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Introduction: Glioblastoma is an aggressive human brain malignancy with poorly understood 
pathogenesis. Voltage-gated potassium (Kv) channels and Matrix Metalloproteinases (MMPs) 
are highly expressed in malignant tumors and involved in the progression and metastasis of 
glioblastoma. This study aimed to determine whether a voltage-dependent potassium channel 
blocker could modulate astrocytes as a cell involved in the immunopathogenesis of glioblastoma. 

Methods: The cytotoxic effect of 4-Aminopyridine (4-AP) at different doses in the cell model 
of glioblastoma was measured by MTT assay. The ELISA technique and gelatin zymography 
were used to assess cytokine levels and MMP-9 after 4-AP treatment. 

Results: Cytotoxicity analysis data indicated that cell viability reduced by increasing 4-AP 
level and cell growth decreased gradually by removing 4-AP from the cell medium. 4-AP 
inhibits the secretion of IL-6 and IL-1 (P<0.05). MMP9 activity significantly inhibits with 
increased 4-AP dose, compared to non-treated cells.

Conclusion: The reduction of cell viability, IL-6 secretion, and MMP-9 activity in an in vitro 
model of glioblastoma might be assumed 4-AP as an agent for chemoprevention of cancer.
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1. Introduction 

lioblastoma Multiforme (GBM) is an ag-
gressive neurological malignancy with 
non-specific signs and poor prognosis (Yin 
et al., 2018). Pro-inflammatory cytokines, 
like Interleukin-6 (IL-6) released from gli-

al cells may contribute to the progression of GBM (Chen 
et al., 2016; Matias et al., 2018; Wang et al., 2016). 
Despite immunostaining similarities between glial cells 
and glioblastoma, studies highlighted the role of astro-
cytes and oligodendrocytes in tumorigenesis (Krcek, 
Matschke, Theis, Adamietz, Buhler, & Theiss, 2017; 
Yin et al., 2018). The etiology of glioblastoma remains 
unknown; however, the upregulation of FBXL18 in gli-
oma tissues which induces the phosphorylation of Fork-
head Box O (FOXO3), was recently reported (Zhang, 
Yang, Ou, Xia, Zhi, & Cui, 2017). One of the target 
genes for the stimulated FOXO transcription factors is 
Matrix Metalloproteinases (MMPs) (Diebold, Petry, 
Burger, Hess, & Gorlach, 2011).

MMPs are metalloproteinases that are calcium-depen-
dent zinc-containing endopeptidases that can digest vari-
ous Extracellular Matrix (ECM) macromolecules that play 
a role in the GBM invasion (Wang, Tong, Jiang, & Yang, 
2017). Typically, MMPs are critical mediators of ECM 
remodeling and regulate normal development and tissue 
repair. Several studies highlighted the high expression of 
MMPs and tumor progression in an experimental model 
and cancer patients (Blaes et al., 2018; Ko et al., 2016). 
Recently, MMP-9 has been considered a glioma grades 

biomarker due to its capability to increase capillary per-
meability (Fan et al., 2018; Li et al., 2016). Thus, MM 
inhibitors might help control glioblastoma invasiveness.

In malignant tumors, voltage-gated potassium (Kv) 
channels are highly expressed and involved in the pro-
gression of various cancer types (Aissaoui et al., 2018; 
Martinez et al., 2015). Furthermore, 4-Aminopyridine 
(4-AP) is a potent inhibitor of the voltage-dependent po-
tassium channel. In vitro studies revealed that it can be 
improved action potential conduction in poorly myelin-
ated nerve fiber (Rabadi, Kreymborg, & Vincent, 2013). 
Moreover, 4-AP enhanced apoptotic properties in various 
cancer cells and passed through the blood-brain barrier 
(Hassan et al., 2018; Luo et al., 2018; Wang et al., 2014).

The high-grade glioma comprised a cell collection of 
astrocytoma and others; therefore, using the U-373 MG 
glioblastoma astrocytoma cells should be an appropri-
ate model to resemble its aggressive behavior. Moreover, 
these cells can produce pro-inflammatory cytokines. In 
this study, the cultured U-373 MG was treated by 4-AP, 
and its cytotoxic and anti-invasive effect was evaluated. 
Moreover, the impact of 4-AP in the repression of IL-6, 
IL-1, and Tumor necrosis factor (TNF) levels in the sam-
ples was qualitatively determined by ELISA. Reduced 
cell viability, IL-6 secretion, and MMP-9 activity in an 
experimental model of GBM might be assumed 4-AP as 
adjuvant therapy in cancer.

Highlights 

• 4-Aminopyridine, as a K channel blocker, inhibits the secretion of IL-1. 

• A voltage-gated potassium channel inhibits the secretion of IL-6.

• MMP9 activity, as a tumor metastasis marker, significantly decreased by 4-AP.

Plain Language Summary 

Glioblastoma is the most common primary malignant of the brain, which remains mainly untreatable. A group of 
enzymes -matrix metalloproteinases- can digest various extracellular matrix macromolecules. They express at a high 
level and play a role in the glioblastoma invasion. Besides, several substances are secreted by multiple cells and affect 
cancer metastasis. Among them, cytokines, like interleukin-6, released from glial cells, may contribute to glioblastoma 
progression. The present study determined whether an agent as a potassium channel blocker could modulate the im-
munopathogenesis of glioblastoma. We realized the cytotoxic effect of potassium channel blocker at different doses in 
the U-373 MG glioblastoma astrocytoma cells. Our chosen agent inhibits the secretion of both interleukin and matrix 
metalloproteinases activity. Overall, we suggest potassium channel blocker as an agent for cancer chemoprevention. 
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2. Methods

Cell culture

The U-373 MG (human glioblastoma astrocytoma cell 
line) was obtained from the National Cell Bank of Iran 
(NCBI), Pasteur Institute of Iran, Tehran, Iran. U-373 
MG was seeded at an initial density of 2x104cells/well 
in 96-well tissue culture plates containing RPMI-1640 
medium with 5% fetal calf serum, penicillin at 100 U/
mL, and streptomycin at 100 µg/mL (Gibco BRL, Life 
Technologies, NY, USA). In this experiment, U-373 MG 
cells were cultured in the presence of 50ng/mL Lipo-
polysaccharide (LPS) to stimulate and then were pre-
treated for 4 h with 4-AP at selected concentrations. 

Cytotoxicity analysis 

Triplicate, twofold dilutions of 4-AP (Merck, Frank-
furter, Germany) preparations at concentrations of 0.1–10 
mM were added to cultured cells. After overnight incu-
bation under 5% CO2, 37oC, and saturated humidity, 
cells were subjected to a colorimetric assay using 3-[4, 
5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bro-
mide (MTT) (Sigma-Aldrich, St. Louis, MO, USA) assay. 
MTT (5mg/mL PBS) was added to cell culture, incubated 
for 4 h at 37 °C, then solubilized with acidic isopropa-
nol. The absorbance was measured on a SPECTRA max 
PLUS384 reader (Molecular Devices Corp., Sunnyvale, 
CA, USA) at 570 nm. Based on MTT results, cytotoxicity 
as the percentage of the viable cell at different concentra-
tions of samples and IC50 as the dose at which 50% of the 
cell death was calculated. Moreover, viability was evalu-
ated after removing 4-AP from the cell medium. 

Zymoanalysis

This technique detected MMP-9 in corresponding su-
pernatants of cells conditioned-media with some modi-
fications (Khorramizadeh et al., 2005). Briefly, the 
aliquots of conditioned media were subjected to elec-
trophoresis in a polyacrylamide gel containing gelatin 
(2mg/mL) (Sigma-Aldrich, St. Louis, MO, USA) for 
3 hours (80 volts). The gel was washed (2.5% Triton 
X100), incubated at 37oC overnight (0.1 M Tris HCl, 
pH 7.4), and afterward stained (0.5% Coomassie Blue). 
After de-staining, using a UVI Pro Gel Documentation 
system (GDS-8000 System), proteolysis bands were 
quantitatively evaluated and expressed as the “relative 
expression” of gelatinolytic activity. 

The quantification of cytokine levels

The levels of IL-1, IL-6, and TNF in the samples were 
assessed using the ELISA kits (R&D Systems, Minne-
apolis, USA). The cytokine in the samples is bound to an 
immobilized antibody as directed by the manufacturer, 
followed by incubation with an enzyme-linked mono-
clonal antibody specific to the cytokine provided. After 
washing, a substrate was applied, and the color changed 
in proportion to the cytokine quantity. The response 
was stopped, and the absorption was measured with an 
ELx800brand ELISA system at 450 nm (BioTek Instru-
ments, Inc., Winooski, VT). The effects of the examined 
agent on cell proliferation, cytokine secretion, and gela-
tinase inhibition were analyzed using the Student’s t-test 
in SPSS. The obtained data were presented as Mean±SD 
with n=3 for in vitro experiments. Besides, the differ-
ences were considered significant at P<0.05.

3. Results

4-AP decreased the proliferation of human glioma 
cell lines 

The efficacy of 4-Ap therapy is presented on the U-373 
MG cell line at various doses (0.1-10μM) in Figure 1. 
The administration of 4-AP at various concentrations in-
dicates no noticeable low-dose cytotoxicity. The results 
of Student’s t-test indicated that mean % viability value at 
0.1 μM of 4-Ap was significantly higher than one at 2 μM 
(P<0.05), 4 μM, and 10μM of it (P<0.001). The mean % 
viability value at 2 μM of 4-Ap was significantly different 
to one at 4 μM (P<0.05) and 10 μM of 4-Ap (P<0.001). 
The difference in mean % viability value between con-
centrations 4 μM and 10 μM of 4-Ap was also significant 
(P<0.001). Thus, the biocompatibility and tolerability of 
U-373 MG against higher amounts of 4-AP were signifi-
cantly less (P<0.001).The calculated median lethal dose 
(LD50) for 4-AP was at concentration of 0.48µM accord-
ing to equation y= -4.5x+10.3 x2 + 94.8. The inhibitory 
effect of 4-Ap on cell proliferation at 48 hours is similar 
to 24 hours in a concentration below 5 µM (data not pre-
sented). Moreover, cell culture changed after 24 hours of 
drug intervention showed a static effect on cell prolifera-
tion at doses over 5 µM after two overnight.

4-AP inhibited matrix metalloproteinase activity 
in human glioma cell lines

The dose-response study of 4-Ap on MMP-9 activity 
is depicted in Figure 2. Comparison of the densitometric 
analysis of gelatinase activity at different doses demon-
strated that the inhibitory efficacy of 4-Ap at all doses 
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was statistically significant compared with non-treated 
cells (P<0.05). However, the mean % gelatinase activity 
at 0.1 μM of 4-Ap was not significantly higher than one 
at 2 μM, 4 μM, and 10μM of 4-Ap. 

4-AP diminished cytokine secretion in human 
glioma cell lines

Our cytokine assay for IL-1 didn’t show any statisti-
cal differences between treated and non-treated cells 
(P=0.05). The mean differences between non-treated and 
treated with 0.1µM were 13.3+ 1.24 vs. 12.8+0.8, respec-
tively. As per Figure 3, the IL-1 level for 4-Ap at a unique 

concentration of 10µM was statistically significant, com-
pared with non-treated cells (5.5+0.5 vs. 13.3+1.24, 
P<0.05). Using the ELISA method for measuring TNF, 
we determined that 4-Ap-treated cells produced little 
TNF than non-treated cells (122.5+4.9 pg/mL). The TNF 
decrement due to 4-AP was not statistically significant 
(Figure 4). Furthermore, administrating 4-AP suggested 
a significant reduction of IL-6 secretion compared with 
the control group (P<0.001) (Figure 5). The mean differ-
ences of IL-6 between non-treated (320+8.0 pg/mL) and 
treated with 0.1µM, 2 µM, 4 µM, and 10 µM (209+5.1, 
155+8.7, 113+3.0 & 14+1.2), respectively.

Figure 1. Relative cytotoxic effect

For the astrocytoma [U373-MG] cell line induced by 4-Ap (* P<0.05, ** P<0.01, *** P<0.001).

Figure 2. The relative expression of gelatinolytic activity 

For the astrocytoma cell line induced by 4-Ap, compared to the untreated controls (*P<0.05).
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4. Discussion

Immune system dysregulation is among the critical 
mechanisms in the pathophysiology of numerous tumors 
(Voutsadakis, 2018a, 2018b). Moreover, selective and 
non-selective ion channels are necessary for the physio-
pathology of several cancers, including GBM (Morelli et 
al., 2016). This study attempted to clarify the influence of 
4-AP, a broad-spectrum blocker of potassium channels, 
on MMP-9 activity, various types of cytokines, and its cy-
totoxic effects on the experimental cell model U373-MG. 

Cytotoxicity test for treated cells revealed that 4-AP 
could exert its toxicity at 2uM up to 10µM. Furthermore, 
our data and other investigations showed that this agent 

elicited more minor cytotoxic characteristics at doses be-
low Its LD50 (Wang et al., 2014). Moreover, after remov-
ing 4-Ap in cell culture, the cell proliferates, suggesting 
potassium channel blocking should be considered a prob-
able mechanism for 4-Ap inhibitory function. The mecha-
nism by which potassium gate inhibitors, such as 4-AP, 
exert antitumor effects are not entirely defined but are 
postulated to involve up-regulation of phosphatase and 
tensin homolog, modulation of protein kinase B signal-
ing pathway, and apoptosis enhancement (Hassan et al., 
2018; Luo et al., 2018; Wang et al., 2014). 

The degradation of ECM, primarily by MMPs, is one 
of the fundamental stages of tumor metastasis (Sharifta-
brizi et al., 2005; Zhong et al., 2018). The upregulation 

Figure 3. IL-1 concentration 

For the astrocytoma cell line treated with indicated the concentrations of 4-Ap, compared to untreated control (*P<0.01).

Figure 4. TNF concentration 

For the astrocytoma cell line treated with indicated concentrations of 4-Ap.
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of collagen XVI can induce MMP-9 expression by cer-
tain glioma cell lines, like U-373 MG; thus, the inhibition 
of MMPs can prevent tumor metastasis (Bedal, Grassel, 
Oefner, Reinders, Reichert, & Bauer, 2014; Senner, 
Ratzinger, Mertsch, Grassel, & Paulus, 2008). Few re-
cords are available on the impact of voltage-dependent 
potassium channels in regulating the action and biosyn-
thesis of MMPs. Some studies reported no TLR4 expres-
sion on astrocytes and oligodendroglial cells; however, 
others demonstrated its presence on gliomal cell lines 
like U-373 MG (Che et al., 2017). LPS stimulation ac-
tivated TLR 4 signaling, which facilities immune eva-
sion of gliomal cells through MMP secretion. As per 
zymography results, there was a significant reduction of 
MMP-9 activity in these LPS induced cells; it might in-
dicate various signaling pathways blockage. Our finding 
revealed that the tested drug inhibited MMP activity in a 
dose-response fashion (Figure 2). Therefore, this agent’s 
ability to inhibit matrix metalloproteinase could be valu-
able to prevent tumor invasion and metastasis. 

Among different cell subpopulations in the brain, as-
trocytes play their role as an Antigen-Presenting Cell 
(APC). These cells produce a collection of cytokines 
such as IL-6 and TNF in response to provocation. Evi-
dence signified that the inflammatory response that 
adjusts cytokines pattern occurs in the tumor microen-
vironment (Roato & Ferracini, 2018; Worzfeld et al., 
2017). The effect of 4-AP in modulation cytokine se-
cretion was examined. According to our finding among 
several cytokines, IL-6 was significantly reduced in as-
trocytoma cells by treatment with 4-AP compared with 
the control group. Our data agreed with experiments that 
demonstrated that GBM cells are up-regulated, and se-
creted IL-6 and anti-IL6 directed therapies are potential 

utility for anti-cancer treatments (Trikha, Corringham, 
Klein, & Rossi, 2003; West et al., 2018). 

The strategy for GBM treatment is chemotherapy, ra-
diotherapy, and surgery. Because of cellular complexity, 
undefined pathology, and the short survival rate of pa-
tients with GBM, new promising medication was con-
sidered. The meaningful MMP and IL-6 inhibition and 
the capability to pass through the blood-brain barrier with 
mild side effects might be recommended 4-AP for che-
moprevention of GBM patients. However, the clinical 
consequence of these findings must be further studied. 

5. Conclusion

In summary, our study provides evidence that repression 
in the expression of MMP and cytokine secretion is an 
important aspect in glioblastoma. Targeting K+ channel 
induces cell viability reduction, IL-6 and MMP-9 activity 
decrement in an in vitro model of glioblastoma. However, 
more studies are required to confirm 4-AP significant role 
as chemopreventive agent aginst glioblastoma.
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Figure 5. IL-6 concentration 

For the astrocytoma cell line treated with indicated concentrations of 4-Ap, compared to untreated control (*** P<0.001).
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