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Introduction: Midbrain dopaminergic neurons are involved in various brain functions, 
including motor behavior, reinforcement, motivation, learning, and cognition. Primary 
dopaminergic neurons and also several lines of these cells are extensively used in cell culture 
studies. Primary dopaminergic neurons prepared from rodents have been cultured in both 
DMEM/F12 and neurobasal mediums in several studies. However, there is no document 
reporting the comparison of these two mediums. So in this study, we evaluated the neurons 
and astroglial cells in primary midbrain neurons from rat embryos cultured in DMEM/F12 and 
neurobasal mediums.

Methods: Primary mesencephalon cells were prepared from the E14.5 rat embryo. Then they 
were seeded in two different mediums ( Dulbecco's Modified Eagle Medium/Nutrient Mixture 
F-12 [DMEM/F12] and neurobasal). On day 3 and day 5, half of the medium was replaced with 
a fresh medium. On day 7, β3-tubulin-, GFAP (Glial fibrillary acidic protein)- and Tyrosine 
Hydroxylase TH-positive cells were characterized as neurons, astrocytes, and dopaminergic 
neurons, respectively, using immunohistochemistry. Furthermore, the morphology of the cells 
in both mediums was observed under light microscopy on days 1, 3, and 5.

Results: The cells cultured in both mediums were similar under light microscopy regarding 
the cell number, but in a neurobasal medium, the cells have aggregated and formed clustering 
structures. Although GFAP-immunoreactive cells were lower in neurobasal compared to 
DMEM/F12, the number of β3-tubulin- and TH-positive cells in both cultures was the same.

Conclusion: This study’s findings demonstrated that primary midbrain cells from the E14.5 rat 
embryo could grow in both DMEM/F12 and neurobasal mediums. Therefore, considering the 
high price of a neurobasal medium, it can be replaced with DMEM/F12 for culturing primary 
dopaminergic neurons.

Article info:
Received: 10 Dec 2019
First Revision: 10 Jan 2020
Accepted: 13 May 2020
Available Online: 01 Mar 2021

Keywords:
Dopaminergic neurons, Rat 
mesencephalon cell culture, 
B27-supplemented neurobasal, 
DMEM/F12 medium

Citation: Valian, N., Heravi, M., Ahmadiani, A., & Dargahi, L. (2021). Comparison of Rat Primary Midbrain Neurons Cul-
tured in DMEM/F12 and Neurobasal Mediums. Basic and Clinical Neuroscience, 12(2), 205-212. http://dx.doi.org/10.32598/
bcn.12.2.1568.1

 : http://dx.doi.org/10.32598/bcn.12.2.1568.1

Use your device to scan 
and read the article online

A B S T R A C T

http://bcn.iums.ac.ir/
https://orcid.org/0000-0002-3880-4325
https://orcid.org/0000-0001-6099-3436

https://orcid.org/0000-0002-6668-2302

https://orcid.org/0000-0001-7777-5435
http://dx.doi.org/10.32598/bcn.12.2.1568.1
https://crossmark.crossref.org/dialog/?doi=10.32598/bcn.12.2.1568.1
http://bcn.iums.ac.ir/page/74/Open-Access-Policy
http://bcn.iums.ac.ir/page/74/Open-Access-Policy


Basic and Clinical

206

March, April 2021, Volume 12, Number 2

1. Introduction

n vitro studies play an essential role in under-
standing the biological processes in a more 
isolated context (Giordano & Costa, 2011). 
It offers a controlled environment to test spe-
cific cellular and molecular hypothesis with a 

less experimental variation of in vivo models (Polikov et 
al., 2008). Neuronal cell lines derived from rodents and 
primary neuronal cultures are widely used to study the 
physiological properties of neurons and the potential neu-
rotoxicity of chemicals (Giordano & Costa, 2011).

Midbrain dopaminergic neurons (mesostriatal, mesolim-
bic, and mesocortical pathways) are involved in various 
brain functions, including motor behavior, reinforcement, 
motivation, learning, and cognition (Iversen & Iversen, 
2007). Therefore, understanding the extra- and intra-
cellular signaling events that increase the development or 
survival of these neurons may improve the potential of 
therapies for dopamine-related disorders like Parkinson 
Disease (PD) (Orme, Bhangal, & Fricker, 2013).

Several cell lines of dopaminergic neurons, includ-
ing human neuroblastoma (SH-SY5Y) (Deloncle et al., 
2017; Wongprayoon & Govitrapong, 2017; Yeo et al., 
2018), immortalized rat mesencephalon neuron (N27) 
(Kanthasamy et al., 2011; Lin et al., 2012; Selvakumar 
et al., 2018), mouse dopaminergic hybrid cells (Chen, 

Huang, & Li, 2018; Li et al., 2017), immortalized hu-
man dopaminergic precursor (Lund Human Mesenceph-
alon; LUHMES) (Höllerhage et al., 2017; Zhang, Yin, 
& Zhang, 2014), and PC12 (Li, Wang, Lan, Yue, & Liu, 
2011) cell lines are used in cell culture studies.

However, these cell lines may have genetic instability 
due to high passage numbers. Besides, neurites may not 
represent true axons or dendrites, and then, cell-cell inter-
actions will be missed (Harry et al., 1998). So, primary 
neurons prepared directly from fresh brain tissues can be 
a reliable model in which neurons acquire a neuronal phe-
notype and differentiation and ultimately dIe (Giordano 
& Costa, 2011). Primary dopaminergic neurons derived 
from the rodent embryonic central nervous system are 
among the most relevant models to challenge dopami-
nergic neurons against various stresses and neurotoxins 
for evaluating the neuroprotective compounds to prevent 
neuronal degeneration (Gaven, Marin, & Claeysen, 2014). 

Different culture mediums such as DMEM/F12 and 
neurobasal are used for culturing neuronal cell lines and 
primary cultures (Ciron, Lengacher, Dusonchet, Aebi-
scher, & Schneider, 2012; Muneer, Alikunju, Szlachetka, 
& Haorah, 2011). Neurobasal medium is used exten-
sively for primary hippocampal (Beaudoin et al., 2012; 
Henderson, Peng, Trojanowski, & Lee, 2018), cortical 
(Cui, Deng, Zhang, Yin, & Liu, 2018; Tan et al., 2017), 
cerebellar (Gustafsson, Katsioudi, Issazadeh-Navikas, & 

Highlights 

● Rat primary mesencephalon neurons were cultured in DMEM/F12 and neurobasal mediums.

● GFAP-immunoreactive cell number was lower in neurobasal compared to DMEM/F12.

● The number of β3-tubulin- and TH-positive cells was the same in both cultures.

● Primary midbrain cells can grow in both DMEM/F12 and neurobasal mediums.

Plain Language Summary 

Dopaminergic neurons are involved in various brain functions, like motor behaviors, and are extensively used in 
cell culture studies. In this study, we compared dopaminergic neurons and glial cells from mesencephalon tissue of rat 
embryos in DMEM/F12 and neurobasal mediums. The morphology of the cells in both mediums was observed under 
light microscopy on day 7 after culturing. The number of the cells was similar in both mediums, however, the cells in 
the neurobasal medium formed aggregated clustering structures. As expected, the number of GFAP-immunoreactive 
cells was lower in neurobasal compared to DMEM/F12, but the number of β3-tubulin-positive cells and tyrosine 
hydroxylase-positive neurons in both cultures was the same. These findings demonstrated that rat primary midbrain 
cells can grow in both DMEM/F12 and neurobasal mediums. Therefore, considering the costly price of a neurobasal 
medium, DMEM/F12 can be used for culturing dopaminergic neurons.
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Kornum, 2016), and striatal (Nguyen, Rymar, & Sadikot, 
2016) neurons culturing. In the case of primary dopami-
nergic neurons, in vitro studies have used both neurobas-
al (Bayer Andersen, Leander Johansen, Hentzer, Smith, 
& Dietz 2016; Collo et al., 2013; Orme et al., 2013) and 
DMEM/F12 (Choi, Kim, & Xia, 2013; Choi, Kruse, Pal-
miter, & Xia, 2008; Collins et al., 2016) medium. Since 
there is no study documenting the difference of these 
mediums in culturing primary dopaminergic neurons, 
this study was designed to compare primary midbrain 
cells in DMEM/F12 and neurobasal cultures.

2. Methods

2.1. Animals

Adult female and male Wistar rats, weighing 220-250 
g, from our breeding colony, were used in this study. The 
animals were maintained and handled in compliance 
with the institutional guidelines approved by the Ethics 
Committee for animal research of the Shahid Beheshti 
University of Medical Sciences. Male and female rats 
were housed in the cage for 12 hours, and then the males 
were removed. Fourteen days later, the female rats were 
shortly anesthetized using CO2, and the pregnant rats 
were characterized by touching the belly. Then, they 
were used for the preparation of embryonic mesencepha-
lon cells from the E14.5 embryo.

2.2. Preparation of primary mesencephalon cells

Primary mesencephalon cells were prepared as report-
ed previously (Choi et al., 2013). The pregnant females 
were dammed by CO2 inhalation, and after euthanizing 
by cervical dislocation, the embryos were taken out from 
the uterus and amniotic sac. The extracted embryos were 
washed in sterile Phosphate Buffered Saline (PBS), and 
ventral midbrains were isolated. After washing in Ca2+ 

and Mg2+ free Hank’s Balanced Salt solution (HBSS; 
Sigma Aldrich, USA), the tissues were incubated with 
0.05% trypsin solution (Gibco, USA) for 20 minutes at 
37oC. By transferring pieces of tissue to HBSS, includ-
ing 10% fetal bovine serum (FBS; Gibco, USA), trypsin 
was deactivated. The tissues were gently triturated in 
DMEM/F12 medium (Gibco, USA) with a fire-polished 
glass pipette 7 times to dissociate into single cells. Viable 
cells were counted using the hemocytometer method af-
ter diluting with trypan blue solution (1:10). The disso-
ciated cells were plated in 0.01% poly-l-lysine (Sigma 
Aldrich, USA) -coated plates at density of 4×105 cells/
well in 6-well plates in DMEM/F12 medium (containing 
10% FBS, 1% glutamine [Gibco, USA] and 1% peni-
cillin/streptomycin [Gibco, USA]) (Choi et al., 2013) 

or neurobasal (containing 1% B27 [Gibco, USA], 1% 
glutamine and 1% penicillin/streptomycin) (Bayer An-
dersen et al., 2016). For cells cultured in DMEM/F12 
medium, half of the medium was replaced with fresh 
medium on Day in Vitro (DIV) 3. Then, the cultures 
were replenished by replacing half of the medium with 
serum-free DMEM/F12 containing 1% B27 (Gibco, 
USA) on DIV5. In the case of cells cultured in neuro-
basal, on DIV3, half of the medium was also replaced 
by a fresh medium containing Arabinose C (AraC) (3 
µM) to prevent glial cell proliferation. On DIV5, half 
of the medium was renewed by a fresh neurobasal me-
dium. Seven days after culturing, i.e. the time required 
for dopaminergic neurons stabilization and maturation, 
immunocytochemistry assay was performed. On DIV1, 
DIV3, and DIV5 of culturing, the cells were evaluated 
morphologically under light microscopy.

2.3. Immunocytochemistry

Seven days after culturing, immunocytochemistry was 
performed to visualize neuronal and glial cells (Collins 
et al., 2016). Cells were washed twice in PBS and then 
fixed in 4% paraformaldehyde for 12 min at room tem-
perature. After three washes with TPBS (0.05% Tween 
20 in PBS), cell permeabilization was performed using 
0.02% Triton x-100 in PBS for 15 min. The cells were 
incubated with 1% Bovine Serum Albumin (BSA; Mer-
ck, Germany) in TPBS for 1 h at room temperature to 
block non specific antibody binding-sites. Primary anti-
body incubation was done with anti-β3-tubulin antibody 
(1:1000; ab18207, Abcam, USA), anti-Tyrosine Hy-
droxylase (TH) antibody (1:500; ab112, Abcam, USA), 
and anti-Glial Fibrillary Acidic Protein (GFAP) antibody 
(1:1000; ab7260, Abcam, USA) overnight at 4°C. Sec-
ondary antibody (1:150; anti-rabbit IgG FITC conju-
gated, cell signaling, USA) was added for 1 h after three 
washing, followed by nuclear staining with DAPI (0.4 
µg/mL in PBS) just before visualization. Immunoreac-
tive cells were observed at ×10 and ×20 magnifications 
under an Olympus microscope. The immunostaining 
assay was repeated 3 times for DMEM/F12 and neuro-
basal mediums.

3. Results

3.1. Morphology of primary midbrain cells in 
DMEM/F12 and neurobasal

Morphology of primary midbrain cells 1, 3, and 5 days 
after culturing in DMEM/F12 and neurobasal mediums 
were evaluated using light microscopy at ×10 (Figure 
1A) and ×20 (Figure 1B) magnifications. As shown in 
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Figure 1, on day 1, after culturing, the cells were almost 
spherical with very short processes in both mediums. On 
DIV3 and DIV5, the formation and branching of axons 
and dendrites were clearly visible, and synaptic com-
munications were formed completely in both cultures. 
Our morphological findings showed that although mid-
brain cells grew well in both cultures and reached the 
final morphology, in the neurobasal medium, the cells 
were clustered and formed sun-like structures. It seems 

that mesencephalon cells have better morphology in the 
DMEM/F12 medium.

3.2. Beta3-tubulin-positive cells in DMEM/F12 
and neurobasal mediums

Seven days after culturing, β3-tubulin-positive cells 
were characterized as neurons in DMEM/F12 (Figure 
2A-C) and neurobasal (Figure 2D-F) using immunocy-

Figure 1. Morphology of primary midbrain cells obtained from E14.5 of rat embryo 1, 3, and 5 days after culturing in DMEM/
F12 and neurobasal mediums 

A: ×10; and B: ×20 (b) magnifications.
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tochemistry. Beta3-tubulin-positive cells (Figure 2A, D) 
and the nucleus of glial and neuronal cells (Figure 2B, 
E) were visualized using β3-tubulin antibody and DAPI, 
respectively. Beta3-tubulin-positive cells and DAPI-
stained nucleus were merged to represent the cells bet-
ter (Figure 2C, F). There was no difference between the 
number of immunostained neurons in DMEM/F12 and 
neurobasal cultures. However, the cells in the neurobasal 
medium were highly clustered.

3.3. GFAP-Positive neurons in DMEM/F12 and 
neurobasal mediums

Using immunocytochemistry, astrocytes were visual-
ized using GFAP (astroglial cell marker) antibody in 
DMEM/F12 (Figure 3A-C) and neurobasal (Figure 3D-
F) mediums. GFAP-positive cells, DAPI-stained cell’s 
nucleus, and merged the nucleus with GFAP-immuno-
reactive cells have been demonstrated in Figure 3. Since 
neurobasal is the appropriate medium for culturing neu-
rons, not astroglial cells, as well as because of adding 
B-27 to neurobasal medium, the number of astrocytes 
in neurobasal was very low compared to DMEM/F12.

3.4. TH-positive cells 7 days after culturing in 
DMEM/F12 and neurobasal

Dopaminergic neurons were characterized by immunos-
taining against TH antibody, 7 days following cultur-
ing in DMEM/F12 (Figure 4A-C) and neurobasal (Fig-
ure 4D-F). Similar to β3-tubulin-positive cells, despite 
clustering appearance in neurobasal, the number of TH+ 
neurons was not different in the two cultures.

4. Discussion

This study’s findings indicated that cells’ morphology 
was better in DMEM/F12 than that in neurobasal, but there 
was no difference in dopaminergic neuron number. It is 
suggested that primary dopaminergic neurons can grow 
and survive in both cultures. Consistent with our results, 
several in vitro studies reported survival of primary mes-
encephalon neurons in both cultures (Bayer Andersen et 
al., 2016; Choi et al., 2008; Collins et al., 2016; Collo et 
al., 2013). Neurobasal media is a neuron-specific culture 
and suppresses glial cells proliferation to less than 0.5% 
of the nearly pure neuronal population, as demonstrated 
by immunocytochemistry for GFAP. It has been shown 
that glial cell growth is suppressed in a neurobasal me-
dium. Moreover, the neurobasal medium enhances the 
neuronal gene expression and neuronal survival due to 
lower osmolarity, presence of glutamine and cysteine, 
and lower toxic ferrous sulfate in comparison to DMEM/
F12. (Brewer, 1995; Brewer, Torricelli, Evege, & Price, 

Figure 2. Beta3-tubulin-positive cells 7 days after culturing in DMEM/F12 and neurobasal mediums (at ×10 magnification)

A: Neurons visualized as β3-tubulin-positive cells in DMEM/F12; and B: Neurobasal; D: Mediums; B, E: Nuclei are stained 
with DAPI; C and F: Merged images of β3-tubulin-positive cells and DAPI-stained nuclei. The immunostaining assay was 
repeated 3 times for each medium.
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1993). Besides, B27 (an essential component of neuro-
basal medium) contains free radical scavenging enzymes 
such as catalase, superoxide dismutase, and glutathione 

(Nguyen et al., 2016), which provide a suitable environ-
ment for neuronal cell survival. Furthermore, using AraC 
in neurobasal culturing inhibits astroglial proliferation as 

Figure 3. GFAP-immunoreactive cells in primary mesencephalon cells 7 days after culturing

A-C: GFAP-positive cells are characterized as astrocytes in DMEM/F12; and D-F: Neurobasal at ×10 magnification.

The immunostaining assay was repeated 3 times for each medium.
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Figure 4. Dopaminergic neurons in primary midbrain culture on DIV7

A-C: Using immunocytochemistry, TH-positive neurons were visualized in DMEM/F12; and D-F: Neurobasal (at ×20 magnification). 
The immunostaining assay was repeated 3 times for each medium.
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well. So as expected, the astrocytes number was higher 
in DMEM/F12 compared to the neurobasal medium.

Neurotrophic factors released by astrocytes, especially 
Glial-Derived Neurotrophic Factor (GDNF), are criti-
cal for dopaminergic neuron survival (Kramer & Liss, 
2015). In serum-supplemented DMEM/F12 media, the 
glial cell proliferation continued, and therefore we ob-
served a lot of astrocytes in DMEM/F12 medium, which 
provided necessary neurotrophic factors. In our study, 
besides FBS exposure, the cells cultured in DMEM/F12 
have been exposed to B27 on DIV5, which enriched the 
medium to survive neurons. We observed the dopami-
nergic neurons in DMEM/F12 similar to neurobasal and 
parallel with glial cells.

In general, the finding of this study indicated that prima-
ry midbrain cells can be cultured and survived in DMEM/
F12 and neurobasal, with no significant differences in do-
paminergic neuron number. However, DMEM/F12 was 
better regarding the morphology of the cells and lower 
cost compared to neurobasal medium as well.
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