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Introduction: Functional Magnetic Resonance Imaging (fMRI) methods have been used 
to study sensorimotor processing in the spinal cord. However, these techniques confront 
unwanted noises to the measured signal from the physiological fluctuations. In the spinal 
cord imaging, most of the challenges are consequences of cardiac and respiratory movement 
artifacts that are considered as significant sources of noise, especially in the thoracolumbar 
region. In this study, we investigated the effect of each source of physiological noise and their 
contribution to the outcome of the analysis of the blood-oxygen-level-dependent signal in the 
human thoracolumbar spinal cord.

Methods: Fifteen young healthy male volunteers participated in the study, and pain stimuli 
were delivered on the L5 dermatome between the two malleoli. Respiratory and cardiac 
signals were recorded during the imaging session, and the generated respiration and cardiac 
regressors were included in the general linear model for quantification of the effect of each of 
them on the task-analysis results.  The sum of active voxels of the clusters was calculated in the 
spinal cord in three correction states (respiration correction only, cardiac correction only, and 
respiration and cardiac noise corrections) and analyzed with analysis of variance statistical test 
and receiver operating characteristic curve.

Results: The results illustrated that cardiac noise correction had an effective role in increasing 
the active voxels (Mean±SD = 23.46±9.46) compared to other noise correction methods. 
Cardiac effects were higher than other physiological noise sources

Conclusion: In summary, our results indicate great respiration effects on the lumbar and 
thoracolumbar spinal cord fMRI, and its contribution to the heartbeat effect can be a significant 
variable in the individual fMRI data analysis. Displacement of the spinal cord and the effects of this 
noise in the thoracolumbar and lumbar spinal cord fMRI results are significant and cannot be ignored.
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1. Introduction

unctional Magnetic Resonance Imaging 
(fMRI) methods have been used to study 
sensorimotor processing in the brain and 
the spinal cord. Nowadays, spinal cord 
fMRI studies have investigated spinal cord 
in several pathologic conditions such as 
spinal cord injury (Alexander, Kozyrev, 

Figley & Richards, 2017; Cadotte et al., 2012; Chen, 
Mishra, Yang, Wang, & Gore, 2015; Chen, Kong, Wang, 
Xie, & Wu, 2007; Choe, 2017; Stroman et al., 2004; 
Stroman et al., 2016; Zhong et al., 2017), multiple scle-
rosis (Agosta et al., 2009; Agosta, Valsasina, Caputo, 
Stroman, & Filippi, 2008; Agosta et al., 2008; Kearney, 
Miller, & Ciccarelli, 2015; Rocca et al., 2012; Valsasina 
et al., 2010; Valsasina et al., 2012), chronic and neuro-
pathic pain (Bosma et al., 2016; Leitch, Cahill, Ghazni, 
Figley, & Stroman, 2009), all of which need consistent 
and sensitive clinical results. However, there are nu-
merous challenges for spinal cord fMRI which arises 
from the nature of spinal cord: bony structure of the 
vertebral canal; movement of the cord and adjacent tis-
sues due to physiological processes such as swallowing, 
breathing, and so on; the CSF flux in the subarachnoid 
space circumambient the spinal cord; small cross-sec-
tional dimensions of the spinal cord and; changing in 

the susceptibility of tissues due to breathing and bulk 
motion (Brooks et al., 2008; Fratini, Moraschi, Mara-
viglia, & Giove, 2014; Stroman et al., 2014; Verma & 
Cohen‐Adad, 2014). Some of these challenges can be 
addressed by improving the pulse sequence (Bosma & 
Stroman, 2014; Bouwman, Wilmink, Mess, & Backes, 
2008; Cohen-Adad, 2017; Nash et al., 2013; Weber, 
Chen, Wang, Kahnt, & Parrish, 2016; Xie et al., 2009), 
utilizing relevant MR imaging equipment (Bodurka, 
Ledden, & Bandettini, 2008; Cohen‐Adad, Mareyam, 
Keil, Polimeni, & Wald, 2011; Topfer, Foias, Stikov, & 
Cohen-Adad, 2017; Topfer et al., 2016; Zhang, Seifert, 
Kim, Borrello, & Xu, 2017), correction of B0-related 
distortions (Finsterbusch, Eippert, & Büchel, 2012; Fin-
sterbusch, Sprenger, & Büchel, 2013; Ryan et al., 2016; 
Topfer et al., 2016; Van Gelderen, De Zwart, Starewicz, 
Hinks, & Duyn, 2007), k-space sampling and Fourier 
image reconstruction (Agosta et al., 2008; Fruehwald-
Pallamar et al., 2012; Glover, 2012; Griswold et al., 2002; 
Li, Yu, Griffin, Levine, & Ji, 2015; Moeller et al., 2010; 
Nash et al., 2013), acquisition-based k- and image-
space corrections (Bollmann et al., 2017; Brooks, 2014; 
Xie et al., 2012), and raw-data processing in the form 
of signal and image (Brooks et al., 2008; Brooks, 2014; 
Cohen-Adad, Rossignol, & Hoge, 2009; Kong, Jenkin-
son, Andersson, Tracey, & Brooks, 2012; Piché et al., 
2009; Stroman, 2006; Xie et al., 2012). Although these 

Highlights 

● Respiration and heartbeat as physiological functions affect the spinal cord functional Magnetic Resonance Imaging 
(fMRI) data.

● Physiological noise correction in spinal fMRI increases the activated voxels in the spinal cord as true positive, and 
decreases the activated voxels in cerebrospinal fluid and surrounded tissues.

● Respiration function correction has a significant role in the reduction of physiological noise in thoracolumbar spinal 
cord fMRI, compared to cardiac function effect correction.

Plain Language Summary 

During the last decades, functional MRI has become a powerful tool in discovering complicated cognitive functions 
and diagnosing neurological problems. Recently, spinal cord fMRI is introduced to investigate sensory and motor path-
ways to detect functions of the central nervous system. As it has several confounding factors, including the physiologi-
cal noise, spinal cord fMRI is encountered as a challenging methodology. Two of the main sources of noise in spinal 
cord fMRI, which affect the activation map, are respiration and heartbeat. In this study, we assessed the effects of each 
of these noise sources, separately. We also integrated them in thoracolumbar and lumbar regions, where most of the 
noise effects exist. Our results suggest that correction of the heartbeat would result in a greater effect on the activated 
voxels in the spinal cord, comparing with respiration noise correction. Also, we have shown that integration between 
these two corrections may increase the precision of fMRI activation maps. It is worth mentioning that this study is the 
first of its kind to investigate the effect of different noises in thoracolumbar and lumbar regions.
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solutions help improve the signal quality, ultimately the 
effect of physiological fluctuations’ contribution to the 
measured signal is still controversial (Caballero-Gaud-
es & Reynolds, 2017; Kong et al., 2012). Several sourc-
es of physiological noises have been described in the 
fMRI literature, including those associated with cardiac 
and respiratory processes which were recognized as 
the most significant ones (Brooks, 2014; Fratini et al., 
2014; Kong et al., 2014). Spinal cord in thoracolumbar 
is close to the lungs and the diaphragm, that influence 
cerebrospinal fluid-filled spaces and cause changes in 
the susceptibility due to the changes in the amount of 
air in the lung (Tillieux et al., 2018; Verma & Cohen‐
Adad, 2014). Cardiac physiological noise is produced 
as a result of changes in Cerebral Blood Flow (CBF), 
Cerebral Blood Volume (CBV), arterial pulsatility, and 
effect of those on the CSF flow (Fratini et al., 2014; 
Parrish, Gitelman, LaBar, & Mesulam, 2000).  On the 
other hand, spinal cord in thoracolumbar is close to the 
lungs and the diaphragm, that influences cerebrospinal 
fluid-filled spaces and causes changes in the suscepti-
bility due to the changes in the amount of air in the lung 
(Verma & Cohen‐Adad, 2014). 

 Solutions for the effect of physiological noise in the 
spinal cord fMRI data series are categorized into three: 
strategies of image acquisition, preprocessing strate-
gies, and physiological noise modeling in the general 
linear model (GLM) analysis for the first level data 
processing (Brooks, 2014). There are two main strate-
gies for the acquisition of spinal cord fMRI data. First, 
imaging in axial orientation with Gradient Recall Echo-
Echo Planar Imaging (GRE-EPI) sequence that has a 
high in-plane resolution to make difference between 
white matter and gray matter. GRE-EPI sequence com-
bining double-shot spiral in/out trajectories can reduce 
physiological noise in spinal cord fMRI by diminish-
ing susceptibility-induced B0 field variations. Second, 
imaging in sagittal orientation to cover the considerable 
part of the spinal cord for the mapping based on the 
segments which remove susceptibility artifact which is 
necessary to suppress the effect of respiration using Fast 
Spin-Echo pulse (FSE) sequence and has a high con-
trast to noise ratio (Cohen-Adad, 2017; Leitch, Figley, 
& Stroman, 2010). In some previous studies, research-
ers used cardiac and respiratory gating to suppress the 
effect of respiration and heartbeat in the image acquisi-
tion strategies (Backes, Mess, & Wilmink, 2001; Maine-
ro, Zhang, Kumar, Rosen, & Sorensen, 2007; Stroman & 
Ryner, 2000; Stroman & Ryner, 2001), but the cardiac 
and respiration gating alone is suggested not being suf-
ficient in eliminating the noise.  Alternative solutions 
for detecting and mitigating physiological noise are 

based on recommendations for pre-processing spinal 
cord fMRI data. These recommendations include com-
bining pre-whitening with high-pass filtering (Eippert, 
Kong, Jenkinson, Tracey, & Brooks, 2017; Xie et al., 
2012) and identifying and scrubbing noise components 
which are obtained from spatiotemporal decompos-
ing fMRI signal by Independent Component Analy-
sis (ICA)- and principal component analysis (PCA)-
based methods (Hu, Jin, Li, Luk, & Wu, 2018; Xie et 
al., 2012). Furthermore, the main solution for spinal 
cord fMRI analysis is the methods based on GLM fit-
ting of noise regressors. These methods are generated 
from the principal components of spinal cord physi-
ological motion-related signal fluctuation, along with 
functionally-relevant signal changes. These regressors 
will be given from subject-specific cardiac and respira-
tion recorded data during the imaging session (Brooks, 
2014; Figley & Stroman, 2009; Kong et al., 2014). The 
toolboxes which can be used in fMRI data analysis are 
summarized in Table 1. 

Previous research suggested that the lumbar spinal 
cord is motionless and the noise fitting can be ignored 
(Figley, Yau, & Stroman, 2008). Others only considered 
the cardiac motion-related effects on the spinal cord and 
CSF (Alexander et al., 2017; Alexander et al., 2016; R. 
Bosma & Stroman, 2015; Figley & Stroman, 2009; Ko-
zyrev et al., 2012), and both these approaches may lead 
to biased information due to ignoring the respiration 
noise as one of the main sources of noise production. 
In this study, we investigated the effect of each source 
of physiological noise and their contributions to the 
outcome of the analysis of the Blood-Oxygen-Level-
Dependent (BOLD) signal by recording the changes in 
the heart-beat and respiration during fMRI experiments. 
We determined the quota of respiration and heartbeat 
physiological noise in thoracolumbar spinal cord neural 
activity detected by fMRI and evaluated the impact of 
this physiological noise on false-positive rates. 

2. Methods

2.1. Study participants

The participants included 15 right-handed healthy 
adults (14 males, Mean±SD age=25.88±4.44 years). 
None of the participants had any history or evidence 
of spinal cord/vertebral injury or dysmorphology. The 
participants provided informed consent before enroll-
ment in the study, and the Ethics Review Board at Teh-
ran University of Medical Sciences approved this study 
[Code: IR.TUMS.REC.1395.2616].
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2.2. Data acquisition procedure

All subjects were scanned while lying supine in a 3T 
whole-body MRI system (Siemens Magnetom Prisma; 
Siemens, Erlangen, Germany). Uniform radiofrequen-
cy (RF) pulses were transmitted with a body coil, while 
a matrix coil and the elements of a spine phased-array 
coil were used as receivers. Initial localizer images 

were acquired in three planes to provide a reference 
position for subsequent imaging. 

Subjects were carefully positioned in the scanner and 
a pain paradigm was performed. The pain stimulation 
intensity was regulated to 120% of the calculated pres-
sure pain threshold (Mean±SD: 4.691±0.577 kg) in the 
form of 60 monotonic pressure pain stimuli delivered 

Figure 1. Example of our GRE-EPI images

A: Coronal; and B: Sagittal views of the spine, with the yellow box illustrating the field of view of imaging; part c of the image 
shows the axial view of three sample slices

GRE-EPI: Gradient Recall Echo-Echo Planar Imaging.

Table 1. Tools which have been already used in physiological noise modeling in fMRI data analysis 

Toolbox Reference Paper Software Pack-
age Integration User Interface Using in the 

spinal fMRI
Additional

Information

RETROICOR Glover et al., 2000 AFNI MATLAB scripting; 
Command line * Utilizing  Fourier analysis to model 

and create physiological noise

RVHRCOR Chang et al., 2009 SPM MATLAB scripting _ A convolution model comprise respi-
ratory volumes and heartbeat rate

GLMdenoise Kay et al., 2013 SPM MATLAB scripting _
Automatically generate nuisance 
regressors  and determines the op-
timal number of them 

PhLEM Verstynen et al., 2011 SPM MATLAB scripting _
Automatically create multiple mod-
els of physiological noise to apply-
ing in the GLM model 

DRIFTER Särkkä et al., 2012 SPM MATLAB scripting _ A nonlinear Bayesian model of 
physiological noise

PhysIO Bollmann et al., 2017 SPM; TAPAS MATLAB scripting _
Toolbox integrates preprocessing of 
physiological data and fMRI noise 
modeling. 

PART Decker et al., 2006 SPM; FSL GUI; command line _
Toolbox conducts a complicated 
form of retrospective correction 
(like RETROICOR)

RESPITE Figley et al., 2009 SPM; Spinal fMRI MATLAB scripting * Cardiac motion-related noise mod-
eling for spin-echo spinal fMRI

PNM Brooks et al., 2008 FSL GUI; command line *
Toolbox models  the MRI signal via 
a series of sinusoidal basis func-
tions (like RETROICOR)
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on the L5 dermatome between the two malleoli in 6 
blocks of 60 seconds during one run of 540 seconds.

MRI images were acquired in an axial orientation 
and were sampled in an ascending, interleaved order 
between the ninth thoracic and the second lumbar ver-
tebras with high-order shimming, optimized over the 
vertebral canal. We performed fMRI which was opti-
mized to minimize the unwanted artifacts, as well as 
the susceptibility-induced signal drop-out. High-reso-
lution functional images of the thoracic and lumbar spi-
nal cord were acquired with a T2*-weighted GRE-EPI 
sequence using ZOOMit selective field-of-view imag-
ing EPI (TR = 3000 ms; TE = 30 ms; FA = 80°; FOV = 
160 × 160 mm; matrix size = 64 × 64; slice thickness 
= 4 mm; in-plane resolution = 2.5×2.5 mm; spectral at-
tenuated inversion recovery [SPAIR]). Figure 1 shows 
some GRE-EPI images for the thoracolumbar spinal 
cord are shown in.

Cardiovascular and respiratory procedures were mon-
itored utilizing the scanner’s photoplethysmograph, lo-
cated on a finger of the left hand, and a pneumatic belt 
tied around and under the chest region, respectively. 
Heart and respiratory data were both inspected at 400 
Hz on the Magnetom Prisma physiological monitoring 
unit. A record containing heartbeat trigger times and re-
spiratory waveforms were produced for each scanning 
session. Quantities in the respiratory waveform were 
transformed to a level of the full scale (the distinction 
between the most extreme and least belt positions mea-
sured during imaging).

2.3. fMRI data preprocessing

Preprocessing steps were performed using the Oxford 
Center for fMRI of the Brain’s FMRIB software li-
brary (FSL) (Jenkinson, Beckmann, Behrens, Woolrich, 
& Smith, 2012; Smith et al., 2004), and Spinal Cord 
Toolbox (SCT) (De Leener et al., 2017). In the motion 
correction step, the effect of non-rigid motion of tis-
sues outer on the vertebral column was decreased. This 
step was performed in two steps; I) 3D-realignment 
was performed using FMRIB’s linear image registra-
tion tool (Jenkinson, Bannister, Brady, & Smith, 2002) 
and II) the output of the previous step was entered 
into the 2D slice-wise realignment procedure by Sli-
ceReg, which estimates the slice-by-slice translations 
and regularization qualifications in the Z-axis direc-
tion (Cohen-Adad, Levy, & Avants, 2015; De Leener et 
al., 2017). In the motion correction level, we utilized a 
drawn binary cylindrical mask to cover the spinal cord 
and exclude other organs in the axial slices. The output 

of each motion correction level was visually and quan-
titatively (by calculating temporal SNR) inspected over 
the spinal cord and CSF, for quality control.

Then slice-timing correction and image intensity nor-
malization procedures were applied. Advanced spatial 
smoothing was performed next with a Gaussian ker-
nel of 2 mm full width half maximum (FWHM) in the 
straight spinal cord, and a high pass temporal filtering 
(sigma = 90 s). It is clear that the motion correction 
step does not remove all motion-related impacts and 
therefore, to complete this step, motion outlier volumes 
were identified with FSL’s motion outlier detection 
tool, and using the intensity-based DVARS (root mean 
square variance of intensity difference of volume N to 
volume N+1) metric and the default threshold calcu-
lated as follows: boxplot cutoff = 75th percentile + 1.5 
× interquartile range (IQR) (Afyouni & Nichols, 2018; 
Power et al., 2014).

Spatial ICA categorizes signal components into either 
neural activity, unwanted impacts of artifacts, or physi-
ological changes outside of the vertebral column. This 
step was performed in two levels, visual and quantita-
tive characterization of the independent components. In 
the first step, activated clusters outside of the vertebral 
column were considered as a structure of non-physio-
logical patterns such as the activated voxels in kidneys 
that are usually correlated to physiological noise (res-
piration, pulsation) (Griffanti et al., 2017). In the sec-
ond step, components were obtained for each data set, 
and specified criteria were determined as noise: (a) the 
power of the spatial component’s time series at high 
frequencies were larger than 0.08 Hz (b) more than 
50% of significantly activated voxels [Z > 2.3] was 
seen out of the manually drawn spinal cord and CSF 
mask in the component’s spatial map (Kelly Jr et al., 
2010; Vahdat et al., 2015).

2.4. Physiological noise modelling

To remove the respiratory and cardiovascular effects, 
and to evaluate each source of physiological noise, 
slice-specific regressors were generated by MATLAB 
and using a custom-made algorithm, based on a model 
similar to the retrospective image correction (RETROI-
COR) and FSL’s physiological noise modeling tool 
(PNM) (Brooks et al., 2008; Glover, Li, & Ress; Glover, 
Li, & Ress, 2000). After distinction of the recorded 
physiological signal, a cardiac and respiratory phase 
was defined for each slice, and next the respiratory and 
cardiac signals were modeled using a Fourier series 
(sine and cosine terms), using the principal frequency 
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and the next three harmonics (Glover et al., 2000). Fig-
ure 2 illustrates the example of respiration and cardiac 
noise regressors for GLM analysis.

2.4.1. General Linear Model analysis 

FMRIB’s Improved Linear Model (FILM) with pre-
whitening was used to create statistical maps of the 
filtered data-sets (Woolrich, Ripley, Brady, & Smith, 
2001; Worsley et al., 2002). The generated design ma-
trix was included as the hemodynamic response func-
tion (gamma, phase 0 s, standard deviation 3 s, average 
lag 6 s) convolved pain paradigm vectors. In this design 
matrix, the voxel-wise cardiac and respiration effects 
vectors, and the temporal masks of outlier time points 
were also included. Voxels with a P<0.05 (uncorrected) 
were considered as active, separately in the spinal cord 
and the CSF.

2.5. Statistical evaluation

The activated voxels of the clusters were obtained 
from each data set in four levels: 1) without any physi-
ological noise correction, 2) with respiration noise cor-
rection, 3) with cardiac noise correction, and 4) with 
cardiac along with respiration physiological effects 
correction.  The mean value of each parameter was 
computed and the analysis was performed using SPSS 
(Version 16.0, The SPSS, Inc., Chicago, IL, USA) and 
MATLAB (Version R2016a, The MathWorks, Inc., 
Natick, MA, USA). Normal distribution of the active 
voxels in different correction levels was assessed with 
the Kolmogorov-Smirnov test. The average value of 
the active voxels in the spinal cord and CSF were pro-
cessed with 1-way ANOVA with repeated measures in 
a within-subject comparison.

For each Z-score map, sensitivity and specificity were 
determined by comparing the spatial locations of ac-
tivated voxels. Sensitivity was estimated as the per-
centage of active voxels in the physiological corrected 
data-sets via respiration + cardiac effect modeling that 
was correctly detected as activated, and specificity was 
described as the percentage of voxels correctly detected 
as non-activated.

Comparisons between different source noise effects 
and noise modeling methods were assessed by using re-
ceiver operating characteristic (ROC) curves (Constable, 
Skudlarski, & Gore, 1995; Skudlarski, Constable, & Gore, 
1999; Sorenson & Wang, 1996). ROC curves have been 
utilized extensively as a tool for objective comparisons 
of various methods in fMRI studies (Bowring, Maumet, 
& Nichols, 2018; Wang, Wang, Aguirre, & Detre, 2005; 
Zhong, Zheng, Liu, & Lu, 2014). The attributes of the 
distribution of the probability of the signals and noise, 
and the degree to which they overlap, affect the accurate 
state of the ROC curve but do not make a hypothesis 
about these distributions (Sorenson & Wang, 1996).

3. Results

Comparison of the sum of active voxels in the spinal cord 
and share of each in the activated clusters are illustrated 
in Figures 3 and 4 and explained in Table 2. Also, in Ta-
ble 2, the results of descriptive statistical data analysis are 
presented. One-way within-subjects or repeated-measures 
ANOVA was utilized to evaluate the effect of physiological 
functions on spinal cord fMRI datasets, in the 4 correction 
levels. There was a statistically significant effect of physi-
ological noise correction on the number of active voxels in 
the spinal cord (F3,42 = 21.314,  P <0.001,  0.21), and in CSF 
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(F3,42= 63.2, P <0.05, ,0.28) . The Bonferroni post hoc test 
results indicate that cardiac noise correction had an effec-
tive role in the increased number of active voxels in both the 
spinal cord (Mean±SD = 23.46±9.46) and CSF (Mean±SD 
= 16.99±7.43) compared to other noise correction methods. 

The results of ROC analysis of spinal cord and CSF 
GLM results in the different physiological noise cor-
rection levels are illustrated in Figures 5 and 6, and 
summarized in Table 3 and 4. 

Table 4. Receiver operating characteristic analysis of the active voxels in CSF areas

Type of Map Sensitivity Specificity AUC P

No correction 0.626 0.622 0.659 0.0717

Only cardiac noise correction 0.748 0.715 0.751 0.0321*

Only respiration noise correction 0.811 0.754 0.864 0.0151*

The activation map with both cardiac and respiration correction was selected as the ground truth, and the three other maps 
were compared against it; AUC: Area under the curve.

* Demonstrates significant value (P<0.05).

Table 3.  Receiver operating characteristic analysis on the active voxels in the spinal cord

Type of Map Sensitivity Specificity AUC P

No correction 0.616 0.649 0.577 0.128

Only cardiac noise correction 0.808 0.765 0.859 0.003*

Only respiration noise correction 0.861 0.843 0.936 0.001*

The activation map with both cardiac and respiration correction was selected as the ground truth, and the three other maps were 
compared against it; AUC: Area under the curve;

* Demonstrates significant value (P<0.05).

Table 2. The results of the ANOVA test on the active voxels (df=3)

Subset for Alpha = 0.05

Parameters Mean F P

Cerebrospinal fluid

No correction 15.8

63.2 = 0.002743
Only respiratory noise correction 14.6

Only cardiac noise correction 16.9

Both corrections 12.6

Spinal cord

No correction 15.6

21.31 < 0.00001
Only respiratory noise correction 17.6

Only cardiac noise correction 23.4

Both corrections 20.8
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Overall performance of the correction method was 
rated as the area under the ROC curve (AUC), con-
sidering both uncorrected fMRI analysis results and 
alternative physiological effects. In the evaluation of 
physiological noise of both corrected and uncorrected 
spinal cord fMRI results, the AUC corresponding to the 
cardiac effect correction was 0.856 (P<0.05), and it was 
0.936 (P<0.05) for the respiration effect correction. In 
the CSF, the AUC corresponding to the cardiac effect 
correction was 0.751 (P<0.05), and 0.864 (P<0.05) for 
the respiration effect (Figure 7). Table 4 summarizes the 
results of the ROC analysis.

4. Discussion 

The heartbeat- and respiration-related movements are 
the main sources of physiological noise in the spine. 
Because of the concurrency between movements and 
tasks, correction of this movement can influence the 
observed effects of stimulations. Respiration effect is 
suggested to be the most important source, and its ef-
fects on the results are higher than the other sources 
of noise in the thoracolumbar and lumbar GRE-EPI 
fMRI. In this study, the effect of respiration physiologi-
cal noise was strongly observed in the cardiac noise-
corrected datasets, and ROC analysis demonstrated 
that the sensitivity and specificity of the respiration 
effect correction were increased. This result can be ex-

Figure 3. The influence of correction steps on the number of active voxels

The graphs show how the type of correction step influences the number of active voxels in the spinal cord areas 

Figure 4. The influence of correction steps on the number of active voxels

The graphs show how the type of correction step influences the number of active voxels in the CSF areas  
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plained by considering the bulk magnetic susceptibility 
changes and the associated B0 shifts in the spinal cord 
by respiration and the changes in the volume of lungs 
(Tillieux et al., 2018; Verma, 2014). B0 field shifting is 
reported to affect the pre-processing and GLM analysis 
of the spinal cord fMRI data (Durand, van de Moortele, 
Pachot‐Clouard, & Le Bihan, 2001; Parkes, Fulcher, Yu, 
& Fornitod, 2018; Raj, Anderson, & Gore, 2001; Yeo, 
Fessler, & Kim, 2008). 

The other source of noise is the physiological motion 
of the spinal cord by the respiration effects. The dif-
ferences between the respiration and heartbeat noises 
were assessed in this study, and the results showed that 
the effects of respiration on lumbar and thoracolumbar 
spinal cord physiological movements, as well as on the 
CSF flow, are significantly greater than the effects of 
the heartbeat. The impact of cardiac and respiration ef-
fects on spinal cord movements has been illustrated in 
previous studies as well (Figley et al., 2008; Winklhofer 
et al., 2014; Yildiz et al., 2017). The effect of respiration 
is more frequently studied than the heartbeat (Winkl-
hofer et al., 2014; Yildiz et al., 2017), and these effects 
were reported to be reduced in the lower parts of the 
vertebral column (Yildiz et al., 2017).

For spinal fMRI acquisition, researchers mostly use 
two MR imaging pulse sequences: HASTE/SS-FSE 
and GRE-EPI MR (Bouwman et al., 2008; Stroman et 
al., 2014). The effects of respiration on B0 bulk suscep-

tibility are greater than the heartbeat in the GRE-EPI 
sequence. The HASTE/SS-FSE is not sensitive to the 
susceptibilities in the vertebral column, the interverte-
bral disks, and the air‐filled lung (Poser & Norris, 2007; 
Stroman et al., 2014; Ye, Zhuo, Xue, & Zhou, 2010). 

As mentioned previously, the lumbar and sacral spinal 
cord are motionless in the three directions, suggesting 
that the spinal cord physiological motion can be ignored 
as a confounding factor for fMRI (Figley et al., 2008). 
This was observed in the HASTE/SS-FSE lumbar and 
thoracolumbar spinal cord fMRI as well (Alexander et 
al., 2017; Alexander et al., 2016; Kornelsen, Smith, & 
McIver, 2014; Kornelsen et al., 2013; Kozyrev et al., 
2012), by using RESPITE to remove residual cardiac 
noise effects (Figley & Stroman, 2009). Previous stud-
ies have shown the lumbar spinal cord (L1, L2) move-
ments to be greater than lower thoracic spinal cord (T7, 
T8, T9, T10) movements due to breathing (Winklhofer 
et al., 2014; Yildiz et al., 2017), and therefore our study 
suggests that the effect of respiration on physiological 
noise should be considered in the spinal cord fMRI 
analysis.

In older spinal fMRI studies, the physiological noise 
correction was rarely performed, and therefore in some 
of those studies, the activation voxels in the spinal cord 
were correlated with the motion caused by physiologi-

Figure 5. The Receiver Operating Characteristic (ROC) 
curves for different noise correction methods in CSF areas

Plots are the mean ROC curves of the 15th thoracolumbar 
spinal cord fMRI data-sets in the CSF areas. For respiration 
noise correction, the area under the ROC curve (AUC) is 
0.864, and for the cardiac noise correction it is 0.751, showing 
the superiority of the respiration noise correction method

Figure 6. The Receiver Operating Characteristic (ROC) 
curves for different noise correction methods in spinal cord 
areas

Plots are the mean ROC curves of the 15th thoracolumbar 
spinal cord fMRI data-sets in the spinal cord areas. For respi-
ration noise correction, the area under the ROC curve (AUC) 
is 0.936, and for the cardiac noise correction, it is 0.856, 
showing the superiority of the respiration noise correction 
method.
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cal functions (Chen et al., 2007; Komisaruk et al., 2002; 
Madi, Flanders, Vinitski, Herbison, & Nissanov, 2001; 
Maieron et al., 2007; Ng et al., 2008; Yoshizawa, Nose, 
Moore, & Sillerud, 1996). As an example, Kashkouli 
Nejad et al. investigated the impacts of interoceptive 
attention/awareness training on spinal cord neural ac-
tivity (Kashkouli Nejad et al., 2014), which is an inter-
esting finding; however, this study was limited by not 
recording the physiological measurements to correct 
the fMRI signal, which shows the need for replication 
of the results of this study.

4.1. Study limitations 

Despite the interesting findings of this study, some 
limitations should be considered. The interaction be-
tween respiration and heartbeat is important, which is 
ignored here. Also, the ICA-based motion and artifact 
corrections are better to be applied only to the tissue 

of interest, which was not considered here. And finally, 
this study only used a GRE-EPI optimized pulse se-
quence, and for more reliable results, this procedure 
should be replicated for a HASTE/SS-FSE protocol in 
the sagittal orientation. 

This study is novel research on physiological noise 
sources and their impacts on the spinal cord fMRI in 
the lumbar and thoracolumbar regions and illustrated 
that the respiration effects along with the heartbeat 
have much influence on the individual fMRI data and 
the outcomes of the analysis. These results show that 
correcting the fMRI data of the lower parts of the spi-
nal cord for such effects is very essential. These physi-
ological noise corrections can help obtain pure physi-
ological reactions related to neural activities. For future 
studies, the k-space motion correction and detecting 
motions during the MRI acquisition can be suggested 
to decrease the effect of physiological noise sources, 
especially the respiration.
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Figure 7. The influence of noise correction methods on the 
activation maps

A-D: The activation maps with no noise correction; E-H: The 
activations map after cardiac and respiration noise correc-
tion; This figure illustrates that physiological noise correc-
tion decreases the active voxels in the CSF (false positives) 
and increases active voxels in the spinal cord. 
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