
Basic and Clinical

95

January, February 2021, Volume 12, Number 1

Research Paper: Functional Brain Response to Emotional 
Musical Stimuli in Depression, Using INLA Approach for 
Approximate Bayesian Inference

Parisa Naseri1 , Hamid Alavi Majd1* , Seyyed Mohammad Tabatabaei2 , Naghmeh Khadembashi3 , Seyed Morteza Najibi4, Atiye Nazari1 

1. Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2. Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
3. Department of English Language, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
4. Department of Statistics, School of Sciences, Shiraz University, Shiraz, Iran.

* Corresponding Author: 
Hamid Alavi Majd, PhD.
Address: Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Tel: +98 (912) 1483687
E-mail: alavimajd@gmail.com

Introduction: One of the vital skills which has an impact on emotional health and well-being is 
the regulation of emotions. In recent years, the neural basis of this process has been considered 
widely. One of the powerful tools for eliciting and regulating emotion is music. The Anterior 
Cingulate Cortex (ACC) is part of the emotional neural circuitry involved in Major Depressive 
Disorder (MDD). The current study uses functional Magnetic Resonance Imaging (fMRI) to 
examine how neural processing of emotional musical auditory stimuli is changed within the 
ACC in depression. Statistical inference is conducted using a Bayesian Generalized Linear 
Model (GLM) approach with an Integrated Nested Laplace Approximation (INLA) algorithm.

Methods: A new proposed Bayesian approach was applied for assessing functional response to 
emotional musical auditory stimuli in a block design fMRI data with 105 scans of two healthy 
and depressed women. In this Bayesian approach, Unweighted Graph-Laplacian (UGL) 
prior was chosen for spatial dependency, and autoregressive (AR) (1) process was used for 
temporal correlation via pre-weighting residuals. Finally, the inference was conducted using 
the Integrated Nested Laplace Approximation (INLA) algorithm in the R-INLA package.

Results: The results revealed that positive music, as compared to negative music, elicits 
stronger activation within the ACC area in both healthy and depressed subjects. In comparing 
MDD and Never-Depressed (ND) individuals, a significant difference was found between 
MDD and ND groups in response to positive music vs negative music stimuli. The activations 
increase from baseline to positive stimuli and decrease from baseline to negative stimuli in ND 
subjects. Also, a significant decrease from baseline to positive stimuli was observed in MDD 
subjects, but there was no significant difference between baseline and negative stimuli.

Conclusion: Assessing the pattern of activations within ACC in a depressed individual may be 
useful in retraining the ACC and improving its function, and lead to more effective therapeutic 
interventions.
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1. Introduction

apid growth in functional Magnetic 
Resonance Imaging (fMRI) over the 
past two decades has led to consider-
able developments in our understanding 
of human brain mechanisms (Raichle, 
2003). The objective of an fMRI study is 
to detect regional brain activity changes 

during the neural experiment. A vital skill is regulating 
emotions, impacting emotional health and well-being 
(Gross & Muñoz, 1995). In recent years, the neural ba-
sis of this process has been studied extensively. Inves-
tigators use music as a powerful tool for eliciting and 
regulating emotions in clinical and laboratory research 
studies (Aselton, 2012; Clark, 1983; Clark & Teasdale, 
1985; Holzinger, Matschinger, & Angermeyer, 2012; 
Lepping et al., 2016; Pignatiello, Camp, & Rasar, 1986; 
Sloboda & Juslin, 2001; Sutherland, Newman, & Rach-
man, 1982; Västfjäll, 2001). One of the most common 
problems is depression, where about 121 million people 
worldwide suffer from this disorder. Depression leads to 
disability and is the second cause of the global disease 
burden by 2020 (Moussavi et al., 2007; Worlg Health 
Organization, 2000). 

One of the ways of treating depression is music therapy. 
Music is a useful treatment that reduces stress and anxi-

ety in depressed people (Aselton, 2012; Holzinger et al., 
2012). Because of this significant therapeutic effect, mu-
sic is a strong tool to impel mood, which is suitable for 
studying emotion regulation and is highly effective for 
mental diseases such as depression. So, more research is 
helpful to understand the function of emotional stimuli 
in treatments for depression to answer the question of 
why people with depressive symptoms choose music as 
a way to help themselves (Lepping et al., 2016).

In an fMRI study, each subject performed a series of 
tasks, and the changes in the Blood-Oxygen-Level-De-
pendent (BOLD) signal were measured during scans. 
Moreover, for each subject and at each voxel, more than 
hundreds of 3D volumes of BOLD measurements are 
collected (Daliri & Behroozi, 2012; Lindquist, 2008; 
Nazari et al., 2019; Poldrack, Mumford, & Nichols, 
2011). The data have spatial and temporal correlations. 
Spatial correlation between thousands of voxels and 
temporal correlations at hundreds of time points at each 
voxel leads typically to massive amounts of highly com-
plex data (Çelik, Dar, Yılmaz, Keleş, & Çukur, 2019). 

In addition to statistical modeling of fMRI data, which 
considers both spatial and temporal structures, the com-
putational cost dealing with the analysis of such high di-
mensional data is challenging. Because of the disability 
of the classical Generalized Linear Model (GLM) in con-
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R

Naseri, P., et al. (2021). Functional Brain Response to Emotional Musical Stimuli in Depression. BCN, 12(1), 95-104.

http://bcn.iums.ac.ir/


Basic and Clinical

97

January, February 2021, Volume 12, Number 1

sidering fMRI data properties, some alternative Bayesian 
approaches have been proposed (Sidén, Eklund, Bolin, 
& Villani, 2017; Teng, Nathoo, & Johnson, 2017). In a 
Bayesian GLM, specific prior distributions are assumed 
for the task activation and other unknown parameters in 
the model. So, considering them with this likelihood, the 
Bayesian hierarchical model is composed.

Owing to a large amount of data, standard Markov Chain 
Monte Carlo (MCMC) methods are typically too time-con-
suming, so a recently-developed Bayesian inference tool 
based on integrated Nested Laplace Approximation (INLA) 
has been employed (Rue, Martino, & Chopin, 2009). 
INLA method can compute approximations to the posterior 
distributions and manage large data sets in a shorter time us-
ing the sparsity of Gaussian Markov Random Fields (GM-
RFs). Moreover, INLA is faster than MCMC (Rue et al., 
2017) and can be easily implemented using the R-INLA 
package (Mejia, Yue, Bolin, Lindren, & Lindquist, 2020). 

The present study uses fMRI data to identify areas reac-
tive to positive and negative emotional stimuli between 
MDD and ND control participants. It is hypothesized that 
individuals with depression compared with ND control 
participants will show greater activations to negative 
stimuli and reduced responsiveness to positive stimuli in 
ACC. A Bayesian GLM approach is applied for statistical 
analysis, and inference is conducted using INLA.

2. Materials and Methods

2.1. Subjects 

In this experiment, 19 participants with depression 
(MDD) and 20 never-depressed control individuals (ND) 
listened to emotional musical stimuli during scanning.

The Structured Clinical Interview for DSM Disorders, 
non-patient version (SCID-I/NP) was used to assess ND 
participants without a history of depression or other psy-
chiatric disorders (First, 2002). Using the SCID-I/NP, the 
individuals in the MDD group experiencing a current de-
pressive event at the time of scanning were determined. 

For the present research, the brain images of subjects 
11 and 1 from ND and MDD groups were selected, re-
spectively. The chosen participants are women of the age 
of 29 years. The relevant data were obtained from the 
OpenfMRI database for the current analysis. Its acces-
sion number is ds000171 (Lepping et al., 2016).

2.2. Stimuli

Stimuli were presented in a block design paradigm 
(Figure 1) by E-Prime 2.0 software. During each func-
tional run, the participants were exposed to 30-s blocks 
of positive, negative, and pure tone (baseline) samples. 
Emotionally evocative positive and negative musical ex-
amples from Western art music were used. Two repeti-
tions of each block type were alternated between posi-
tive and negative stimuli. The baseline block between 
stimuli was repeated, and each run began and ended 
with a baseline block. Stimuli were presented through 
Magnetic Resonance (MR) compatible earbuds (Sensi-
metrics Corporation, Malden, MA) at 70 dB, or as loud 
as comfortably possible to ensure the stimuli were heard 
over the noise of the scanner.

2.3. Functional Magnetic Resonance Imaging

In a single scanning session for each subject, an ana-
tomical and 5 functional scanning runs were acquired. 
Scanning was conducted on a Siemens 3T Skyra scan-
ner (Siemens, Erlangen, Germany). High-resolution 
T1-weighted anatomic images were acquired with a 
3D MPRAGE sequence (TR/TE=2300/2.01 ms, flip 
angle=9°, field of view [FOV]=256 mm, matrix=256 x 
192, slice thickness=1 mm). Following structural scans, 
5 gradient-echo BOLD sequences were acquired in 50 
interleaved oblique axial slices at a 40° angle (repetition 
time/ time to echo [TR/TE]=3000/25 ms, flip angle=90°, 
field of view [FOV]=220 mm, matrix=64x64, slice 
thickness=3 mm, 0 mm skip, in-plane resolution=2.9 x 
2.9 mm, 105 data points, 5 min: 24 s). The first func-
tional run of each subject was chosen for analysis.

2.4. Data processing and statistical analysis

Figure 1. fMRI paradigm, functional run from the blocked emotional stimulus paradigm
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The data were preprocessed with regard to the pipeline 
in Lepping et al (2016). and using the SPM12 software 
package (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/), which includes removal of spatial distortions, 
motion realignment, distortion correction, alignment to 
the structural image, bias field correction and intensity 
normalization. Moreover, a Gaussian filter with 4 mm 
FWHM was used to smooth the images, and high-pass 
filtering was done with a cutoff point of 128 s. These 
are standard steps in fMRI data preprocessing and must 
align the data into a common space and remove primary 
noise sources. The design matrix was generated by fit-
ting a boxcar function to each time series convolved with 
a canonical hemodynamic response function.

2.5. Statistical analysis

Let T be the number of time points in the fMRI time 
series and N be the number of voxels in the brain. For a 
subject, the following GLM model is presented (Model 
1) (Mejia et al., 2020):

(1) y=∑K
k=0Xk βk+ ∑J

j=1Zjbj ε ~ N(0.V).

Here, y is a TN ×1 vector containing the fMRI time se-
ries of all voxels, and theandare TN × N design matrices 
for the activation amplitudes (including baseline) and 
nuisance signals, respectively. The matrix V is a T×T 
covariance matrix for an AR(p) process, where p is the 
degree of autoregressive.

The spatial correlation will enter via the Unweighted 
Graph-Laplacian (UGL) before each for k=0, …, K, 
where K is the number of the task under investigation. 
UGL is defined as below (Model 2) (Sidén et al., 2017):

(2) β'
k.∙|α_k ∼ N (0, (αkDβ)

-1),

where are a fixed spatial N×N precision matrix and=are 
hyperparameters to be estimated from the data. There are 
several choices for but this study considers UGL, which 
has the number of adjacent voxels on the diagonal for 
each voxel and, on the condition that i and j are adjacent. 
When modeling each 2D slice separately, for voxels in the 
interior part of the brain, there exist 4’s on the diagonal.

Generally, in the Bayesian approach, the full condi-
tional distribution of each unknown parameter should be 
reached so that MCMC-based algorithms could be used 
to obtain samples from their posterior distributions and 
make Bayesian inferences using those samples. How-
ever, regarding fMRI data size and the complexity of the 
spatiotemporal model, the MCMC is slow in converge 
and is too time-consuming. As an alternative to MCMC, 
Rue et al. (2009) introduced a novel Bayesian computa-
tion tool based on Integrated Nested Laplace Approxi-
mations (INLA), which is implemented in the R-INLA 
package (Rue et al., 2009). For the first time, the INLA 
algorithm is used in the present study to inferences of the 
described model on volumetric fMRI data. It accurately 
approximates marginal posterior densities and computes 
all necessary estimates faster than MCMC techniques. 
For a more detailed explanation of the INLA method, 
refer to Blangiardo and Cameletti (2015). 

To consider the temporal correlation of time series and 
reduce the computational cost of fitting the Bayesian 
model, the fMRI time courses were first pre-whitened by 
assuming an AR(p) process on the residuals from a clas-
sical GLM with uncorrelated errors. Here p was consid-
ered as one (Bollmann, Puckett, Cunnington, & Barth, 
2018). Pre-whitened was done as follows (Monti, 2011):

(1) The number of p autoregressive coefficients for 
each location in the brain was estimated.

(2) The pre-whitening matrix W for each location in 
the brain was computed, resulting in N T×T matrices, 
where N is the number of voxels in the brain.

 (3) Finally, the regression model in Equation (3) was 
fitted at each voxel to get estimates and standard errors 
for β for each subject and voxel (Model 3).

(3) Wy=WXβ + Wε, Wε ~ N(0.I)

A graphical illustration of the proposed model is shown 
in Figure 2. To account for noise due to subject motion, 6 
rigid body realignment parameters estimated in the mo-
tion realignment stage of preprocessing were included 
in the model as nuisance covariates. Furthermore, linear 
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Figure 2: A schematic of the proposed model

First, the pre-whitening approach is used to capture temporal correlation; Second: a spatial Bayesian hierarchical 
model is fitted to obtain the time series from the previous step.

GLM

  𝐘𝐘𝐘𝐘 = 𝐗𝐗𝐗𝐗𝛃𝛃𝛃𝛃 + 𝛆𝛆𝛆𝛆     𝜺𝜺𝜺𝜺~ N(0.𝐕𝐕𝐕𝐕) 
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Temporal correlation

via Pre-whitening

GLM

  𝐘𝐘𝐘𝐘 = 𝐗𝐗𝐗𝐗𝛃𝛃𝛃𝛃 + 𝛆𝛆𝛆𝛆    𝜺𝜺𝜺𝜺~ N(0. 𝐈𝐈𝐈𝐈) 
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′ |αk ∼ N (0, αk−1(𝐒𝐒𝐒𝐒′𝐒𝐒𝐒𝐒)−1) 

Figure 2. A schematic of the proposed model

First, the pre-whitening approach is used to capture temporal correlation; Second: a spatial Bayesian hierarchical model is fit-
ted to obtain the time series from the previous step.
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and quadratic time terms were included for considering 
scanner drift.

A Region of Interest (ROI) analysis was conducted fo-
cusing on regions implicated in emotion processing in 
depression, including ACC (Brodmann areas [BA] 32 
and 33, sgACC [BA25]).

The mask of the selected regions was made using the 
WFU PickAtlas toolbox in MATLAB R2016b software 
(Maldjian, Laurienti, Kraft, & Burdette, 2003). All brain 
images were mapped on a standardized single T1 tem-
plate in SPM (Oishi et al., 2009). The obtained data were 
prepared by programming in MATLAB R2016b soft-
ware, and then model fitting was performed using the 
R-INLA package (http://www.r-inla.org).

3. Results

After preprocessing the data, the ROI based analysis 
was conducted. The xjView program (http:/www.alive-
learn.net/xjview) was applied for the illustration of brain 
activation maps.

The ACC region of the brain plays an essential and piv-
otal role in emotion formation, regulation, and process-
ing. The reason to perform an ROI analysis is to avoid 
the difficulty faced in discerning the pattern of activity 
across conditions from an overall map. The other reason 
is to limit the testing to a region that is functionally de-
fined based on interested functional regions.

After temporal estimation correlation via the pre-
whitening approach, the INLA method is applied to the 

Figure 4. fMRI results group by positive-negative music

 ACC showed differential task activation between ND and MDD groups to positive vs negative stimuli. Graphs show mean 
activation over the entire ROI. Error bars denote standard error.

Figure 3. Activation maps in response to music stimuli

A: The mask of ACC; B: Brain regions with stronger activation in response to positive music vs negative music for ND partici-
pant; C: Brain regions with stronger activation in response to positive music vs negative music for MDD participant.
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Gaussian likelihood function with uncorrelated errors in 
(3), and the posterior estimates are obtained. 

The ND and MDD subjects’ scans are processed for the 
contrast of positive music versus negative music stimuli 
in a run of musical stimuli. Posterior mean using model 
(3) for both ND and MDD subjects is computed. In the 
normal participants, Figure 3 shows the brain regions 
that were activated when subjected to the musical stimuli 
of contrast positive versus negative in the ND and MDD. 
Figure 3A displays the ACC mask, and the voxels of this 
region are shown in blue. 

Within the ACC mask, there is a greater activation to 
positive versus negative music stimuli in ND and MDD 
groups. This activation for the ND group is higher than 
the MDD group (Figure 3 B-C). The white and yellow 
colors indicate the stronger activation, and the orange 
and red colors represent a weaker and zero activation, 
respectively.

The results show higher activation in emotional stimuli 
areas for the ND subjects than the MDD subjects. The 
results focused on the ACC showed a response to emo-
tional stimuli in ND subjects. The ACC is highly acti-
vated due to an emotional musical stimulus. The entire 
ACC receives projections from the midbrain dopaminer-
gic neurons and is implicated in emotional functioning 
among the ND subjects, whereas the MDD subjects lack 
the same.

Within ACC ROI and in comparison with MDD and 
ND individuals, a significant difference is observed 
between MDD and ND groups in response to positive 
music vs negative music stimuli. In ND, subject acti-
vations increase from baseline to positive stimuli and 
decrease from baseline to negative stimuli. In contrast, 
participants with depression showed no difference from 
baseline to negative stimuli and a significant decrease to 
positive stimuli (FigurE 4A-B).

4. Discussion

In this study, a recently-developed Bayesian inference 
approach based on INLA was employed. To the best of 
the authors’ knowledge, this is the first research that ap-
plies the INLA algorithm for inferences of the described 
model in volumetric fMRI data. This Bayesian GLM ap-
proach was used in depressed subjects. Data download-
ed from the OpenfMRI database. This experiment was 
designed to investigate the neural processing of emotion 
and reward in depression. 

Activated a priori defined ACC was considered for 
analysis, and activation was compared within the ana-
tomic mask and between two groups, one experiencing 
a current depressive (MDD) and ND group who has no 
history of depression or other psychiatric disorder. Both 
groups reported similar emotional experiences from the 
stimuli. In both ND and MDD groups, positive stimuli 
activated ACC to a greater amount than negative stim-
uli. Dopamine projections are received from the ventral 
tegmental area by the vACC and are sent dorsally and 
laterally to executive control areas of the cortex (Reeve, 
2014). Blunted activation in this region has been as-
sociated with transient sadness (Devinsky, Morrell, & 
Vogt, 1995) and with depression (Davidson, Pizzagalli, 
Nitschke, & Putnam, 2002), suggesting that this region 
is critical for the experience of positive emotions. These 
findings confirm previous research (Menon & Levitin, 
2005; Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 
2011) and propose that during music listening, the dopa-
minergic system is active. 

Over the last decade, many researchers have investi-
gated the brain function in response to musical stimuli 
(Blood & Zatorre, 2001; Levitin & Tirovolas, 2009; Me-
non & Levitin, 2005; Peretz & Zatorre, 2005) and have 
indicated that music releases brain responses in reward 
centers (Menon & Levitin, 2005; Salimpoor et al., 2011). 
One study explored how major depressive disorder af-
fects the neural reactivity to music manifested, which 
in depression neural responsiveness for one’s favorite 
music is modified (Osuch et al., 2009).

In MDD and ND groups, when positive stimuli were 
compared to negative stimuli, ACC showed relatively 
more activation to positive stimuli in ND participants 
with a significant decrease from baseline to negative 
stimuli. Participants with depression showed a signifi-
cant decrease from baseline to positive stimuli but no dif-
ference from baseline for negative stimuli. 

The most impressive stimulation site for brain stimula-
tion in treatment-resistant depression is sgACC (Hamani 
et al., 2011). Although the activation found in this research 
expands beyond the sgACC, the entire ACC receives pro-
jections from the midbrain dopaminergic neurons and is 
involved in emotional functioning in depression cases 
(Drevets, 2000, 2001; Drevets, Price, & Furey, 2008). 
The current findings from this fMRI data and the use of 
emotional auditory stimuli corroborate results found by Os-
uch et al. (2009). They showed that individuals with de-
pression had reduced activation to music in this area. The 
pattern of activations within ACC in participants with de-
pression makes the question of whether music and specifi-
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cally positive music, may be useful in retraining the ACC 
and improving functioning. Further research is required for 
confirming activation in ACC through a longitudinal study 
with a music intervention. 

A new Bayesian GLM approach was proposed by 
Mejia et al. (2020) and was applied on cortical surface 
fMRI data from the Human Connectome Project. They 
mapped the volumetric fMRI data to the cortical surface 
manifold then used INLA for computational approxima-
tion (Mejia et al., 2020). In their study, the stochastic 
partial differential equation was considered for spatial 
correlation and entered the model via activation param-
eters. In the present study, the UGL prior was chosen 
for activation parameters. Also, one could apply another 
type of spatial prior such as intrinsic Conditional Au-
toregressive (CAR) prior (Keefe, Ferreira, & Franck, 
2019). Most of the Bayesian methods for fMRI data 
reduce computational trouble using Variational Bayes 
(VB). However, VB underestimates posterior. In this 
study, the INLA approach was employed for inferences. 
INLA is a computationally efficient but highly accurate 
approximate Bayesian inference tool. Since INLA is less 
computationally demanding than MCMC, it made the 
researchers capable of fitting a complex model based on 
UGL spatial prior in order to consider spatial correlation 
of voxels appropriately.

In our work, since a predefined ACC area is consid-
ered, one can assess the whole brain in response to 
music stimuli for finding more corresponding regions. 
Also, single-subject analysis is conducted in the present 
research. One can perform multi-subject analysis using 
the Bayesian GLM approach proposed by Mejia et al. 
(2020). In a similar study, Hamiltonian Monte Carlo 
(HMC) algorithm was applied for Bayesian inferences 
in fMRI data. For comparison purposes, one could apply 
HMC or MCMC for statistical inferences (Sidén et al., 
2017; Teng et al., 2017). Based on the literature, genetic 
factors influence emotion regulation (Hawn, Overstreet, 
Stewart, & Amstadter, 2015). Accordingly, besides 
fMRI data, by collecting genetic information, more re-
search could be done for assessing emotional and cogni-
tive processes by modifying genetic factors. 

5. Conclusions

The current study showed that in a healthy individual, 
positive auditory stimuli activated reward-processing ar-
eas of the brain that are involved in depression. Similarly, 
the activation pattern within ACC in a depressed individual 
may be useful and effective in retraining the ACC and im-
proving functioning, leading to therapeutic interventions.
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