anodal tDCS in both the anterior and posterior direction. Moreover, stimulation of the left 
DLPFC induced a faster reaction time compared to the right PPC.

Conclusion: Stimulation DLPFC and PPC, as an element of the frontoparietal network, 
showed SWM enhancement, with the DLPFC being more affected. Our finding provides new 
evidence to compare the effect of stimulation on the two main activated cortical areas during 
visual SWM.
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1. Introduction

orking memory (WM) refers to the 
mental ability that allows a person 
to temporally store and manipulate a 
limited amount of information. WM 
functioning is necessary for complex 

cognitive tasks, such as reasoning, problem-solving, 
comprehension, and learning. Neuroimaging studies 
have demonstrated WM-related cortical activity in the 
sensory and prefrontal areas, the dorsolateral prefrontal 
cortex (DLPFC) plays a particularly crucial role (Cur-
tis & D’Esposito, 2003; Linden, 2007). In the classical 
model, WM includes phonological and visuospatial 
stores (two temporary buffers) as well as the central 
executive system (Baddeley & Hitch, 1974). Spatial 
working memory (SWM), a specific type of WM, in-
cludes information within the spatial domain. Cortical 
high-relevant activity in the SWM network includes the 
DLPFC, posterior parietal cortex (PPC), and frontal eye 
field (Curtis & D’Esposito, 2003; Vogel & Machizawa, 
2004). Among SWM-related cortical areas, the DLPFC 
seems to be mostly involved in selection operations 
(Bledowski et al., 2010). 

The left DLPFC mostly controls verbal WM, while the 
visuospatial WM is mainly controlled by the right DLP-
FC (D’Esposito et al., 2000; Smith & Jonides, 1999). 
Frontoparietal network activity has been identified as 
part of the WM function (Mottaghy et al., 2002) refer-
ring to the role of the parietal cortex in processing the 
spatial information of sensory cues and the role of the 

prefrontal cortex in maintaining this presentation. This 
neural processing in the dorsal stream includes spatial 
location. Frontoparietal network dysfunction leading to 
WM impairment has been seen in fibromyalgia (Seo et 
al., 2012), and schizophrenia patients (Kyriakopoulos et 
al., 2012). 

Transcranial direct current stimulation (tDCS) is a 
non-invasive brain stimulation technique that modulates 
cortical activity by applying a weak electrical current. 
In this technique, cortical excitability is increased by 
an anodal (positive-charged) electrode and decreased 
by a cathodal (negative-charged) electrode. The dura-
tion of cortical excitation is prolonged and can persist 
for an extended long time, ranging from 5 to 90 min-
utes, depending on the length of stimulation (Nitsche & 
Paulus, 2000). Several studies have recently confirmed 
that tDCS produces long-lasting neuroplastic changes, 
representing its potential therapeutic effects (Nitsche & 
Paulus, 2001; Olma et al., 2013). tDCS effect on work-
ing memory, motor learning, and verbal frequency has 
also been investigated in previous studies (Fregni et al., 
2005). Therefore, tDCS is considered a tool to enhance 
cognition ability in both normal persons and patients and 
has been used in the rehabilitation of cognitive function 
in neurologic disorders.

Most of the time, improvement in WM performance 
is reported for applying tDCS on the DLPFC of healthy 
subjects (Fregni et al., 2005) and patient groups (Nitsche 
et al., 2008). A meta-analytic review reported improve-
ment in only speed but not the accuracy of WM perfor-

Highlights 

• The study’s results support the hypothesis that transcranial direct current stimulation (tDCS) can improve working memory.

• The results showed that both dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) stimulation, 
as an element of the frontoparietal network, can enhancement spatial working memory.

• DLPFC stimulation induced a faster reaction time compared to the PPC.

Plain Language Summary 

This study was conducted on university students. We introduced an auxiliary method to improve working memory 
ability. Working memory is like a temporary sticky note in the brain. It's a skill that lets us work with information with-
out losing track of what we're doing. Various methods have been introduced to improve working memory, one of the 
new methods is the use of transcranial direct current stimulation (tDCS). tDCS is a method to stimulate the brain using 
constant and low direct current delivered via electrodes on the head. In the present study, we sought to investigate the 
effectiveness of tDCS in two points of the head related to working memory and compare its effectiveness. We found 
that tDCS may can be effective in both areas related to working memory, while one of the points being more effected..
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mance using tDCS (Mancuso et al., 2016). In SWM, 
a specific subtype of WM, anodal tDCS over the right 
DLPFC has been recently found to enhance performance 
in “visuospatial function training” (Jeon & Han, 2012). 
Furthermore, the effect of right DLPFC stimulation was 
shown by using a computerized Corsi block tapping 
(CBT) task, a widely used paradigm that measures vi-
suospatial short-term and working memory (Wu et al., 
2014). Giglia and the co-author showed the right DLP-
FC was more effective in enhancing SWM functioning 
compared to the left DLPFC (Giglia et al., 2014). Few 
studies were conducted to investigate the effect of right 
parietal tDCS on SWM performance (Heimrath et al., 
2012). Their findings show that DLPFC and PPC are 
critical in SWM, but to our knowledge, no study has 
compared the effects of tDCS on these two main corti-
cal areas in SMW performance. Hence, this randomized 
sham-controlled study was conducted to investigate the 
effects of tDCS on DLPFC and PPC to enhance SWM 
ability (span and response time) and then compare the 
effect of stimulation on these two areas.

2. Materials and Methods

Fifty-four healthy undergraduate students from simi-
lar educational backgrounds from Tehran University 
participated in the present study (27 women, 27 men, 
age: 24.30±0.20 years). All of the participants were 
right-handed and had a normal or corrected-to-normal 
vision based on the Edinburgh handedness inventory 
(Oldfield, 1971). The participants were then randomly 
assigned into an anodal group (A=27) and a sham group 
(S=27), and each of these groups was divided into F4 
(corresponding to the right DLPFC) or P4 (correspond-
ing to the right PPC) sub-groups (A-F4=14, S-F4=13; 
A-P4=13, S-P4=14). Individuals with psychiatric or neu-
rological disease and a history of alcohol or drug abuse 
were excluded. Before starting the study, written consent 
was obtained from all participants, and the study was ap-
proved by the Ethics Committee of Tehran University. 

Computerized Corsi block tapping task (CBT): In 
a CBT task used to measure the SWM (De Renzi & 
Nichelli, 1975), the visual targets are presented in dif-
ferent sequences, and the participants are requested to 
memorize the location and sequence of the presented tar-
gets. Then, they remember the location and sequence of 
the presentation both in forward and backward order (as 
a reversed sequenced). In the present study, a computer-
ized form of the CBT task was used (Wu et al., 2014) in 
which 9 blue squares are presented as placeholders for the 
target demonstration in random locations on the screen. 
Then yellow targets were randomly shown for 500 ms 

in the blue squares. The participants were requested to 
memorize the location and sequences of the appearance 
of the yellow squares. Five s after disappearing (reten-
tion interval), the participants were asked to point out 
the order and location of the appearance of the yellow 
squares using a computer mouse. The stimuli were pre-
sented on a 19-inch PC monitor screen from a distance 
of 57 cm. The subjects were asked to respond as quickly 
and correctly as possible. Every individual SWM span 
was defined as the highest correct response at the level 
of presented yellow targets. The lowest/easiest level of 
the task started with only 2 appearances of the yellow 
targets and increased with each correct response by the 
participant. The task was terminated if the subject failed 
to correctly respond to two successive trials at the same 
level, and this level was defined as their SWM span.

Electrical stimulation was delivered by a tDCS device 
(Active Dose, manufactured by ActivaTeK) with sponge 
pads of 5×7 cm2. The positive electrode was placed over 
the F4 or the P4 according to the international 10-20 
EEG system, and the negative electrode in both condi-
tions was placed over the left supraorbital in either the 
anodal or sham group. The intervention consisted of five 
daily sessions with a 24-h interval between them, and in 
each session, a direct current of 1.5 mA was applied for 
15 minutes in the anodal group. For the sham group, the 
tDCS current was applied and then disconnected after 30 
s without informing the participant. The pre-test mea-
surement (CBT task) was performed before the first ses-
sion and the post-test measurement after the fifth session.

3. Results

Descriptive characteristics of the participants: A total 
of 54 participants completed the study. Results of the 
performance of the Anodal and Sham groups did not sig-
nificantly differ in terms of their reaction time (forward: 
P=0.895, backward: P=0.768) and span of response (for-
ward: P=1, backward: P=0.859) at baseline.

Memory span (Figure 1):

Forward memory span: Table 1 presents the Mean±SD 
of the CBT span scores. 

A mixed between-group analysis of variance (ANO-
VA) on the memory span of the CBT task (design: Group 
post-anodal/post sham+site F4/P4+group*site) detected 
a significant main effect for the group (F=20.216, df=1, 
P=0.001, ηp2=0.288), but no significant effects for the 
site (F=0.985, df=1, P=0.326, ηp2=0.019) or interac-
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tion between group and site (F=0.043, df=1, P=0.836, 
ηp2=0.001) was observed.

Backward memory span: A mixed design between-
group ANOVA on the memory span of the CBT task 
by two-way ANOVA (design: Group post-anodal/post 
sham+site F4/P4+group*site) detected a significant main 
effect for the group (F=8.025, df=1, P=0.007, ηp2=0.138), 
but no significant effect for the site (F=0.819, df=1, 
P=0.370, ηp2=0.016) or interaction between group and 
site (F=0.269, df=1, P=0.606, ηp2=0.005) was observed.

 A paired t-test revealed that both forward (t=-5.428, 
df=26, P=0.001) and backward (t=-4, df=26, P=0.001) 
memory span improved significantly in the anodal group, 
but no significant difference was observed between the 
performance of pre- and post-tDCS in the sham group 
(forward: t=-1.072, df=26, P=0.294; backward: t=0.593, 
df=26, P=0.558).

Reaction time (RT) (Figure 2):

Forward reaction time (RT): Table 2 presents the 
Mean±SD of the CBT reaction times.

A mixed between-group ANOVA on the reaction time of 
the CBT task (design: Group post anodal/post sham+site 
F4/P4+group×site) detected a significant main effect for 
the group (F=43.963, df=1, P=0.001, ηp2=0.468), site 
(F=0.36.406, df=1, P=0.001, ηp2=0.421), and interac-
tion between group and site (F=14.023, df=1, P=0.001, 
ηp2=0.219).

3-3-2: Backward reaction time: A mixed between-group 
ANOVA on the reaction time of the CBT task by two-
way ANOVA (design: Group post anodal/post sham+site 
F4/P4+group×site) detected a significant main effect for 
the group (F=7.563, df=1, P=0.008, ηp2=0.131), but no 
significant effect for the site (F=0.115, df=1, P=0.736, 

Table 1. Mean±SD and results from paired t-tests of the CBT task span forward and backward scores

CBT Task
Direction

Site of 
Stimulation

Mean±SD
Difference P

Mean±SD
Difference P

Pre-Anodal 
tDCS

Post-Anodal 
tDCS

Pre-Sham 
tDCS

Post-Sham 
tDCS

Forward

F4 5.93±0.61 6.50±0.94 0.040 5.46±0.77 5.54±0.77 0.721

P4 5±0.57 6.77±0.72 0.001 5.50±0.76 5.71±0.82 0.272

Total 5.48±0.75 6.63±0.83 0.001 5.48±0.75 5.63±0.79 0.294

Backward

F4 5.14±0.66 5.43±0.64 0.040 5.08±0.95 5±0.70 0.829

P4 5.08±0.76 5.69±0.75 0.005 5.21±0.69 5.07±0.61 0.435

Total 5.11±0.69 5.56±0.69 0.001 5.15±0.81 5.04±0.64 0.558

tDCS: Transcranial direct current stimulation; CBT: Corsi block tapping.

Table 2. Mean±SD and results from paired t-tests of the CBT task forward and backward reaction times

CBT task
Direction

Site of 
Stimulation

Mean±SD
Difference

 P

Mean±SD
Difference

 PPre-Anodal 
TDCS

Post-Anodal 
TDCS

Pre-Sham
TDCS

Post-Sham 
TDCS

Forward

F4 2471.28±231.84 2034.72±131.89 0.001 2505.81±155.33 2450.92±110.21 .829

P4 2599.98±201.79 2426.98±188.99 0.001 2571.76±126.77 2542.74±147.85 .511

Total 2533.25±223.52 2223.59±255.09 0.001 2540.01±142.48 2498.53±136.83 .187

Backward

F4 2704.55±159.20 2470.51±175.51 0.003 2684.66±175.85 2631.82±167.59 .442

P4 2660.48±167.61 2528.74±146.41 0.001 2657.81±126.90 2602.55±134.50 .378

Total 2683.33±161.69 2498.55±161.99 0.001 2670.74±150.04 2616.64±149.10 .230

tDCS: Transcranial direct current stimulation; CBT: Corsi block tapping.
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ηp2=0.002) or interaction between group and site 
(F=1.047, df=1, P=0.311, ηp2=0.021) was observed.

A paired t-test revealed that both forward (t=7.755, 
df=26, P=0.001) and backward (t=5.034, df=26, 
P=0.001) reaction time improved significantly in the 
anodal group. However, no significant difference was 
observed between the performances pre- and post tDCS 
in the sham group (forward: t=1.356, df=26, P=0.187; 
backward: t=1.230, df=26, P=0.230).

ANCOVAs, conducted separately on post anodal reac-
tion time (RT) and post anodal WM span with controlled 
pre-anodal effects (pre anodal RT and pre anodal WM 
span as covariates), showed a non-significant differ-

ence between the men and women’s performances (RT: 
F=0.006, P=0.940, Span: F=0.116, P=0.706).

4. Discussion

The present study was conducted to investigate SWM 
recall performance (indexed by a computerized CBT 
task) in 54 healthy subjects before and after five sessions 
of sham-controlled tDCS over the right DLPFC or right 
PPC. The participants tolerated the intervention well, 
and none found the tDCS stimulation unpleasant. Re-
sults demonstrated an enhancement of the SWM span in 
both forward and backward directions after five sessions 
of anodal tDCS. However, no significant difference was 
found in the sham tDCS groups. Moreover, the anodal 

Figure 1. Forward and backward memory span in post anodal and sham groups in tow site F4 and P4
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CBT task 
Direction 

Site of 
Stimula

tion 

Pre-Anodal 
TDCS 

Post-Anodal 
TDCS 

Diff
-P Pre-Sham TDCS Post-Sham 

TDCS 
Diff-

P 

Forward F4 2471.28 ± 
231.84 

2034.72 ± 
131.89 

0.00
1 2505.81 ± 155.33 2450.92 ± 

110.21 .829 
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Figure 2. Forward and backward reaction time (RT) in post anodal and sham groups in tow site F4 and P4
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group responded faster than the sham group after five 
days of tDCS stimulation, and the right DLPFC stimula-
tion induced a faster reaction time than the right PPC.

Neuroimaging investigations have previously reported 
SWM-related cortical hyperactivity, particularly in the 
prefrontal and PPC areas, during the maintenance phase 
(Ikkai & Curtis, 2011). The frontoparietal network, 
which consists of the DLPFC and PP, plays an essential 
role in WM performance (Darki & Klingberg, 2014). 
Functional magnetic resonance imaging (fMRI) find-
ings have revealed that the PP cortex is also involved 
in SWM maintenance (Olesen et al., 2003; Vestergaard 
et al., 2011). In a cross-sectional study using functional 
magnetic resonance imaging (fMRI), WM capacity was 
correlated with BOLD activity in both frontal and pari-
etal regions (Darki & Klingberg, 2014). 

TDCS is a non-invasive stimulant method that can 
modulate neural activity during cognitive function. An 
enhancement effect of increases in memory span and re-
sponse after tDCS over the DLPFC has been reported 
(Wu et al., 2014). 

Fregni et al. showed WM had a better performance 
when applying anodal tDCS over the left DLPFC com-
pared to the opposite effect of applying rTMS on the 
same area (2005). They explained that the weak electri-
cal current in tDCS causes a slight change in the rest-
ing potential of the stimulated neurons and lowers their 
depolarization threshold, while rTMS’s potent stimu-
lation effect induces action potential and disruption of 
information processing. Consistent with Brighina et 
al., this study demonstrated that the right DLPFC is in-
volved in visuospatial WM performance (Adamova et 
al., 2018). Moreover, when comparing the right versus 
the left DLPFC, right-side anodal activation showed per-
formance improvement in a visuospatial WM task (Ad-
amova et al., 2018).

Our findings provide new evidence compared to the ef-
fects of stimulation on the two main activated cortical 
areas during visuospatial WM. TDCS stimulation of the 
DLPFC induced a faster response than the PPC in recall 
WM task performance. Some investigations have sug-
gested that the DLPFC plays a role in the programming 
and executing appropriate motor responses during WM 
task performance (Hamidi et al., 2009; Pochon et al., 
2001). DLPFC processing involves updating goal rep-
resentations based on context information or task-related 
demands. Thus, DLPFC stimulation by tDCS could en-
hance its functioning and resulted in shortening recall re-
sponse time. DLPFC, as an element of the frontoparietal 

network, is activated in the stimulus neural processing 
during the retention stage (Funahashi et al., 1993). How-
ever, the storage of perceptual attributes (Callicott et al., 
1999) and maintenance of information, particularly spa-
tial location, are processed in the parietal cortices (Olson 
& Berryhill, 2009). 

Our findings showed no difference in the memory span 
between the two sites (DLPFC and PP) after anodal 
stimulation. Other investigations also reported a tDCS 
effect on the memory span of both the DLPFC (Wu et 
al., 2014) and PP (Tseng et al., 2012). Both prefrontal 
and parietal hyperactivity after training of the working 
memory (including a visual-SWM task, a backward 
digit span task, and a letter span task) illustrated the in-
volvement of these regions in the working memory span 
(Olesen et al., 2004). Additionally, a correlation of brain 
areas activity involved in the frontointraparietal network 
with WM spatial span tasks was reported (Klingberg, 
2006). In the present study, the right DLPFC was chosen 
after considering the spatial processing in this region. 

Furthermore, these results showed no significant differ-
ence between men and women’s performance. Although 
it is accepted that men show an advantage in spatial pro-
cessing and women excel at verbal tasks (Driscoll et al., 
2005), Kaufman (2007) reported discrepancies accord-
ing to test strategy and age of participants. Consistent 
with the present study, Shah et al. demonstrated no sex 
differences on the computerized-Corsi test, but male 
participants performed better than female participants on 
the standard Corsi test. They explained that the gender 
difference in performance on the standard Corsi test was 
due to the men’s better spatial span, and no sex differ-
ence was observed in the computerized Corsi test, which 
require spatial organizational skills (Shah et al., 2013).

5. Conclusion 

Some of the limitations in this study include a lack of 
stimulation in the paired area in the PP and DLPFC when 
comparing the left versus the right hemisphere. In addi-
tion, considering the low spatial resolution of tDCS, we 
cannot rule out the effect of stimulation on neighboring 
regions.

In conclusion, our study demonstrates that the im-
provement of visuospatial WM performance (both RT 
and span) was induced with tDCS over the prefrontal 
and post-parietal cortex, with a faster response in pre-
frontal stimulation.
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