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Introduction: Diabetic encephalopathy is described as any cognitive and memory impairments 
associated with hippocampal degenerative changes, including the neurodegenerative process 
and decreased number of living cells. Mitochondrial diabetes (MD) appears following 
activation of mutant mitochondrial DNA and is a combination of diabetes and cognitive 
deficit. In this research, we showed the correlation of diabetic encephalopathy, dysfunctional 
mitochondria, and changes in the expression of axonal transport proteins (KIF5b, Dynein).

Methods: Twenty-four male Wistar rats were divided into three groups: (n=8 in each group):1. 
Control + saline; 2. Diabetic, and 3. Diabetic + insulin. Before starting the experiments, the 
animals with blood sugar lower than 150 mg/dL entered the study. Diabetes induction was 
carried out by Intraperitoneal (IP) Streptozotocin (STZ) administration. Fasting Blood Sugar 
(FBS) and body weight was checked after the first week and at the end of the eighth week. 
Then, behavioral studies (elevated plus maze, Y-maze, and passive avoidance learning) were 
performed. After behavioral studies, blood samples were taken to measure serum insulin level 
and HgbA1c. Next, fresh hippocampal tissue was collected. Gene expression of motor proteins 
was assessed by real-time PCR and mitochondrial membrane potential by rhodamine123.

Results: Our results showed the impairment of HgbA1c, serum insulin, FBS, and weight 
in the diabetic group (P<0.05). Behavioral tests revealed different degrees of impairment 
in diabetic rats (P<0.05). KIF5b mRNA expression increased in the hippocampus (P<0.05) 
with no change in dynein gene expression. These changes were associated with abnormal 
mitochondrial membrane potential (P<0.05).

Conclusion: KIF5b mRNA up-regulation in hippocampal neurons of STZ-diabetic rats 
is a factor that can be involved in abnormal axonal transport and decreased MMP, leading 
to impairment of mitochondrial function. These manifestations showed mitochondrial 
dysfunction in diabetes and resulted in abnormal behavioral tests and diabetic encephalopathy.
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1. Introduction

iabetic encephalopathy and or type 3 Dia-
betes Mellitus (T3DM) is the chronic com-
plication of Diabetes Mellitus (DM) (Steen 
et al., 2005; Rivera et al., 2005; de la Monte 
& Wands, 2008; Leszek, Trypka; & Tara-
sov, 2017). Any cognitive disorder aligned 
with DM, in the absence of other predispos-

ing factors, is considered as diabetic encephalopathy or 
T3DM (Steen et al., 2005, Rivera et al., 2005). Diabetic 
encephalopathy includes various pathologies and neu-
robehavioral changes in the nervous system, such as im-
pairment of memory, decision making, and even mood 
disorders. In many experimental studies, cognitive im-
pairments induced by diabetes or diabetic encephalopa-
thy were observed in different behavioral tests. For ex-
ample, anxiety-like behavior increased following Type 1 
Diabetes Mellitus (T1DM) in rodents (Miyata, Yamada, 
Hirano, Tanaka, & Kamei, 2007). Also learning and 
memory deficit were observed in behavioral tests in dia-

betic animals (Mousavi, Eidi, & Khalili, 2018; Roghani, 
Joghataie, Jalali, & Baluchnejadmojarad, 2006). In this 
research, they found a significant cognitive decline in 
passive avoidance, and Y maze tests diabetic rats.

Hyperglycemic conditions (Reske-Nielsen, Lund-
baek, & Rafaelsen, 1966) decreased serum insulin and 
c-peptide level, cerebrovascular change (Brands, Bell, 
& Gibson. 2004, Sima, & Li, 2005), neurotropic agent 
loss (Connor et al., 1997; Lupien, Bluhm, & Ishii, 2003), 
NF𝜅B pathway and inflammation (Cai & Liu, 2012) 
and oxidative stress (Beckman & Ames, 1998) are all 
believed to be responsible for such neurodegenerative 
condition. In addition to hyperglycemic conditions, low 
insulin concentration decreased neurotrophic factors, mi-
tochondrial dysfunction is a well-known and confirmed 
factor to induce T3DM. Mitochondrial dysfunction, on 
the other hand, is suggested to be the triggering factor for 
T3DM or Alzheimer disease (Belkacemi & Ramassamy, 
2012). Mitochondrial dysfunction is responsible for both 
acute and chronic hepatic encephalopathy (Bessman & 

Highlights 

● Short-term memory impairment and retrieval deficit in combination with anxiety-like behavior were observed 8 
weeks after the onset of diabetes.

● Biochemical changes of impaired glycosylated hemoglobin (HgbA1c) and serum insulin level were observed in 
diabetic rats.

● Cellular changes in decreased mitochondrial membrane potential in the hippocampus were observed in diabetic rats.

● Molecular changes of increased kinesin (KIF5b) gene expression levels in the hippocampus were observed in diabetic rats.

● After 8 weeks of insulin injection, KIF5b gene expression levels were reversed.

Plain Language Summary 

Diabetes Mellitus (DM) is strongly associated with degenerative and functional disorders in the Central Nervous 
System (CNS). One of the most chronic complications of DM in CNS is “diabetic encephalopathy.” According to the 
definition, any cognitive impairment affected by diabetes is called diabetic encephalopathy and or type 3 diabetes mel-
litus (T3DM). Several studies show mitochondrial dysfunction in different regions of the brain. Also, mitochondrial 
movement and transport are disrupted in diabetic condition. The mechanisms underlying those impairments are still 
unknown. In this work, we evaluated the effect of diabetic encephalopathy on mitochondrial function and transport by 
studying the proteins (KIF5b & dynein) that are involved in axonal transport of mitochondria in male rats. After 8 weeks 
of induction of diabetes (by a single dose of STZ), the animals were monitored by behavioral test (elevated plus maze, 
Y-maze, and passive avoidance learning), biochemical parameters (HgbA1c and insulin), and mitochondrial function 
and transport using rhodamine 123 staining and real-time PCR. We showed that diabetic encephalopathy resulted in 
cognitive decline and mitochondrial dysfunction by decreased Mitochondrial Membrane Potential (MMP) and kinesin 
gene overexpression. We suggested that abnormal translocation of mitochondria and its malfunction induced by kine-
sin gene overexpression possibly resulted in cognitive and memory impairment in diabetic encephalopathy.
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Bessman, 1955; Hindfelt, Plum, & Duffy, 1977). In ME-
LAS (Mitochondrial encephalomyopathy, lactic acidosis 
and stroke-like episodes), which is a genetic condition of 
the mitochondrial genome, the correlation of mitochon-
drial dysfunction and encephalopathy have been revealed 
(Finsterer, 2006). Neural microtubules are arranged polar, 
with a negative pole in the soma and positive in the axon 
terminal. Mitochondrial traffic inside the axon is carried out 
by two important motor proteins: kinesin and dynein. Mi-
tochondrial viability is dependent on its normal transport 
and movement along the axon via transport proteins (Hol-
lenbeck & Saxton, 2005). 

The compromised mitochondrial movement, following 
axonal transport defect, will impair normal mitochondrial 
membrane potential, ATP production, and finally result 
in neurodegeneration (Zhao et al., 2001; Baloh, Schmidt 
, Pestronk,&  Milbrandt, 2007; Guo et al., 2017). Among 
axonal transport proteins, kinesin and dynein play a key 
role. For example in fatal encephalopathy, a severe neu-
rodevelopmental disorder, which is associated with hip-
pocampal dysfunction, impaired mitochondrial function 
is present (Haas et al., 2007), in addition to trafficking 
kinesin proteins deficiency (Barel et al., 2017). Impaired 
kinesin and mitochondrial function have been reported in 
diabetes pathophysiology, as well (Lu et al., 2004; Wang, 
Bennett, Potter, & Potter, 2016; Zilliox, Chadrasekaran, 
Kwan, & Russell, 2016). In this study, we used differ-
ent behavioral tests to prove the cognitive impairments 
in diabetes and tried to evaluate the correlation of mito-
chondrial function, kinesin and dynein gene expression 
following diabetic encephalopathy.

2. Methods

2.1. Animals

Twenty-four male Wistar rats weighing 200-250 g were 
purchased from the experimental and comparative stud-
ies center of Iran University of Medical Sciences, Tehran, 
Iran. The rats were housed 1 week before the study at room 
temperature of 22°C±2°C under a 12 h light/dark cycle and 
they had free access to food and water ad libitum. The ani-
mals were housed in a group of 4 rats per cage and were 
randomly divided into three groups (n= 8 for each group): 
1. Control + saline; 2. Diabetic, and 3. Diabetic + insulin.

All of the procedures in use were under the supervision of 
the Ethics Committee of “Iran University of Medical Sci-
ences”, (Ethical Code: IR.IUMS.REC,1395.9221343204). 
All procedures are based on ethical guidelines for the care 
and use of laboratory animals, published by the National 
Institutes of Health (NIH Publication, revised 1996).

2.2. Diabetes induction

All animals were checked for bodyweight and plasma 
glucose levels first and rats with Fasting Blood Sugar 
(FBS) below 150 mg/dL entered the exam. Following 
overnight fasting, a single dose of intraperitoneal strep-
tozotocin (STZ, Sigma Aldrich, USA), 60 mg/kg dis-
solved in cold normal saline induced diabetes mellitus 
(Abebe, Harris, & Macleod, 1990). The volume of the 
infused solution for each rat was 0.5 mL. The control 
+ saline group received an equivalent volume of saline 
solution (0.9%) for 8 weeks. The rats with FBS over 150 
mg/dL are considered as diabetes. In the diabetes group, 
there was no treatment at the same time. The diabetic + 
insulin group was treated with insulin (1.5 U, NPH, 2 
times/day) for 8 weeks. Bodyweight and FBS were mea-
sured one week after STZ injection and at the end of the 
eighth week, before behavioral studies. 

2.3. Behavioral studies

2.3.1. Elevated Plus Maze (EPM) 

After the end of the eighth week, explorative activity 
and anxiety behavior were assessed using the Elevated 
Plus Maze (EPM) task. EPM has four arms (plus-
shaped), 60 cm in length, 10 cm in width, and 50 cm 
above the ground. Two arms were enclosed by 30-cm 
height walls and open arms with 0.5 cm edge. In this ex-
periment, each rat was placed at the junction of the open 
and closed with the head toward open arms and permit-
ted to seek the arms for 5 min. The total time of presence 
in both open arms (OAT) and closed arm (CAT) was 
measured. Decreased presence time in OAT was consid-
ered as anxiety-like behavior (Arfa-Fatollahkhani et al., 
2017). The number of entries to open arm (%) and time 
spent in it (%) revealed anxiety indices (Hritcu, Cioanca, 
& Hancianu, 2012). After each test, the instrument was 
carefully cleaned with wet tissue (75% ethanol).

2.3.2. Y-maze 

About 48 h after the elevated plus-maze task, the ani-
mals were subjected to working memory performance 
by recording spontaneous alternation behavior in the Y-
maze task. The maze was made of a Y-shaped Plexiglas 
holding consists of three arms (A, B, C). The arms are 
converged in an equilateral triangular (1200) with 40-
cm length, 30-cm height, and 15-cm width. Each rat 
was placed at the beginning of one arm “A” and per-
mitted to discover the apparatus for 8 min. An entry oc-
curred when all four limbs were inside the arm. Sponta-
neous alternation was defined as successive entries into 
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the three arms on triplet sets. The spontaneous alter-
nation percentage was calculated as the ratio of actual 
to possible alternations (defined as the total number 
of arm entries minus two multiply by 100) (Roghani, 
Joghataie & Jalali, 2006; Mousavi et al., 2018). After 
each test, the instrument was carefully cleaned with wet 
tissue (75% ethanol).

2.3.3. Passive avoidance learning 

About 48 hours after Y-maze, passive avoidance learn-
ing (PAL) was performed in a shuttle box. The shuttle box 
was used to evaluate passive avoidance behavior. The ap-
paratus consists of light and dark compartments of equal 
size (20×40×20 cm) connected by a small central guillotine 
door. Electric shock was received by grid floor, in the dark 
compartment. This test was performed within 4 days. In the 
first and second days, all rats were adapted to the appara-
tus for 5 min. On the third day, each rat settled in the light 
compartment for 2 min, then the guillotine door was opened 
then the latency time to enter the dark compartment was re-
corded as initial latency (IL). When the rats entered the dark 
compartment, the guillotine door was closed and electric 
foot shock (1 s, 1 mA, 50 Hz) was received. The rats with 
IL higher than 60 s were excluded. To evaluate memory re-
tention, each rat was placed again in the light compartment 
the next day. The interval between the entrance to the light 
chamber and leaving into the dark chamber was measured 
as step-through latency (STL). The STL was measured as 
the index for passive avoidance behavior (cut-off time was 
480 s) (Roghani et al., 2006). After each test, the apparatus 
was carefully cleaned with wet tissue (75% ethanol).

2.3.4. Gene expression of KIF5b and Dynein by real-
time PCR

After behavioral tests, the animals were deeply and ir-
reversibly anesthetized, then the rats were sacrificed, the 
skull was opened, the brain was removed and washed with 
normal saline, hemispheres of the brain were separated by 
a scalpel blade and the midbrain was removed. Then, the 
hippocampus was dissected and tissue was stored at -80°C. 
KIF5b and dynein gene expression were determined us-
ing real-time polymerase chain reactions (R-T PCR). The 
total RNA was extracted using RNX-plus solution (Sina-
Clon, Iran), 75% ethanol, chloroform, diethyl pyrocarbon-
ate (DEPC)-treated water, and isopropanol following the 
manufacturer’s recommendations. The concentration of 
RNA was checked by a UV spectrophotometer (Ultrospec 
2000, Pharmacia, the Netherlands). By measuring Optical 
Density (OD) at a wavelength A260/A280 nm, the quantity 
of the isolated RNA was determined. The first strand cDNA 
was generated from 1µg of total RNA by reverse transcrip-

tion using PrimScript RT reagent Kit (Takara, Japan), based 
on the manufacturer’s instructions and R-T PCR assays 
were down in 72-well plates in a Rotor-Gene 6000 device 
(Corbett Life Science, Australia).

The forward and reverse primers for dynein gene:

Forward primer: TGCTTGGAAGATGATTGTGC 

Reverse primer: TTCTCTTCCTCGGTCAACTCA 

The forward and reverse primers for the KIF5b gene: 

Forward primer: TGCCTATTGATGAGCAGTTTG

Reverse primer: GCCGGTTTGTCATTGGTAAT

The mRNA expression of KIF5b, dynein and ß-actin (as 
housekeeping) were determined. The PCR volume reac-
tion including 1 µL cDNA, 5µL SYBER Premix Ex Taq 
(Takara, Japan), 0.5 µL forward primer, and 0.5 µL reverse 
primer was 10 µL.

The analysis of real-time PCR was performed with ∆∆Ct 
method. The fold change in expression was then obtained as 
2-∆∆CT (Prodanov & Feirabend, 2007).

2.3.5. Measurement of mitochondrial membrane po-
tential by rhodamine 123 probe

Mitochondrial membrane potential (MMP) was assessed 
by monitoring the uptake level of cationic dye rhodamine 
123 (Mingatto et al., 2002). Hippocampus containing 
blocks were prepared, washed with phosphate-buffered sa-
line (PBS), and homogenized in mitochondrial isolation buf-
fer (0.01 mol/L Tris HCL, 0.0001 mol/L EDTA 2Na [eth-
ylenediaminetetracetic acid disodium], 0.01 mol/L sucrose, 
0.8% NaCl, pH=7.4) on ice (00C) for about 2 min. The ho-
mogenate was kept at 40C and centrifuged at 1500 rpm for 
10 min. The supernatant was collected and then centrifuged 
again at 10000 rpm for 15 min at 40C. The remaining part 
was mitochondrial. Then, 20 µL of rhodamine 123 solution 
(rhodamine 123 solution 1 mg/10 mL dimethyl sulfoxide) 
and 180 µL of PBS was added to it, stirred, transferred to 
96-well plate, and incubated at 37°C for 30 min. Afterward, 
the MMP was studied. Fluorescent signals of mitochondria 
were cleared at 488 nm and emission was monitored at 525 
nm wavelength in a fluorescent plate reader (FLX 800, 
BioTek, USA) (Ding et al., 2013).

2.3.6. Blood sampling and biochemical parameters

After behavioral tests, the rats were sacrificed and their 
blood samples were taken. To measure the serum level of 
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insulin, blood samples were kept at room temperature for 
2 h to clot, then they were centrifuged at 5000 rpm for 20 
min (Lulat, Yadav, Balaraman, & Maheshwari, 2016). The 
serum was stored at -20°C. Repeated freezing and defrost-
ing were avoided. To measure glycosylated hemoglobin 
(HgbA1c), the whole blood was collected. Serum levels of 
insulin and HgbA1c were measured using ELISA kits, ac-
cording to the manufacturer instructions for insulin (Merco-
dia, Sweden) and HgbA1c (Roch, Germany).

2.3.7. Statistical analysis

Data analysis was performed with GraphPad Prism 7 
software. All data are represented as Mean±SEM. The ob-
tained data were assessed by 1-way analysis of variance 
(ANOVA) followed by Tukey post-hoc test except for body 
weight and FBS. To compare the results of body weight 
and FBS, 2-way repeated measures (ANOVA) followed by 
Bonferroni post-hoc test were used. The value of P<0.05 
was considered statistically significant.

3. Results

3.1. Bodyweight, fasting blood sugar 

Before starting the experiments, all animals were checked 
for blood glucose levels and animals with levels less than 
150 mg/dL entered the exam. Bodyweight and FBS were 
measured at the first and eighth weeks after STZ injec-
tion. The Mean±SEM weight and FBS of the rats are pre-
sented in Table 1 The bodyweight of animals in groups 
was similar in the first week. Significant impairment in 
weight gain occurred in the diabetic rats comparing to the 
control rats in the eighth week after the induction of dia-
betes (F2,21=151.06, P=0.0001). Also in the diabetic group, 
FBS significantly increased compared to the control group 
(F2,21=305.57, P=0.0001). Insulin injection for 8 weeks im-
proved weight gain in diabetic rats. Animals’ weight in the 
diabetic + insulin was significantly higher than that in the 

diabetic rats (P<0.05). FBS was significantly lower than 
that in the diabetic rats (P<0.05) (Table 1).

3.2. Behavioral tests 

3.2.1. Elevated Plus Maze (EPM)

The number of entries to open arm and time spent in open 
arms were considered as anxiety indices and presented as a 
percentage. Time spent in open arms (%) was significantly 
decreased (F2,18=4.88, P=0.02) (Figure 1). This index de-
creased in diabetic rat compared to that in the control group 
(control + saline = 61.88±20.14, diabetic=21.18±18.49, 
P<0.05). Whereas the number of open arm entrance (%) was 
not changed in groups (F2,18=2.26, P=0.1324) (Figure 2).

3.2.2. Y-maze 

Y-maze test was performed 48 hours after EPM. The per-
centage of alternation behavior 8 weeks after the induction 
of diabetes was significantly changed (F2,18=3.60, P=0.048) 
(Figure 3). This index decreased in diabetic rats compared 
to the control group (control + saline =28.57±5.53, diabet-
ic=15.57±11.77, P<0.05).

3.2.3. Passive Avoidance Learning (PAL) 

This test was performed 48 h after the Y-maze task. The 
initial latency was recorded when the rats entered the dark 
compartment. In all three groups, there was no significant 
change in IL (F2,18=0.686, P=0.515) (Figure 4). The step-
through latency (maximum 480 s) was measured and re-
corded as the index for passive avoidance learning. STL 
index was significantly changed (F2,18=7.31, P=0.0047) 
(Figure 5). STL in the diabetic group decreased compared 
to that in the control group (control + saline =384±123.94, 
diabetic=95.28±70.77, P<0.05).

Table 1. The bodyweight of animals in groups 

Bodyweight and Fasting Blood Sugar (FBS) Control + Saline Diabetic Diabetic + Insulin

FBS (1 week after   streptozotocin [STZ]) 78.37±9.3 200.6±43.9* 205.2±34.3*

FBS (8 weeks after STZ) 73.5±8.6 588.7±18* 454.2±27.1*, #

Weight (1 week after STZ) 232.4±4.8 231.2±13.8 235.6±8.7

Weight (8 weeks after STZ) 349.7±28.6 182.7±17.2* 205.7±14.8*, #

Values are represented as Mean±SEM; *P<0.05, a significant difference compared to the control + saline  group; # P<0.05, a 
significant difference compared to the diabetic control group.
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3.2.4. Gene expression of KIF5b and Dynein by 
real-time PCR 

Real-time PCR was carried out to reveal KIF5b and dy-
nein gene expression (Figure 6). Gene expression of KIF5b 
dramatically changed after 8 weeks of diabetes induction 
(F2,9=20.41, P=0.0005). Actually, KIF5b mRNA levels were 
significantly increased compared to the control group (con-
trol + saline = 1±0.4, diabetic = 2.25±0.47, P<0.05). Insulin 
injection for 8 weeks significantly decreased expression of 
KIF5b compared with diabetic rats (diabetic = 2.25±0.4796, 
diabetic + insulin=0.5±0.23, P<0.05) (Figure 6). No signifi-
cant changes were observed in dynein mRNA levels in differ-
ent groups (F2,9=1.86, P =0.2096) (Figure 7).

3.2.5. Mitochondrial membrane potential by rhoda-
mine 123 probe

The Mitochondrial Membrane Potential (MMP) of cells 
was assessed by monitoring the uptake of cationic dye rhoda-
mine 123. The results of MMP showed a significant change 
in different groups (F2,18= 8.557, P=0.0024) (Figure 8). In the 
diabetic group, MMP decreased 8 weeks after induction of 

diabetes compared to that in the control group (control + sa-
line=100.1±12.14, diabetic = 68.05±20.64, P<0.05) and there 
was a significant difference between the control group and in-
sulin injected groups (control + saline=100.1±12.14, diabetic 
+ insulin=75.88±10.58, P<0.05).

3.2.6. Biochemical parameters

Serum level of insulin and the percentage of glycosylated 
hemoglobin (HgbA1c %) were measured by using ELISA 
kits. Mean±SEM of HgbA1c (%) and serum insulin are given 
in Table 2  Results of HgbA1c percentage showed a signifi-
cant difference between the groups (F2,18=95.99, P=0.0001). 
Diabetic animals revealed higher glycosylated hemoglobin 
compared to age-matched controls (P<0.05). A significant 
difference was observed between the diabetic and insulin-
treated group (P<0.05).

The serum level of insulin was significantly different be-
tween the groups (F2,12= 316.3, P=0.0001). Insulin levels 
in diabetic rats were significantly lower than control rats 

Table 2. Serum level of insulin and the percentage of glycosylated hemoglobin (HgbA1c%)

Biochemical Parameters Control + Saline Diabetic Diabetic + Insulin

HgbA1c (%) 5.55±0.23 9.07±0.83* 6.21±0.15#

Serum insulin (ng/m) 2.01±0.17 0.23±0.10* 0.39±0.058*

Experimental groups: Control + saline, diabetic, and diabetic + insulin; Values are represented as Mean±SEM; * P<0.05, a sig-
nificant difference compared to the control + saline group; # P<0.05, a significant difference compared to the diabetic group.
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Figure 1. Percentage of time spent in open arm in elevated 
plus maze (EPM) task

Experimental groups: control + saline, diabetic, and diabetic 
+ insulin.

 Values are represented as mean±SEM. * P<0.05, a significant 
difference compared to the control + saline group. 
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Figure 2. Percentage of number of the entry in open arm in 
Elevated Plus Maze (EPM) task

Experimental groups: control + saline, diabetic, and diabetic 
+ insulin.

Values are represented as Mean±SEM. No significant change 
between groups.
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(P<0.05). This difference was cleared between the control 
and insulin-treated rats (P<0.05) as well.

4. Discussion 

Diabetic encephalopathy is referred to as any cognitive 
dysfunction following diabetes mellitus. This is why this 
condition is called type 3 DM (T3DM) or Alzheimer dis-
ease (Steen et al., 2005; Rivera et al., 2005; de la Monte, 
& Wands, 2008; Leszek et al., 2017). On the other hand, 
Mitochondrial Diabetes (MD) appears after the activa-
tion of mutant mitochondrial DNA, which is age-depen-
dent. MD is the combination of diabetes and cognitive 
deficit (Maassen et al., 2004; Maassen, Janssen, & Hart, 
2005). In this research, we showed the correlation be-

tween diabetic encephalopathy, dysfunctional mitochon-
dria, and change in the expression of axonal transport 
protein kinesin (KIF5b).

We showed short-term memory impairment and re-
trieval deficit in combination with anxiety-like behavior 
following T3DM. To measure anxiety-like behavior in 
rodents, the elevated plus maze is an accepted test (Pel-
low, Chopin, File, & Briley, 1985). Our findings on EPM 
showed a decrease in time spent in open arm, in the dia-
betic group, compared with the control and or insulin-
injected groups. In 2007, Miyata showed an increase of 
anxiety-like behavior following STZ-induced T1DM in 
rodents (Miyata et al., 2007).
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Figure 3. Percentage of alternation behavior in Y-maze task

 Experimental groups: Control+saline, diabetic, and 
diabetic+insulin; Values are represented as Mean±SEM. 
*P<0.05, a significant difference compared to the 
control+saline group.
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Figure 4. Initiation Latency (IL) in passive avoidance learn-
ing (PAL) test 

Experimental groups: control + saline, diabetic, and diabetic 
+ insulin. Values are represented as mean±SEM. No signifi-
cant change between the groups.
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Figure 5. Step Through Latency (STL) in Passive Avoidance 
Learning (PAL)

 Experimental groups: control + saline, diabetic, and diabetic 
+ insulin. Values are represented as Mean±SEM; *P<0.05, a 
significant difference compared to the control + saline group.
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Figure 6. Gene Expression of KIF5b in the hippocampus

 Experimental groups: control + saline, diabetic, and diabetic 
+ insulin. Values are represented as Mean±SEM. *P<0.05, 
a significant difference compared to the control + saline 
group. #P<0.05, a significant difference compared to the dia-
betic group
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Another study has revealed that N-acetylcysteine 
(NAC) is protective against anxiety-like behavior in the 
EPM test of diabetic rats (Kamboj, Chopra, & Sandhir, 
2008). Behavioral changes due to diabetic encephalopa-
thy are not only dependent on the insulin metabolism 
cascade impairment, but also because of decreased sero-

tonin levels in the central nervous system (Zalsman et al., 
2006, Pittenger & Duman, 2008). On the other hand, hy-
perglycemia induces neurodegeneration and pathologic 
behavior and cognition. In the diabetic + insulin group, 
insulin has possibly prevented behavioral deficits. Our 
findings in the passive avoidance learning task showed 
different degrees of learning and memory impairment in 
type 3 diabetes. Actually, in the shuttle box, the signifi-
cant decrease in Step-Through Latency (STL) in T3DM 
is referred to impairment of memory retention and con-
solidation. Scientists have reported the role of insulin on 
the improvement of memory in DM, which is in agree-
ment with our results (diabetic + insulin group showing 
an increase in STL by insulin administration). Follow-
ing prolonged DM, the impaired hippocampal plasticity 
may damage learning and memory processing (Flood, 
Mooradian, & Morley, 1990; Stewart & Liolitsa, 1999; 
Stranahan et al., 2008). Scientists have found that anxi-
ety level and cognitive dysfunction is directly correlated 
to diabetes duration in young rats (Rajashree, Kholkute,  
& Goudar, 2011). Memory and learning deficit and even 
behavioral changes are among obvious manifestations of 
diabetic encephalopathy, as insulin and c-peptide are key 
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Figure 7. Gene Expression of dynein in the hippocampus 

Experimental groups: control + saline, diabetic, and diabetic 
+ insulin; Values are represented as Mean±SEM; No signifi-
cant change between groups.

Figure 8. Melting curve based on temperature (horizontal axis) and df/dt (vertical axis) 

A: KIF5b;  B: Dynein.
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factors for synaptic plasticity and cognition (Sima et al., 
2009; McNay & Recknagel, 2011). Scientists have re-
vealed the role of ICV streptozotocin in the induction of 
cognitive dysfunction, which has been reversed after in-
sulin infusion (Guo et al., 2017). Physiologic mitochon-
drial function is dependent on its intact transport process 
(Chada & Hollenbeck, 2004; Russo et al., 2009). Low 
insulin and c-peptide levels may disrupt normal cerebral 
metabolism and function sequentially (de la Monte & 
Wands, 2008; Sima et al., 2009).

Although our finding was in favor of the late course of 
T1DM or T3DM, the hypoglycemic course is related to ce-
rebral malfunction is not clear. However, the chronicity of 
T1DM is correlated with encephalopathy (Garg, Bonano-
me, Grundy, Zhang, & Unger, 1988; Musen et al., 2006).

Natural flavonoids have been effective in the reversal 
of anxiety-like behavior detected in the EPM test in dia-
betic mice (Damian et al., 2014; Tang et al., 2015). Insu-
lin plays a critical role in hippocampal memory process-
ing and hyperglycemia is responsible for the cognitive 
deficit and neuronal damage following DM (Abbatecola 
et al., 2006; Strachan et al., 2011).

In rhodamine monitoring of hippocampal mitochon-
drial membrane potential, we found a decreased level of 
mitochondrial staining. Mitochondrial function can be 
monitored by MMP (Figure 9). The normal detectable 
electrochemical gradient of mitochondrial membrane re-
fers to ATP production (Hafner, Brown, & Brand, 1990; 
Fontaine, Devin, Rigoulet, & Leverve, 1997). Rhoda-
mine 123 transmembrane distribution reveals membrane 

potential strength (Emaus, Grunwald, & Lemasters, 
1986; Huang, Camara, Stowe, Qi, & Beard, 2007). Fol-
lowing any mitochondrial and cellular damage, there will 
be abnormal or undetectable MMP and ATP production 
and neuronal apoptosis (Letai 2006; de la Monte, 2012). 
Even low MMP represents apoptosis (Ding, Han, Zhu, 
Chen, & D’Ambrosio, 2005). Electrophoretic mobility 
of mitochondria is directly related to its permeability and 
staining specifies (Emauset al., 1986; Bunting, 1992). 
In 2017, scientists have shown that normal mitochon-
drial metabolism potentially prevents from decreased 
age-dependent neurogenesis in the hippocampus (Beck-
ervordersandforth et al., 2017). Besides mitochondrial 
count and morphology, mitochondrial metabolism also 
depends on the dynamic movement and distribution of 
these organelles, which is essential to maintain normal 
ATP synthesis (Lu et al., 2004).

Our study showed a higher expression of KIF5b, a mem-
ber of the kinesin superfamily. KIF5b has a key role in 
both mitochondrial translocation and distribution. KIF5b 
depletion will stop normal mitochondrial transport. In 
2011 and for the first time, scientists showed the vital 
role of kinesin protein in mitochondrial transport of hip-
pocampal neurons (Brickley & Anne Stephenson, 2011).

In 2013, scientists demonstrsted increased KIF5b gene 
expression in cultured hippocampal neurons of diabetic 
rats with no alterations in dynein gene expression (Bap-
tista, Pinto, Elvas, Almeida, & Ambrósio, 2013). Dynein 
is not only responsible for retrograde translocation of 
mitochondria, but responsible for the movement of other 
motor adaptors (King & Schroer, 2000, Pilling,  Horiu-
chi, Lively,  & Saxton, 2006). Although some kinesins 
are also involved in retrograde transport (Hirokawa, 
Noda, Tanaka, & Niwa, 2009).

In this study, we found that diabetes alters the KIF5b 
motor protein by increasing KIF5b gene expression lev-
els in the hippocampus 8 weeks after the induction of 
diabetes and the anterograde transport of mitochondria 
may be impaired in the hippocampus. As a consequence, 
we suggested that a decrease in the number of synaptic 
vesicles and density may ultimately account for changes 
in synaptic transmission and mitochondrial transport in 
the hippocampus. In 2014, the effect of T1DM (dura-
tion of 2 to 8 weeks) on rat retinal distribution of dynein, 
KIF5b, and KIF1a in retinal tissue was confirmed (Bap-
tista et al., 2014), which was considered as the possible 
factor for diabetic retinal neurodegeneration.

In this study, we found no change in dynein heavy 
chain expression. Although to our knowledge there is 

Figure 9. Mitochondrial membrane potential using rhoda-
mine 123 probe in the hippocampus 

Experimental groups: control + saline, diabetic, and dia-
betic + insulin; Values are represented as Mean±SEM; 
*P<0.05, a significant difference compared to the control 
+ saline group.
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still no report about encephalopathy and dynein gene ex-
pression, it may be a more chronic type of T3DM model 
(longer than 8 weeks) that could reveal different find-
ings. While IHC, as a qualitative method and western 
blotting as a quantitative one, shows protein end product 
and complete study, when mRNA production is impaired 
no protein will be found. 

In conclusion, this study revealed the correlation be-
tween diabetic encephalopathy, mitochondrial dysfunc-
tion, and kinesin gene overexpression. We suggest that 
abnormal translocation of mitochondria and its malfunc-
tion induced by kinesin gene overexpression may result 
in diabetic encephalopathy.
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