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Introduction: Repetitive transcranial magnetic stimulation (rTMS) is a non-pharmacological 
treatment for drug-resistant major depressive disorder (MDD) patients. Since the success 
rate of rTMS treatment is about 50%-55%, it is essential to predict the treatment outcome 
before starting based on electroencephalogram (EEG) signals, leading to identifying effective 
biomarkers and reducing the burden of health care centers. 

Methods: To this end, pretreatment EEG data with 19 channels in the resting state from 34 
drug-resistant MDD patients were recorded. Then, all patients received 20 sessions of rTMS 
treatment, and a reduction of at least 50% in the total beck depression inventory (BDI-II) score 
before and after the rTMS treatment was defined as a reference. In the current study, effective 
brain connectivity features were determined by the direct directed transfer function (dDTF) 
method from patients’ pretreatment EEG data in all frequency bands separately. Then, the brain 
functional connectivity patterns were modeled as graphs by the dDTF method and examined 
with the local graph theory indices, including degree, out-degree, in-degree, strength, out-
strength, in-strength, and betweenness centrality. 

Results: The results indicated that the betweenness centrality index in the Fp2 node and the 
δ frequency band are the best biomarkers, with the highest area under the receiver operating 
characteristic curve value of 0.85 for predicting the rTMS treatment outcome in drug-resistant 
MDD patients. 

Conclusion: The proposed method investigated the significant biomarkers that can be used 
to predict the rTMS treatment outcome in drug-resistant MDD patients and help clinical 
decisions.
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1. Introduction

ajor depressive disorder (MDD) is a 
common mental disorder that currently 
affects over 264 million people of dif-
ferent ages. Depression is a significant 
cause of disability and contributes to the 

overall burden of illness associated with personal, social, 
and economic problems (Organization, 2017; Shiozawa 
et al., 2015). People with MDD experience symptoms 
such as low and chronic mood, decreased pleasure from 
previous activities, sleep disorders, mental retardation, 
fatigue and energy loss, weight change, and negative 
thoughts. They also suffer from pessimism to sin and 
suicidal thoughts (Association, 2000). 

Medicines and psychotherapy are the first lines of treat-
ment for MDD. However, around one-third of patients 
fail to respond to these treatments and are identified as 
treatment-resistant MDD patients (Berlim et al., 2008). 
Electroconvulsive therapy (ECT) and repetitive transcra-
nial magnetic stimulation (rTMS) are non-pharmacolog-
ical treatments for drug-resistant MDD patients. ECT 
has anesthesia risk, memory changes, and social stigma-
tization, whereas the rTMS is less invasive and painful 
than the ECT (Fink, 2001; Im & Lee, 2006; O’Reardon 
et al., 2007). In rTMS, based on the patient and treatment 
procedure stimulation parameters, such as coil shape, in-
tensity, frequency, train duration, and inter-train interval, 
a series of magnetic pulses are applied to the cerebral 
cortex. These magnetic pulses can modulate the neuro-

nal activity of target points (Beuzon et al., 2017). rTMS 
can change brain activity according to its frequency. 
High frequency (HF) (usually ≥10 Hz) is used to stimu-
late the target point, whereas low frequency (LF) (usu-
ally ≤1 Hz) inhibits the target point (Milev et al., 2016). 
Due to the left hypoactivity and right hyperactivity dor-
solateral prefrontal cortex (DLPFC) in MDD patients, 
HF rTMS and LF rTMS are applied to the left and right 
DLPFC, respectively (Brunoni et al., 2017; Mayberg et 
al., 2000). Recent studies indicate that the success rate of 
rTMS treatment in people with MDD is about 50%-55% 
(Carpenter et al., 2012; Ciobanu et al., 2013). Because 
the rTMS treatment period is long (about 20 sessions) 
and the costs on healthcare systems are high, predicting 
the response to treatment through a personalized medi-
cine approach is necessary and helps clinical decisions 
(Silverstein et al., 2015). 

Currently, the prescription of rTMS treatment is based 
on clinical evaluation and lacks sufficient accuracy to 
predict the rTMS treatment outcome, especially before 
starting the treatment (Shalbaf et al., 2018). In one study, 
demographic indicators, depressive characteristics, and 
medicinal history were used as clinical predictors, and 
results demonstrated that MDD patients who are young-
er and show less refractory to medication have a better 
response to the rTMS treatment (Fregni et al., 2006). 
Another study, in addition to age, examined the effects 
of gender, menopausal status, and ovarian hormone 
levels in women. It was shown that there was no dif-
ference in rTMS response between men and premeno-

Highlights 

• Fp2 region as a significant biomarker was significantly different for non-responders as compared to responders to 
repetitive transcranial magnetic stimulation (rTMS) treatment.

• The proposed graph theory methodology based on the effective connectivity of electroencephalogram (EEG) signals 
improved prediction performance.

• This innovative approach to predict rTMS treatment outcome in major depressive disorder (MDD) patients could 
improve treatment efficacy and reduce health care costs.

Plain Language Summary 

In this study, we innovate a new method to predict how repetitive transcranial magnetic stimulation (rTMS) could be 
effective in drug-resistant major depressive disorder (MDD) patients. By analyzing brain activity (EEG) in 34 MDD 
patients before starting the rTMS treatment, we identified specific brain patterns, particularly in the delta frequency 
band, that were associated with treatment success. We found that a measure called betweenness centrality in Fp2 (a 
specific brain region) could predict better the rTMS treatment outcome. These findings could help healthcare centers 
to personalize treatment plans for MDD patients, potentially saving time and resources while improving patient care.
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pausal women (68.8% and 70.6%, respectively). Be-
sides, the rTMS treatment outcome in postmenopausal 
women is low. The regression analysis has indicated that 
menopause and ovarian steroid levels play a key role in 
the rTMS treatment outcome in women (Huang et al., 
2008). In one study, Rostami et al. evaluated clinical and 
demographic data. Based on the results, the patients with 
better cognitive-emotional symptoms respond better to 
rTMS treatment than the somatic symptoms (Rostami et 
al., 2017). As observed in these studies, due to the MDD 
patients’ differences in individual characteristics and 
brain structures, clinical data lack sufficient accuracy in 
predicting the rTMS treatment outcome.

The search for biomarkers to predict the rTMS treat-
ment outcome in MDD patients has expanded on neu-
roimaging methods based on electroencephalogram 
(EEG). Clinicians frequently use EEG to identify effec-
tive biomarkers. EEG has many advantages, including 
ease of use, sufficient temporal resolution, non-invasive-
ness, and accessibility in the clinic (Shalbafet al., 2020a; 
Shalbaf et al., 2020b). Several linear and non-linear 
measures from EEG signals have been proposed as pre-
dictors of the rTMS treatment outcome in patients with 
drug-resistant MDD. One study used non-linear EEG 
features, including Lempel-Ziv complexity (LZC) and 
the largest Lyapunov exponent in an α frequency band. 
Non-responders indicated a significant decrease in LZC, 
while responders showed an increase in LZC (Arns et 
al., 2014). In another study, MDD patients were classi-
fied into responder and non-responder for rTMS treat-
ment using feature selection of EEG signals based on a 
genetic algorithm and an artificial neural network (Er-
guzel et al., 2015). In other studies, additional features 
such as permutation entropy (Shalbaf et al., 2018), Katz 
fractal dimension, and correlation dimension (Hasanza-
deh et al., 2019) were extracted from EEG signals and 
examined to predict the rTMS treatment outcome in 
drug-resistant MDD patients. These methods contribute 
to analyzing the complexity of EEG signals, but the EEG 
signal is non-stationary, and these methods have limita-
tions in estimating accurate temporal patterns. 

Neuroimaging techniques reveal that a single EEG 
channel cannot represent complicated neurophysiologi-
cal changes in psychiatric disorders. Recent research has 
indicated that the human brain is a complex integrated 
network consisting of interconnected brain areas to form 
subnets of the brain. Examining these networks can pro-
vide a new perspective on how the brain works. Conse-
quently, understanding the brain’s neural dynamic pat-
terns and behavior provides the best features to predict 
rTMS treatment response. Complex interactions across 

brain regions can be described through functional and 
effective brain connectivity measures (Friston, 2011). 
Functional connectivity indicates only coordinated ac-
tivity and statistical dependency between brain areas, 
while effective connectivity provides information about 
the causal relationship between brain areas (Olejarczyk 
& Jernajczyk, 2017). Granger causality (GC) is widely 
used to estimate the effective brain connectivities that 
characterize the directed information flow and causal 
interaction between time series of EEG signals. Graph 
theory methods are often used for quantitative analysis 
of brain connection. Graph theory is a theoretical plat-
form to examine complex networks like the brain, which 
can provide valuable information about the local organi-
zation of the functional brain networks (Van Den Heuvel 
& Pol, 2010). 

The novelties of the current study are the use of effec-
tive brain connectivity measures by pretreatment EEG 
signals to estimate the graph theory indices, which helps 
identify the brain’s complex networks and its best pat-
terns to find significant biomarkers between two groups 
of responder and non-responder MDD patients. These 
findings will lead to a decrease in the time and cost of 
the patients before starting the rTMS treatment. 

2. Materials and Methods

Participants and clinical assessment

The EEG data were recorded at the Atieh Clinical 
Neuroscience Center from 34 MDD patients refrac-
tory to medication (Mean±SD age: 37.1±13.4 years, 
25 women) who were referred for rTMS treatment. An 
experienced psychiatrist, based on the structured clini-
cal interviews for axis I DSM-IV (First, 1997), made the 
diagnosis of MDD, and the patient was subjected to a 
baseline clinical assessment using the beck depression 
inventory (BDI-II) (Beck et al., 1961). This inventory 
has 21 self-report questions dealing with the status of 
the subjects in their past week. Each question consists of 
four answers ranging in intensity. All MDD patients re-
ceived 20 sessions of rTMS treatment, three sessions per 
week, in the right DLPFC area of the brain. BDI scores 
for all MDD patients were assessed one week before 
rTMS treatment and after 20 sessions of rTMS. A reduc-
tion of at least 50% of the total BDI score is defined as 
the rTMS treatment outcome. In the current study, the 
participants’ written consent was obtained, and the study 
was authorized by Shahid Beheshti University of Medi-
cal Sciences Ethics Committee. The demographic data 
and clinical characteristics of participants are summa-
rized in Table 1.
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rTMS treatment parameters

Atieh Clinical Neuroscience Center utilizes a Neuro 
MS rTMS device (Neurosoft, Russia) for patients re-
ferred for the rTMS treatment. Magnetic pulses are de-
livered through a 70-mm stimulation coil (air film coil). 
Each patient's motor threshold is defined as the lowest 
intensity needed to stimulate the motor cortex that causes 
a contraction of the abductor pollicis brevis (APB) mus-
cle in at least 5 out of 10 attempts. The coil position is 
5 cm anterior along a parasagittal line from the site of 
optimum APB stimulation. All patients received the LF-
rTMS protocol. This protocol delivered stimulation over 
the right DLPFC, at 120% of the resting motor thresh-
old, for 10 s at 1-Hz with 2 s intervals. This procedure 
is repeated 200 times (2000 pulses) per session (40000 
pulses over 20 sessions).

Pretreatment EEG acquisition

All EEG signals were recorded in the resting state with 
closed eyes condition for 300 seconds with 19 channels 
of Ag/AgCl electrodes (Mitsar-EEG 201 machine). The 
position of the electrodes was according to the 10-20 
standard (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, 
T8, P7, P3, Pz, P4, P8, O1, and O2) and the sampling 
rate of recorded EEG signals was 250 Hz.

EEG preprocessing

The EEGLAB open-source toolbox (Delorme & 
Makeig, 2004) has been used to preprocess and remove 
the environmental and movement noise from EEG data. 
At first, a high-pass filter (1 Hz) purified EEG signals 
and removed the baseline drift. EEG signals were re-ref-
erenced by the average reference. The CleanLine open-
source plugin (Mullen, 2012) in the EEGLAB toolbox 
has been used to remove the line noise from EEG signal 
channels. This plugin uses a sliding window to estimate 
sine wave amplitude to decrease, and in comparison 

with a notch filter, it does not make a hole in the EEG 
spectrum. EEG data were cleaned visually by the “re-
ject continuous data by eye” section to remove the mo-
tion artifacts (that existed in all channels). After relative 
cleanliness, independent component analysis (ICA) was 
utilized to clean the data from blinking and head move-
ments. In the end, we hold 150 seconds of all subjects to 
unify the data.

Effective connectivity

Effective connectivity provides information on the 
causal interaction relationship between the time series of 
EEG signals and characterizes the directed information 
flow (Olejarczyk & Jernajczyk, 2017). Effective connec-
tivity is extracted by the SIFT open-source plugin (Delo-
rme et al., 2011) in the EEGLAB toolbox. The Granger 
causality (GC) is widely used to calculate effective brain 
connectivities. The directed transfer function (DTF) is 
a GC-based scale defined in the frequency domain and 
could be computed based on a multivariate autoregres-
sive model (MVAR) (Kaminski & Blinowska, 1991). 
For an X(t) as -channel multivariate time series, it ob-
tains (Equations 1 and 2):
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√𝑀𝑀𝜋𝜋𝜋𝜋(𝑓𝑓)𝑀𝑀𝑖𝑖𝑖𝑖(𝑓𝑓)
 

𝐹𝐹𝜋𝜋𝑖𝑖
2(𝑓𝑓) =  |𝐻𝐻𝜋𝜋𝑖𝑖(𝑓𝑓)|2
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, where 𝐶𝐶𝜋𝜋𝑖𝑖
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Table 1. Demographic and clinical characteristics of the participants

Characteristics
No./Mean±SD

Responder (n=17) Non-responder (n=17) Total (n=34)

Gender (female/male) 14/3 11/6 25/9

Age (y) 34.8±12 39.3±14.7 37.1±13.4

Pretreatment BDI 31±10.3 31.2±10.4 31.1±10.2

Posttreatment BDI, Mean±SD 9.4±5.5 23.2±11.8 16.3±11.4

BDI: Beck depression inventory. 
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The filter coefficients matrix H(f) is known as the sys-
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There exists a direct causal relationship between chan-
nels j→i when both functions Fij

2(f) and Cij
2(f) are non-

zero. So, the dDTF method has compensated for the 
lack of other effective connectivities by combining the 
advantages of DTF and partial coherence methods and 
has indicated more reliable effective connectivity.

Graph analysis

Graph theory analysis has been used to obtain a new 
perspective on complex networks like the brain. The 
brain’s nervous system is a complex network that can be 
modeled as a graph. The EEG channels (brain regions) 
are nodes, and the edges represent the brain connections 
calculated by the dDTF method. As a result, brain func-
tion based on graph indices can be assessed (Rubinov 
& Sporns, 2010). For each obtained graph, the local in-
dices have been calculated (Bullmore & Sporns, 2009; 
Rubinov & Sporns, 2010). The first index is degree; the 
node’s degree represents the number of neighbors con-
nected to the given node. This index can be computed 
as inward and outward links, in-degree and out-degree, 
respectively. Each edge (link) has a weight that indicates 
whether the connection is strong or weak. Strength is the 
sum of all neighboring link weights. Furthermore, the 
strength of nodes can be computed inward and outward 
links as in-strength and out-strength. Another important 
graph-based index is centrality, which makes it possible 
to assess the node’s importance in interactions with other 
nodes (Chiang & Haneef, 2014). Betweenness central-
ity calculates these types of nodes and demonstrates the 
fraction of all shortest paths in the network that pass 
across a given node. Graph-based indices are calculated 
using functions implemented in the BCT open-source 
toolbox (Rubinov & Sporns, 2010).

Statistical analysis

The statistical analysis assesses the significance of the 
extracted features. The current study has used the Wil-
coxon rank-sum test to examine the sample indepen-
dence of the two groups (Fay & Proschan, 2010). The 
area under the receiver operating characteristic curve 
(AUC-ROC) has been used to evaluate the performance 
of two group classification algorithms to select the best 
features (Mamitsuka, 2006).

Overview of the proposed method

The proposed method’s block diagram is summarized 
in Figure 1. First, the raw EEG data will be processed 
using the EEGLAB open-source toolbox. The prepro-
cessing block removes the environmental and subject 
artifacts to extract the pure brain activity, including fre-
quency filtering and line noise cancellation, artifacts re-
moval, ICA (to remove blinking and head movements), 
and time correction. Then, the effective brain connectiv-
ity between 19 EEG signal channels is calculated using 
the dDTF method in all frequency bands of the δ, θ, α, 
β, and γ and used as the extracted feature using the SIFT 
plugin (Mullen, 2010) in the EEGLAB toolbox. The 
connectivity matrix (dDTF) is 19×19 per patient. In the 
following, brain function is modeled as a graph by the 
dDTF method and examined with the local graph theory 
indices such as degree, out-degree, in-degree, strength, 
out-strength, in-strength, and betweenness centrality. Fi-
nally, the Wilcoxon rank-sum test (P) and AUC-ROC are 
utilized to identify the best indices and significant bio-
markers to predict the rTMS treatment outcome in MDD 
patients refractory to drugs.

3. Results

After preprocessing, each EEG data was segmented 
into a window length of 10 seconds. The dDTF values 
indicate a causal relationship between different brain ar-
eas based on the parameters of the MVAR model. The 
dDTF brain connectivity features have been extracted in 
the δ (1-4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12-30 Hz), and 
γ (30-40 Hz) frequency bands, separately. The MVAR 
model parameters have been selected according to the 
autocorrelation function and portmanteau tests (model 
order=12). Autocorrelation function and portmanteau 
tests have been used to pass the order selection criteria 
(whiteness, consistency, and stability). The dDTF meth-
od calculated the connectivity matrix by 10-s windows, 
and the mean values of the 15 windows (150 s) from the 
whole signal were assigned as a connectivity matrix for 
each patient. Then, the brain is modeled as a graph so 
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that nodes represent EEG channels (brain regions) and 
edges represent the brain connections determined by the 
dDTF method. Figure 2 illustrates the normalized mean 
values of brain connectivity matrices and the causal rela-
tionship between different brain areas calculated by the 
dDTF method for responding and non-responding MDD 
patients in δ, θ, α, β, and γ frequency bands separately. 

Next, the brain function is examined with the graph 
theory indices using the embedded functions in the BCT 
open-source toolbox. Local indices, including degree, 
out-degree, in-degree, strength, out-strength, in-strength, 
and betweenness centrality, were calculated for each ob-
tained graph. Graph theory indices for each node (EEG 
channels) were calculated for all frequency bands at dif-
ferent thresholds (for example, at the 70% threshold, 
30% of the weakest connections in the brain connectivity 
matrix were removed). The Wilcoxon rank-sum test (P) 
and the AUC-ROC were used to identify the best indices 
that predict the rTMS treatment outcome. The results of 
this process, including the Mean±SD values of the graph 
theory indices for responder versus non-responder MDD 
patients for each frequency band with the highest AUC-
ROC, are reported in Table 2 separately. In other words, 
each graph theory index has been calculated at differ-
ent nodes and thresholds, and the best one based on the 
highest AUC-ROC is reported in Table 2. For example, 
in betweenness centrality at the δ band, the Fp2 node at 
the threshold of 0.7 have the highest AUC-ROC (0.85) 

and P<0.001. Also, the best graph theory indices for all 
frequency bands based on AUC-ROC are reported in 
Table 3. According to Table 2, graph theory indices have 
the highest AUC-ROC values in the δ and θ bands. By 
examining the AUC-ROC values of graph theory indi-
ces, it is notable that the degree, strength, and between-
ness centrality in the δ frequency band and in-degree, 
out-strength, and in-strength in the θ frequency band 
have the highest AUC-ROC values. Also, by assessing 
the most notable brain areas, the Fp2 node has the high-
est AUC-ROC values (Tables 2 and 3). According to 
Table 2, degree, strength, out-degree, out-strength, and 
betweenness centrality in the Fp2 area have the high-
est AUC-ROC values. The Fp2 area is a source of in-
formation for this target, and therefore, out-degree and 
out-strength indices have higher AUC-ROC values than 
in-degree and in-strength indices. In Table 3, out of the 
18 highest-rated indices, 14 were in the Fp2 area as the 
best brain area to predict the rTMS treatment outcome. 
Finally, from the graph theory indices perspective, the 
betweenness centrality has the highest AUC-ROC val-
ues (Tables 2 and 3). In summary, with the assessment 
of all graph theory indices, the betweenness centrality 
in the Fp2 area and the δ frequency band has the highest 
AUC-ROC value of 0.854 and the P<0.001 in the thresh-
old of 0.7. 
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Figure 1. The proposed method’s block diagram

A) EEG data acquisition; B) Pre-processing; C) Construction of effective connectivity matrix; D) Connectivity matrices modeled 
as a graph; E) Statistical analysis (AUC-ROC and Wilcoxon rank-sum test) to determine the significant biomarkers

Abbreviations: EEG: Electroencephalogram; dDTF: Direct directed transfer function; AUC-ROC: The area under the receiver 
operating characteristic curve.
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4. Discussion

Effective brain connectivity and graph theory criteria 
were used in this study to predict the rTMS treatment 
outcome in drug-refractory MDD patients. We calcu-
lated most local graph theory indices and found the pre-
frontal region, especially the Fp2 area in the δ frequency 
band, a critical brain region for this aim. 

The dDTF method provides the best effective brain con-
nectivity. This method calculates direct directed connec-
tions and excludes indirect and false connections from 
the connectivity matrix, unlike the Granger-Geweke 
causality. This method is one of the multivariate methods 

based on multichannel AR models that can identify the 
causal relationships between signals and determine the 
direct flow of activity between time series. The defini-
tion of dDTF measure in the frequency domain allows us 
to study the role of different EEG rhythms in information 
processing. Also, the DTF method is based on the phase 
difference between the time series, so it is insensitive to 
the effect of volume conductance and robust to noise. 
Based on the advantages of the dDTF method, it can be 
concluded that the dDTF method used in this study pro-
vides the most effective brain connectivity. Also, physi-
ological evidence shows their efficiency in other brain 
studies (Blinowska, 2011).

Table 2. Values of graph-based indices for responder vs non-responder MDD patients based on their highest AUC-ROC values

Graph Index
Frequency Band

δ θ α β γ

In-degree

Node=C3
9.18±3.88 vs 

7.06±4.71
AUC=0.6505

P=0.1082
Th=0.6

Node=T8
8.41±3.08 vs 

5.76±3.23
AUC=0.7163

P=0.0146
Th=0.3

Node=T8
8.53±2.12 vs 

6.53±2.48
AUC=0.6332

P=0.0461
Th=0.5

Node=P4
5.59±3.12 vs 

3.89±2.50
AUC=0.6401

P=0.0826
Th=0.3

Node=T8
10.41±5.78 vs 

7.71±6.59
AUC=0.6228

P=0.1236
Th=0.3

Out-degree

Node=Fp2
13.06±4.88 vs 

6.35±5.43
AUC=0.7889

P=0.0017
Th=0.3

Node=Fp2
16.00±2.74 vs 

11.12±5.29
AUC=0.7785

P=0.0019
Th=0.5

Node=Fp2
9.71±5.98 vs 

3.59±5.41
AUC=0.7751

P=0.0026
Th=0.3

Node=Fp2
5.24±4.72 vs 

1.88±3.72
AUC=0.7958

P=0.0011
Th=0.1

Node=P3
12.24±3.13 vs 

8.29±3.93
AUC=0.7543

P=0.0035
Th=0.6

Degree

Node=Fp2
24.65±4.95 vs 

17.71±7.08
AUC=0.7751

P=0.0052
Th=0.3

Node=Fp2
20.41±3.89 vs 

16.76±5.09
AUC=0.7197

P=0.0155
Th=0.4

Node=Fp2
11.65±4.81 vs 

7.12±4.64
AUC=0.7197

P=0.0153
Th=0.3

Node=P3
28.47±3.64 vs 

24.29±3.80
AUC=0.7578

P=0.0039
Th=0.7

Node=P8
23.18±5.31 vs 

19.65±6.23
AUC=0.6713

P=0.0646
Th=0.6

In-strength

Node=C3
3.20±1.68 vs 

2.73±2.27
AUC=0.6332

P=0.1906
Th=0.5

Node=F7
3.01±1.26 vs 

2.05±0.87
AUC=0.7405

P=0.0175
Th=0.2

Node=Fz
2.00±0.69 vs 

1.41±0.78
AUC=0.7266

P=0.0252
Th=0.1

Node=P4
3.19±2.03 vs 

2.18±1.47
AUC=0.6540

P=0.1253
Th=0.3

Node=T8
5.17±3.42 vs 

4.23±4.36
AUC=0.6332

P=0.1906
Th=0.3

Out-strength

Node=Fp2
6.43±3.67 vs 

2.79±3.42
AUC=0.7958

P=0.0034
Th=0.2

Node=Fp2
9.54±2.64 vs 

5.91±3.69
AUC=0.8097

P=0.0022
Th=0.5

Node=Fp2
6.80±4.05 vs 

3.01±3.86
AUC=0.7889

P=0.0042
Th=0.4

Node=Fp2
3.70±3.75 vs 

1.38±2.88
AUC=0.7993

P=0.0014
Th=0.1

Node=Fp2
4.12±3.00 vs 

1.88±1.81
AUC=0.7751

P=0.0065
Th=0.1

Strength

Node=Fp2
11.33±2.90 vs 

8.04±4.07
AUC=0.7578

P=0.0108
Th=0.2

Node=Fp2
12.17±3.07 vs 

9.42±3.63
AUC=0.7197

P=0.03
Th=0.4

Node=Fp2
8.10±3.54 vs 

5.27±3.26
AUC=0.7578

P=0.0108
Th=0.4

Node=Fp2
5.98±3.82 vs 

3.90±3.67
AUC=0.7232

P=0.0275
Th=0.2

Node=P3
5.50±4.42 vs 

3.77±2.91
AUC=0.6367

P=0.1792
Th=0.3

Betweenness 
centrality

Node=Fp2
27.2±8.74 vs 
14.93±11.97
AUC=0.8547

P=0.0004
Th=0.7

Node=Fz
2.19±1.65 vs 

1.23±1.06
AUC=0.6782

P=0.0790
Th=0.9

Node=P8
3.50±2.09 vs 

1.94±1.37
AUC=0.7301

P=0.0220
Th=0.9

Node=P3
19.17±31.15 vs 

2.54±3.77
AUC=0.8166

P=0.0013
Th=0.5

Node=Cz
2.53±1.64 vs 

1.07±1.73
AUC=0.8097

P=0.0022
Th=0.9

Abbreviations: MDD: Major depressive disorder; AUC: Area under curve; Th: Threshold. 
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Among all calculated graph theory indices, the be-
tweenness centrality index in the Fp2 area and the δ fre-
quency band have the highest AUC-ROC values (Tables 
2 and 3). The betweenness centrality indicates the node 
connecting different parts of the network, usually char-
acterized by a high centrality. Thus, an area with the 
highest betweenness centrality mediates the connection 
of nodes in other brain areas. Therefore, each node with 
the highest betweenness centrality is more active than 
the others. The more activity in prefrontal regions in the 
δ and θ band, especially the Fp2 area in the δ frequency 
band, indicated the most significant biomarker.

Out-degree and out-strength indices have the highest AUC-
ROC values after the betweenness centrality index. These in-
dices represent the source of information and identify the area 
that is the cause of information flow in the brain network. In 
Figures 2, the individual node that sends the highest values of 
brain connectivity has the highest out-degree and out-strength 

values. A high AUC-ROC value in out-degree and out-
strength indicates significant differences between two groups 
of responders and non-responders to the rTMS treatment. The 
prefrontal region in the δ and θ band, and in particular the Fp2 
region in the δ band, is the source of information, which is 
expressed by higher differences between out-degree and out-
strength indices, corresponding to higher AUC-ROC values 
in two groups for this target. Other indices, such as in-degree 
and in-strength indices, specify the network nodes where in-
formation flow is imported from other areas. Table 2 indicates 
that only the T8 node has this property, but since it has a low 
AUC-ROC value, it is disregarded as an effective biomarker. 
Consequently, considerable information for distinguishing 
between responder and non-responder MDD groups is avail-
able in the prefrontal region, especially in the Fp2 area. Other 
brain regions are less involved in this type of disorder. Graph 
theory indices of this region have significant differences in the 
δ and θ frequency bands used as one of the rTMS treatment 
outcome predictors in drug-resistant MDD patients.
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Table 3. The ranked highest graph theory indices for all frequency bands based on AUC-values

Graph Index Frequency Band Node AUC-ROC value P Threshold

Betweenness centrality δ Fp2 0.8547 0.0004 0.7

Betweenness centrality δ Fp2 0.8512 0.0005 0.8

Betweenness centrality β P3 0.8166 0.0013 0.5

Betweenness centrality γ Cz 0.8097 0.0022 0.9

Out-strength θ Fp2 0.8097 0.0022 0.5

Betweenness centrality δ Fp2 0.8062 0.0024 0.6

Betweenness centrality β P3 0.7993 0.0031 0.9

Out-strength θ Fp2 0.7993 0.0031 0.6

Out-strength β Fp2 0.7993 0.0014 0.1

Betweenness centrality β P3 0.7993 0.0031 0.9

Out-strength θ Fp2 0.7958 0.0034 0.7

Out-degree β Fp2 0.7958 0.0011 0.1

Out-strength δ Fp2 0.7958 0.0034 0.2

Out-strength δ Fp2 0.7958 0.0034 0.3

Out-strength δ Fp2 0.7958 0.0034 0.4

Out-strength θ Fp2 0.7924 0.0038 0.8

Betweenness centrality δ Fp2 0.7924 0.0038 0.5

Betweenness centrality δ Fp2 0.7924 0.0038 0.3

AUC: Area under curve; AUC-ROC: The area under the receiver operating characteristic curve. 
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Figure 2. Normalized brain connectivity matrix for responder vs non-responder MDD patients based on the dDTF method in 
all frequency bands

MDD: Major depressive disorder; dDTF: Direct directed transfer function.
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The obtained results from graph theory indices indi-
cate that the greatest differences between indices were 
observed in the δ frequency band and that the significant 
differences between indices were found in θ and β fre-
quency bands and suitable biomarkers for distinguishing 
between responder and non-responder groups to rTMS 
treatment in MDD patients (Tables 2 and 3). As in pre-
vious studies (Hunter et al., 2007; Knott et al., 2000; 
Mumtaz et al., 2017), the indices calculated in δ and 
θ frequency bands have shown higher efficiency than 
other frequency bands in classifying the two groups. 
The considerable changes in connectivity in δ and θ fre-
quency bands in the frontal cortex of MDD patients can 
be explained from a neurobiological point of view using 
θ current density in the rostral anterior cingulate cortex 
(rACC) (Korb et al., 2009; Mulert et al., 2007; Pizzagalli 
et al., 2001). This region is the cause of the response to 
different types of medication for depression. The rACC 
is the hub in the brain default network and is associated 
with self-focused processing. Besides, the rACC resting-
state activity affects rumination, memory, and plan-
ning (Simpson et al., 2001). Reflective pondering and 
brooding are essential elements of rumination and are 
mechanisms for responding to distress. Increasing the 
rACC activity may lead to less self-focused and better 
response to the treatment due to adaptive self-referential 
functions. Also, the MRI data in depressed patients indi-
cated better functional connectivity discrimination in the 
rACC than in the other brain regions (Zeng et al., 2014).

5. Conclusion

This study investigated the significant biomarkers that 
can be used to obtain the rTMS treatment response in 
drug-resistant MDD patients. Personal medicine ap-
proaches will reduce the cost of treatment and increase 
the treatment method’s effectiveness in psychiatric dis-
orders. With the assessment of several graph theory 
indices, it is shown that the Fp2 region plays the most 
significant role in the prediction of the rTMS treatment 
response in drug-resistance MDD, especially the be-
tweenness centrality in Fp2 and the δ frequency band are 
the best and have the highest AUC value of 0.854. 

For future work, it is suggested that more EEG chan-
nels be used to calculate graph theory indices, then 
feature selection methods, machine learning, and deep 
learning methods be used to classify the MDD patients 
who respond to the rTMS.
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