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Introduction: The induction of human umbilical cord-derived mesenchymal stem cells 
(HUC-MSCs) toward dopaminergic neurons is a major challenge in tissue engineering 
and experimental and clinical treatments of various neurodegenerative diseases, including 
Parkinson disease. This study aims to differentiate HUC-MSCs into dopaminergic 
neuron-like cells.

Methods: Following the isolation and characterization of HUC-MSCs, they were 
transferred to Matrigel-coated plates and incubated with a cocktail of dopaminergic 
neuronal differentiation factors. The capacity of differentiation into dopaminergic neuron-
like cells in 2-dimensional culture and on Matrigel was assessed by real-time polymerase 
chain reaction, immunocytochemistry, and high-performance liquid chromatography.

Results: Our results showed that dopaminergic neuronal markers’ transcript and protein levels 
were significantly increased on the Matrigel differentiated cells compared to 2D culture plates.

Conclusion: Overall, the results of this study suggest that HUC-MSCs can successfully 
differentiate toward dopaminergic neuron-like cells on Matrigel, having great potential 
for the treatment of dopaminergic neuron-related diseases.
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1. Introduction

arkinson disease (PD) is a neurodegen-
erative disorder that is characterized by 
akinesia, stiffness, movement dysfunc-
tion, and resting tremor (Lu et al., 2014). 
The major adverse change of PD is the 
loss of dopaminergic neurons in the sub-
stantia nigra because of oxidative stress 

(Mehraein et al., 2016; Nutt & Wooten, 2005; Tavakol 
et al., 2019). Many studies have reported the prom-
ising results of stem-cell-based therapy in PD (Allam 
et al., 2005; Chu et al., 2015). Following these initial 
studies, the stem-cell-based treatment was applied 
to clinical trials for PD patients (Politis & Lindvall, 
2012). Some studies demonstrate the useful effects of 
stem-cell-derived dopaminergic neurons for PD treat-
ment (Alizadeh et al., 2013; Kawasaki et al., 2000; 
Kriks et al., 2011). Dopamine neurons were derived 
from various stem cells, such as embryonic stem cells 
(Yang, Zhang et al., 2008), human exfoliated decidu-
ous teeth stem cells (Wang et al., 2010), and Wharton’s 
jelly mesenchymal stem cells (Paldino et al., 2014).

Human umbilical cord-derived mesenchymal stem 
cells (HUC-MSCs) are differentiated into 3 germ layers. 
As a result, this type of stem cell has received greater 
attention in regenerative medicine (Cao et al., 2017). 
HUC-MSCs can be isolated from different parts of the 
umbilical cord, including vessels, Wharton’s jelly, and 
perivascular regions (Bojnordi et al., 2018; Bongso & 
Fong, 2013). The use of HUC-MSCs for the treatment 
of neurodegenerative diseases in pre-clinical and ex-
perimental studies has been widely recognized, chiefly 
because of their noticeable advantages, such as immu-
nomodulatory effects, differentiation into neural cells, 
and convenient harvesting by noninvasive methods (Ha-

ratizadeh et al., 2016; Tanna & Sachan, 2014). Trans-
plantation of HUC-MSCs to animal models of ischemic 
stroke has shown neuroprotective effects by improving 
neurobehavioral function and decreasing infarct volume 
(Koh et al., 2008). Studies have also shown that HUC-
MSCs could be differentiated into neuronal cells after 3 
weeks by transferring Lmx1α and NTN genes to HUC-
MSCs (Yan et al., 2013). 

The Three-Dimensional (3D) cell culture system pro-
vides a condition resembling naive body tissues, which 
allows cell-cell and cell-matrix communications (Kim, 
2005; Tavakol et al., 2017). Hydrogel scaffolds are wide-
ly used in 3D cell culture given the similarity of their 
structure to the native tissue and provision of biologi-
cal activities (Tavakol et al., 2015; Tavakol et al., 2019). 
Both natural and synthetic hydrogels can mimic the 
properties of extracellular matrix for cell metabolisms 
(Tavakol et al.,2017; Tibbitt & Anseth, 2009). In addi-
tion to the 3D structure, the hydrogel scaffold plays a 
conductive role that regulates cell behaviors, such as 
migration, survival, proliferation, and differentiation 
(Zheng et al., 2010). Moreover, the advantages of ap-
plying conductive polymers to tissue engineering have 
been demonstrated in cardiac and neural tissue engineer-
ing (Ghasemi‐Mobarakeh et al., 2011; Qazi et al., 2014). 
Electrical stimulation influences the survival, differen-
tiation, and proliferation of various stem cells, including 
embryonic stem cells (Serena et al., 2009), neural stem 
cells (Åkerud et al., 2001), and bone marrow mesenchy-
mal stem cells (Sun et al., 2009). In addition, the role of 
electrical stimulation in the differentiation of embryonic 
stem cells into neuronal cells has been reported (Yamada 
et al., 2007). This study aims to determine the transdif-
ferentiation capacity of HUC-MSCs toward dopaminer-
gic neurons on Matrigel. 

Highlights 

● Dopaminergic neuronal markers were significantly increased on the 3D culture compared to 2D culture plates.

Plain Language Summary 

Stem Cells which derived from Human Umbilical Cord have different potential properties and they may differentiate 
to other cells such as neuron and dopaminergic neurons. These cells could be used for treatments of various neuro-
degenerative diseases, including Parkinson disease. In this project, at first, we isolated Human Umbilical Cord cells 
and harvested in 3D culture plate and incubated with a cocktail of dopaminergic neuronal differentiation factors. Our 
results showed that dopaminergic neurons were seen in 3D culture plate compared to 2D culture plate. Overall, the 
results of this study suggest that Human Umbilical Cord stem cells can successfully differentiate toward dopaminergic 
neuron on 3D culture plate, having great potential for the treatment of Parkinson disease.
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2. Materials and Methods

Human umbilical cord-derived mesenchymal 
stem cells isolation and culture 

At first, the human umbilical cords were obtained, 
and then HUC-MSCs were isolated and collected in the 
Hanks’ balanced salt solution (HBSS) media. All human 
umbilical cords were obtained from consenting mothers. 
The umbilical cords were cut into small pieces and cul-
tured as explants in tissue culture plates in a humidified 
incubator with 5% CO2 at 37°C. The culture medium 
was Dulbecco’s modified eagle medium (DMEM-F12) 
supplemented with 15% fetal bovine serum (FBS, Gib-
co), 100 U/mL penicillin, and 60 µg/mL streptomycin 
(complete medium). Cells at the confluence of 90% were 
either sub-cultured or cryopreserved for further applica-
tion Hour et al., 2020).

Flow cytometry 

The homogeneity of HUC-MSCs was assessed by flow 
cytometry. Cells were detached and suspended in the 
phosphate-buffered saline (PBS) to end this. Then, the 
flow cytometry (FCM, BD FACS Caliber, Becton Dick-
inson, San Jose, CA, USA) was used to analyze HUC-
MSCs markers, including CD90 (Cat. No: ab124527, 
1/500), CD105 (Cat. No: ab53318, 1/500), and CD73 
(Cat. No: ab253267, 1/300), and hematopoietic stem/
progenitor cell marker CD34 (Cat. No: ab78165, 1/300) 
and CD45 (Cat. No: ab185385, 1/500) (Pirhajati Ma-
habadi et al., 2015; Simorgh et al., 2019). All antibodies 
were purchased from Abcam Company.

Adipogenic and osteogenic differentiation 

HUC-MSCs differentiation capacity into adipocytic 
and osteocytic cells was evaluated. Adipogenic differen-
tiation was induced by culturing HUC-MSCs in a 10% 
FBS-supplemented medium and 100 nM dexametha-
sone (Sigma-Aldrich). Also, the differentiation medium 
containing 10 nM β-glycerophosphate, 80 µg/mL ascor-
bic acid, and 10 nM dexamethasone (Sigma-Aldrich) 
was applied as the osteogenic differentiation medium. 
Then, after the 21-day cultures in the above-mentioned 
conditions, HUC-MSCs were fixed with 4% paraformal-
dehyde (PFA, Sigma-Aldrich) and stained with oil red 
(Sigma-Aldrich) and Alizarin Red S (Merck) to detect 
adipogenic and osteogenic differentiation, respective-
ly. Plates were photographed using a light microscope 
equipped with a digital camera. Cells that were cultivat-
ed in the basal medium served as the control (Khodaban-

deh, Vojdani, Talaei-Khozani, Jaberipour, Hosseini, A., 
& Bahmanpour, 2016; Rahimi et al., 2018).

Induction of dopaminergic differentiation

A 4-step method was used to induce dopaminergic dif-
ferentiation. At first, cell aggregates (neurosphere) were 
formed in the neurobasal medium and N2 supplement 
(Gibco) in 2 days (stage 1). At stage 2, neurospheres 
were either plated onto Matrigel (BD Biosciences) plate 
(MP, 3D) or the tissue culture plate (TCP, 2D) as the 
control. The medium was substituted for the serum-free 
neurobasal medium with insulin-transferrin-sodium, 50 
ng/mL basic fibroblast growth factor (bFGF), and 50 ng/
mL EGF for 6 days. At stage 3, for the dopaminergic dif-
ferentiation, cells were incubated in N2B27 containing 
50 ng/mL bFGF, 100 ng/mL FGF8b, 250 ng/mL sonic 
hedgehog (SHH), and ascorbic acid for 6 days (Aliza-
deh et al., 2019). To obtain more mature dopaminergic 
neurons, cell cultivation was kept for the next 6 days in 
N2B27 in the absence of any growth factors (stage 4) 
(Simorgh et al., 2019). The induction medium was modi-
fied every 2 days. All growth factors in this section were 
purchased from Sigma-Aldrich. 

MTT assay 

Cell viability assessment was conducted based on tet-
razolium salt (MTT, 3-[4, 5-Dimethyl-2-thiazolyl]-2, 
5-diphenyl-2Htetrazolium bromide) reduction assay at 
the end of each stage (days 2, 8, 14, and 20). In brief, 5 × 
103 cells were seeded onto each well of 96-well plates. 
50 μL of 1 mg/mL MTT solution (Sigma-Aldrich) was 
added and cells were incubated for 3 h at 37°C in sub-
dued lighting. The media was then removed and replaced 
with 50 μL of 100% dimethyl sulfoxide (DMSO, Sigma-
Aldrich). Plates were agitated for 5 to 10 min and the 
absorbance was measured at 570 nm using a Cytofluor 
4000 plate reader (PerSeptive Biosystems, Framingham, 
Massachusetts, USA). All experiments were performed 
in 3 replicate wells (Rafat et al., 2018). 

Real-time polymerase chain reaction

Total cellular RNA was extracted at various differen-
tiation stages by Trizol Reagent (Invitrogen Life Tech-
nologies) and reverse-transcribed into cDNA by using 
a commercial kit (Fermentas) (Karimi et al., 2015). 
Quantitative real-time RT-PCR was performed on 
the Corbett apparatus (Qiagen, Germany) using 1 μg 
of cDNA, 10 μL of SYBR green, 20 μL of deionized 
distilled water (ddH2O), and 300 nM of forward and 
reverse primers (Abedini et al., 2019; Mirzaei et al., 
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2016). The initial denaturation was performed at 95ºC 
for 15 min. It was then followed for 45 cycles by dena-
turation at 94°C for 15 s, annealing at the appropriate 
temperature for 30 s (Table 1), and elongation at 72°C 
for 45 s. Primer sequences are provided in Table 1.

Immunocytochemistry

Cells at different stages were washed and fixed with 
4% paraformaldehyde (PFA) for 15 min. Subsequently, 
cells were permeabilized with 1% Triton X-100 (Sig-
ma-Aldrich) for 30 min at room temperature and then 
blocked with 2% BSA (bovine serum albumin, Sigma-
Aldrich) for 45 min. Cells were incubated with Nestin 
(rabbit polyclonal to Nestin, ab92391, Abcam system, 
UK), microtubule-associated protein 2 (MAP2, rabbit 
polyclonal to MAP2, ab32454, Abcam system, UK), 
and tyrosine hydroxylase (TH, Rabbit polyclonal to tyro-
sine hydroxylase, ab112, Abcam, UK) for 1 h. PBS cells 
were washed and incubated with an appropriate second-
ary antibody (donkey anti-rabbit phycoerythrin, ab7007, 
Abcam, UK) for 1 h at 37°C. After counterstaining with 
DAPI (Sigma-Aldrich), they were examined under a 
fluorescent microscope (Nikon, Eclipse-TE600, Japan). 
The number of immunoreactive cells was determined to 
estimate the percentage of immunoreactive cells. A ran-
dom table was utilized to select the fields, and 200 cells 
were counted (Nasiri et al., 2019; Shaabani et al., 2011).

Determination of dopamine by high-performance 
liquid chromatography

Dopamine levels were measured using high-perfor-
mance liquid chromatography (HPLC) at 20 days in vi-
tro (DIV). At the end of the experiment (stage 4), cells 
were rinsed twice in HBSS for 15 min. The samples 
were exposed to HBSS supplemented with 56 mM KCl 
for 30 min at 37°C. Then, the cells were centrifuged at 
15000 rpm at 4°C for 15 min. Subsequently, the collect-
ed supernatants were incubated in 1 N perchloric acid 
(PCA; Merck) containing 0.2 g/L Na2S2O5, 0.05g/L 
Na2-EDTA. Samples were injected and immediately 
detected by HPLC (Data Apex, Petrzilkova, Czech Re-
public). A monolithic column (Chromolith, 100×4.6 
mm) was applied for the chromatographic separation 
(Merck, Germany). The mobile phase consisted of 0.1 
M sodium acetate (Sigma), 6% methanol (Merck), 18 
mg/mL n-octyl sodium sulfate (Merck), and 13 mg/mL 
EDTA (Sigma) dissolved in Milli-Q-water and adjusted 
to pH=4.1. Analyses were performed at flow rate and 
data comparison was conducted with known DA stan-
dards. The samples were collected from 3 separate ex-
periments (Aligholi et al., 2014).

Statistical analysis

One-way analysis of variance (ANOVA) and the 
Chi-square tests were used for data analysis among 
the groups. Statistical analysis was performed by the 
SPSS software, v. 16. The P<0.05 was considered a 
significant level.

3. Results

Characterization of the isolated human umbilical 
cord-derived mesenchymal stem cells

Mesenchymal stem cells (MSCs) were migrated out 
from umbilical cord explants to the culture plates. On the 
seventh day, the fragments of the tissue were removed 
from the culture plates. The multi-lineage differentiation 
of HUC-MSCs showed obvious lipid vacuoles and min-
eralized matrix formation after adipogenic (Figure 1A) 
and osteogenic (Figure 1B) differentiation, respectively. 
Additionally, the immunophenotyping of HUC-MSCs 
(Figure 1C) revealed that they expressed mesenchymal 
CD markers, namely CD73, CD90, and CD105, al-
though they were negative for hematopoietic CD mark-
ers, such as CD34 and CD45 (Figure 1C). 

Survival rate of human umbilical cord-derived 
mesenchymal stem cells 

The effect of Matrigel on the viability of HUC-MSCs 
was investigated using the MTT assay on days 2, 8, 14, 
and 20 of cell seeding (Figure 2). The cell viability per-
centage between Matrigel (3D) and tissue culture plate 
(2D) did not show any statistically significant difference.

Differentiation of the human umbilical cord-
derived mesenchymal stem cells into dopami-
nergic neurons

Immunocytochemistry staining of the Nestin, MAP2, 
and TH markers was performed on days 2, 8, and 14 
of differentiation (Figure 3). The HUC-MSCs on the 
Matrigel scaffold and tissue culture plate only expressed 
Nestin on day 2 of differentiation, with an expression 
significantly higher (P<0.05) in cells on the Matrigel 
scaffold (12.9%) compared to the tissue culture plate 
(11.2%). However, after 8 days, the expression of Nes-
tin in cells on the Matrigel scaffold dropped to a signifi-
cantly (P<0.05) lower percentage (4.3%) as compared to 
cells on the tissue culture plate (7.9%). The expression 
of the TH marker on this day remained zero, but the ex-
pression of MAP2 was observed in cells of both samples 
with a significantly higher expression (P<0.05) on the 
Matrigel scaffold (5.6%) compared to the tissue cul-
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ture plate (2.1%). On day 14 of differentiation, cells on 
both samples expressed all three markers with an almost 
equal expression of Nestin (2.1% for tissue culture plate 
and 2% for Matrigel scaffold). The MAP2 and TH ex-
pression level for cells cultured on the Matrigel scaffold 
was higher than the expression of the tissue culture plate, 

but the difference reached a significant level (P<0.05) 
for the TH marker, (6% on the Matrigel scaffold vs 2.4% 
on tissue culture plate). Furthermore, HUC-MSCs on 
the Matrigel scaffold demonstrated their capability to 
express Nestin, MAP2, and TH (Figure 4).

11 

 

Figure 1. Differentiation of HUC-MSCs into (A) adipocytes stained by Oil red O and, (B) osteoblasts stained 

by Alizarin red S; (C) Cytofluorometric results of HUC-MSCs at passage 3 revealed that cells were positive for 

mesenchymal stem cell markers (CD90, CD73, CD105) and negative for hematopoietic markers (CD34, CD45). 

 

3.2. Survival rate of HUC-MSCs  

The effect of Matrigel on the viability of HUC-MSCs was investigated using the MTT assay 

2, 8, 14 and 20 days after cell seeding (Figure 2). The cell viability percentage between 

Matrigel (3D) and tissue culture plate (2D), as the control (Co), did not show any statistically 

significant difference. 

 

Figure 2. Viability percentage of HUC-MSCs on Matrigel plates (MP) and tissue culture plate (TCP) 

measured by the MTT assay 2, 8, 14 and 20 days after the cell seeding. There were no statistically significant 

differences between MP and TCP plates at all time points. Error bars represent the standard deviation. 

3.3. Differentiation of the HUC-MSCs into Dopaminergic Neurons 

Immunocytochemistry staining of the Nestin, MAP2 and TH markers was performed on days 

2, 8 and 14 of differentiation (Figure 3). The HUC-MSCs on Matrigel scaffold and TCP only 

expressed Nestin on day 2 of differentiation, with an expression significantly higher (P < 

0.05) in cells on Matrigel scaffold (12.9%) than in TCP (11.2%). However, after 8 days, the 

Figure 2. Viability Percentage of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Matrigel Plates and Tissue 
Culture Plate Measured by the MTT Assay 2, 8, 14, and 20 Days After the Cell Seeding

There were no statistically significant differences between Matrigel plates and tissue culture plates at all time points. Error bars 
represent the standard deviation.

Figure 1. Differentiation of human umbilical cord-derived mesenchymal stem cells into 

(A) adipocytes stained by oil red O; (B) osteoblasts stained by Alizarin red S; (C) cytofluorometric results of passage 3 men-
tioned cells which were positive for CD90, CD73, CD105, and negative to CD34, CD45.

10 

 One-way ANOVA and Chi Square tests were used to analyze data by comparing average 

qualitative and quantitative variables between groups. Statistical analysis was performed by 

SPSS 16 software, and p<0.01 and p<0.05 was considered as significant. 

  

3. Results 

3.1. Characterization of the isolated HUC-MSCs 

After 3-5 days, MSCs migrated from umbilical cord fragments to the culture plate and after 7 

days, the fragments of tissue were removed from culture plates. The multi-lineage 

differentiation of HUC-MSCs showed obvious lipid vacuoles and mineralized matrix 

formation after adipogenic (Figure 1A) and osteogenic (Figure 1B) differentiation, 

respectively. Additionally, the immunophenotyping of HUC-MSCs (Figure 1C) revealed that 

they expressed mesenchymal CD markers of CD73, CD90 and CD105, though they were 

negative for markers of CD34 and CD45 (Figure 1C).  
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Table 1. Real-time polymerase chain reaction primer sequences

Row Gene Sequence 5′ to 3′ Annealing Temperature (°C)

1 TH F: CGGATGAGGAAATTGAGAAGCTG
R: AGACAGGCAGTGCAGGAGCTC 61

2 DAT F: CCCACTACGGAGCCTACATCTTC
R: CGTAGGCCAGTTTCTCTCGAAAG 60

3 NURR1 F: CAAATAAAAACTGCCCAGTGGACAAG
R: TGTCTGTGCGAACCACTTCTTTG 62

4 PITX3 F: GCTCCCCAGAGGACGGTTC
R: TTCTTGAACCACACCCGCAC 60

5 LMX1A F: TCGAATCCTGCACGTGTGACTAC
R: ATCTCGAGAATACGGTCGTACG 62

6 AADC F: CTCCCGGCTGCCTTTTTCA
R: ATCACTCCTCCCCCTTCTCC 60

7 NESTIN F: AAAGTTCCAGCTGGCTGTGG
R: TCCAGCTTGGGGTCCTGAAA 55

8 Oct4 F: TCAGGTTGGACTGGGCCTAGT
R: GGAGGTTCCCTCTGAGTTGCTT 60

9 SOX2 F: AACCAGAAAAACAGCCCGGA
R: AACCAGAAAAACAGCCCGGA 57

10 GAPDH F: AGCCACATCGCTCAGACACC
R: GTACTCAGCGGCCAGCATCG 61

12 

expression of Nestin in cells on Matrigel scaffold dropped to a significantly (P<0.05) lower 

percentage (4.3%) compared to cells on TCP (7.9%). The expression of TH marker on this 

day remained zero, but the expression of MAP2 was observed in cells of both samples with a 

significantly higher expression (P<0.05) on Matrigel scaffold (5.6%) compared to TCP 

(2.1%). On day 

14 of 

differentiation, cells on both samples expressed all three markers with an almost equal 

expression of Nestin (2.1% for TCP and 2% for Matrigel scaffold). The expression of MAP2 

and TH for cells cultured on Matrigel scaffold was higher than the expression of TCP, but the 

difference was only significant (P<0.05) for the TH marker, (6% on Matrigel scaffold vs. 

2.4% on TCP). Immunofluorescent microscopic images (Figure 4) of HUC-MSCs on 

Matrigel scaffold also demonstrate their capability to express Nestin, MAP2 and TH 

Figure 3. Histogram of the percentage of HUC-MSCs differentiated into dopaminergic neurons in Matrigel 

culture plate (MP) and tissue culture plate (TCP) on days 2, 8, and 14. Values are expressed as mean ± SD 

(n=3).  *indicates the statistical significance of Nestin expression between MP and TCP ion day 2(p < 0.05), 

**indicates the statistical significance of Nestin expression between MP and TCP on day 8 (p < 0.01), 

***indicates the statistical significance of MAP2 expression between MP and TCP on day 8 (p < 0.011), $ 

indicates the statistical significance of TH expression between MP and TCP on day 14 (p < 0.05). 

 

Figure 3. Histogram of the Percentage of Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiated in Matrigel 
Culture Plate and Tissue Culture Plate on days 2, 8, and 14 

Values are expressed as mean±standard deviation (n=3). * indicates the statistical significance of Nestin expression between 
Matrigel culture plate and tissue culture plate on day 2 (P<0.05). ** indicates the statistical significance of Nestin expression 
between Matrigel culture plate and tissue culture plate on day 8 (P<0.01). *** indicates the statistical significance of MAP2 ex-
pression between the Matrigel culture plate and tissue culture plate on day 8 (P<0.001). $ indicates the statistical significance of 
TH expression between the Matrigel culture plate and tissue culture plate on day 14 (P<0.05).
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Dopaminergic genes expression after dopami-
nergic induction of the human umbilical cord-
derived mesenchymal stem cells 

The q-PCR analysis of Oct4, Sox2, Nestin, Nurr1, 
PITX3, LMX1A, TH, AADC, and DAT revealed that 
the expression of Nestin and Oct4 on Matrigel scaffold-
seeded cells took a downturn from day 2 to day 20. On 
the other hand, the expression of markers of Nurr1, 
PITX3, LMX1A, TH, AADC, and DAT increased con-
siderably from day 2 to day 20. The expression of Sox2 
dropped from day 2 to day 14, but on day 20, it recorded 
a higher expression compared to day 14 (Figure 5). 

Quantification of dopamine release from differ-
entiated human umbilical cord-derived mesen-
chymal stem cells 

To determine whether HUC-MSCs differentiated neu-
rons can release dopamine, TH levels were measured us-

ing HPLC (Figure 6). The dopamine amount from the 
Matrigel and tissue-culture-plate-seeded HUC-MSCs 
were 223.09±22.08715 pg/mL and 208.59±12.05329 
pg/mL, respectively. Although dopamine release was 
slightly higher on Matrigel cultured cells, the difference 
was not statistically significant. 

4. Discussion

As expected, HUC-MSCs expressed prominent 
mesenchymal markers but lacked the endothelial and 
hematopoietic CD markers. Directing HUC-MSCs 
toward osteogenic and adipogenic lineages demon-
strated their multi-lineage differentiation capacity. The 
viability of HUC-MSCs was also investigated through 
in vitro cultivation on the scaffold after 2, 8, 14, and 20 
days. The cells cultured on both tissue culture plates 
and Matrigel scaffold exhibited excellent viability. In 
line with other studies, it demonstrates the favorable 
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Figure 4. Immunocytochemical staining of HUC-MSCs differentiated into dopaminergic neurons in Matrigel 

(M) and tissue culture plate (TCP). A and B: Immunolabeling of HUC-MSCs with the Nestin primary antibody 

in TCP and M, respectively. C and D: Immunolabeling of HUC-MSCs with the MAP2 primary antibody in TCP 

and M, respectively. E and F: Immunolabeling of HUC-MSCs with the primary antibody tyrosine hydroxylase, 

TH in TCP and M, respectively. (Counterstained with DAPI). Scal bars, A, B, C, D and E= 50 µm and F= 20 

µm. 

3.4. Dopaminergic genes upregulation after dopaminergic induction of the HUC-MSCs  

The real-time PCR analysis of markers including Oct4, Sox2, Nestin, Nurr1, PITX3, 

LMX1A, TH, AADC and DAT revealed that the expression of Nestin and Oct4 on Matrigel 

Figure 4. Immunofluorescence Results of Human Umbilical Cord-Derived Mesenchymal Stem Cells Induced in Matrigel and 
Tissue Culture Plate 

Notes: (A and B): Nestin-positive cells in tissue culture plate and Matrigel, respectively. (C and D): MAP2-positive cells in 
tissue culture plate and Matrigel, respectively. (E and F): TH-positive cells in tissue culture plate and Matrigel, respectively 
(counterstained with DAPI). (Scale bars, A, B, C, D, and E= 50 µm and F=20 µm).
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substrate provided by this scaffold for HUC-MSCs 
(Massumi et al., 2011; Uemura, Refaat et al., 2010).

Up to date, different cell types have been applied 
for cell transplantation in neurodegenerative diseases. 
MSCs which are mostly obtained from the bone mar-
row, adipose tissue, and umbilical cord are endowed 
with greater attention (Bojnordi et al., 2013; Sadan et 
al., 2009; Yousefi, Sanooghi et al., 2017). There are 
also several studies demonstrating their effective-
ness in animal models of Parkinson disease (Braun 
& Jessberger, 2014; Trzaska et al., 2007). MSCs ob-
tained from the umbilical cord are an ideal source of 
cell transplantation due to features, such as easy har-
vest, high proliferation rate, and low immunogenicity 

(Hamidabadi et al., 2019; Liu et al., 2014; van Hees-
been et al., 2013).

The cytofluorometric analysis of neural markers of 
Nestin and MAP2, as well as major dopaminergic cell 
markers of TH, revealed that TH expression in cells 
cultured on Matrigel increased from day 2 to day 14 
compared to cells cultured on a tissue culture plate. 
It has been shown that TH expression is higher in the 
mature dopaminergic neurons (Zavala-Arcos et al., 
2013). The down-regulation of the Nestin gene also 
demonstrated the effective differentiation of HUC-
MSCs toward neurons. The up-regulation of the TH 
gene and down-regulation of the Nestin gene was also 
confirmed by real-time PCR analysis. Uemura et al. 
(2010), Mojaverrostami et al. (2018) reported that 

14 

scaffold-seeded cells took a downturn from day 2 to day 20. On the other hand, the 

expression of markers of Nurr1, PITX3, LMX1A, TH, AADC and DAT increased 

considerably from day 2 to day 20. The expression of Sox2 dropped from day 2 to day 14, 

but on day 20, it recorded a higher expression compared to day 14 (Figure 5).  

 

Figure 5. Real-time PCR analysis for neural and dopaminergic specific markers during in vitro differentiation of 

Human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) for different days on Matrigel scaffold. 

(n=3 biological samples, mean ± SD; ***P < 0.001, **P < 0.01, *P < 0.05) 

 

3.5. Quantification of dopamine release from HUC-MSCs differentiated  

In order to determine whether HUC-MSCs differentiated into dopaminergic neurons release 

dopamine, TH levels was measured using HPLC (Figure 6). The released dopamine from the 

Matrigel and TCP-seeded HUC-MSCs were 223.09 ± 22.08715 pg/mL and 208.59 ± 

12.05329 pg/mL, respectively. However, the difference was not statistically significant.  

Figure 5. Real-Time Polymerase Chain Reaction Results for Neural and Dopaminergic Specific Genes During the Induction of 
Human Umbilical Cord-Derived Mesenchymal Stem Cells for Different Days on Matrigel Scaffold

n=3 biological samples, mean±standard deviation; *** P<0.001, ** P<0.01, * P<0.05.

15 

 

 

Figure 6. The dopamine released from dopaminergic neurons differentiated human umbilical cord-derived 

mesenchymal stem cells (HUC-MSCs) in Matrigel plates (MP) and control (Co) groups. Values are expressed 

as mean ± SD (n=3). 

 

4. Discussion 

As expected, HUC-MSCs expressed prominent mesenchymal markers, but lacked the 

endothelial and hematopoietic CD markers. Directing HUC-MSCs toward osteogenic and 

adipogenic lineages demonstrated their multi-lineage differentiation capacity. The viability of 

HUC-MSCs was also investigated through in vitro cultivation on the scaffold after 2, 8, 14 

and 20 days. The cells cultured on both TCP and Matrigel scaffold exhibited excellent 

viability. In keeping with other studies, it demonstrates the favorable substrate provided by 

this scaffold for HUC-MSCs (Massumi et al., 2011; Uemura et al., 2010). 

Up to date, different cell types have been applied for cell transplantation in 

neurodegenerative diseases. However, MSCs, which are mostly obtained from the bone 

marrow, adipose tissue, and umbilical cord, have received greater attentions (Bojnordi, 

Movahedin, Tiraihi, & Javan, 2013; Sadan, Melamed, & Offen, 2009; Yousefi, Sanooghi, 

Faghihi, Joghataei, & Latifi, 2017). There are also several studies demonstrating their 

effectiveness in the treatment of Parkinson’s disease in animal models (Braun & Jessberger, 

2014; Trzaska, Kuzhikandathil, & Rameshwar, 2007). MSCs obtained from umbilical cord 

are an ideal source of cell transplantation due to features such as easy harvest, high 

Figure 6. Amount of Dopamine Released From Dopaminergic Neurons Differentiated Human Umbilical Cord-Derived Mes-
enchymal Stem Cells in Matrigel Plates and Control Groups

Notes: Values are expressed as Mean±Standard Deviation (n=3).
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grafting neural precursor cells with Matrigel scaffold 
in mice could enhance cell survival and differentiation, 
which reflects the positive effect of Matrigel on cell 
transplantation in neurological disorders. 

We combined HUC-MSCs with Matrigel, as a scaf-
fold material, promoting cell attachment, prolifera-
tion, and differentiation (Jin et al., 2010; Vanacker et 
al., 2012). Matrigel is a soluble extract of tumor-cell 
basement membrane that forms a 3D gel at 37°C (Park 
et al., 2012). Mainly composed of 60% laminin, 30% 
type IV collagen, and 8% entactin, it has been demon-
strated to contribute to the differentiation of different 
cell types (Engbring & Kleinman, 2003; Moreno et al., 
2015; Sypecka et al., 2009).

To the best of our knowledge, there are no reports re-
garding the establishment of HUC-MSCs-seeded Matri-
gel scaffold for the treatment of Parkinson disease. We 
hypothesized that the positive effects of Matrigel on 
neural cells originate from its chemical composition, 
which is chiefly composed of laminin and type IV col-
lagen. Laminin is an ECM molecule enhancing neural 
proliferation and differentiation via laminin/α6β1 in-
tegrin signaling (Ma et al., 2008). On the other hand, 
type IV collagen can influence neural cell migration and 
morphogenesis via type IV collagen/BMP-4 signaling 
(Reiriz et al., 1999). It has been shown that Matrigel 
provides a suitable scaffold for the survival and differ-
entiation of embryonic stem cell-derived neural precur-
sor cells into TH-positive dopaminergic neurons (Ue-
mura et al., 2010). 

Ni et al. (2013) reported that cell proliferation was 
enhanced in Matrigel-derived 3D culture. This study 
suggests that Matrigel provides an appropriate condi-
tion for cell survival and growth (Ni et al., 2013). Fur-
ther, it has been documented that Matrigel could as-
sist the differentiation of MSCs into other linage cells. 
Matrigel boosted osteoblastic differentiation of human 
marrow-derived mesenchymal stem cells (Baghaban, 
Bagheri, & Zomorodian, 2010) 

Matrigel is a natural Extracellular Matrices (ECM) 
that is both biocompatible and biodegradable. It ap-
pears that Matrigel improves cell survival and differ-
entiation efficiently under in vitro and in vivo condi-
tions. Similar to collagen and laminin, Matrigel can 
provide an appropriate microenvironment for cell at-
tachment, growth, and ECM deposition.

Wnag et al. (2020) showed that Matrigel was a promis-
ing scaffold material for cell transplantation in the spi-

nal cord injury model (Wang, et al., 2020). The Matrigel 
with neural stem cells could improve neuronal regenera-
tion and functional recovery (Wang, et al., 2020). The 
combination of Matrigel with MSCs or embryo-derived 
neural stem cells in canine models has promoted neu-
ronal regeneration (Park et al., 2012). The probable 
mechanisms for the supportive effect of Matrigel may 
associate with the liberation of dying cells, increased cell 
population, and reduced inflammatory response. In ad-
dition, growth factors of Matrigel, such as FGF-2, and 
EGF promote cell proliferation.

5. Conclusion

In this study, the effects of the Matrigel scaffold on 
the differentiation of HUC-MSCs into dopaminergic 
neurons were investigated. The dopaminergic differen-
tiation of HUC-MSCs on Matrigel was higher than on 
cells cultured on a tissue culture plate. However, dopa-
mine release was observed in both Matrigel and control 
groups. The findings demonstrated the great potential of 
Matrigel as a favorable scaffold for the differentiation of 
HUC-MSCs in stem cell therapy to treat neurodegenera-
tive disorders, such as Parkinson disease.
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