Volume 9, Issue 3 (Issue in Progress 2018 2018)                   BCN 2018, 9(3): 209-216 | Back to browse issues page


XML Print


1- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
2- PhD Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
3- Department of Biology, Faculty of Sciences, Payame Noor University, Tehran, Iran.
Abstract:  

Introduction: Depression is a mood disorder in which feelings of sadness, loss, anger, or frustration interfere with everyday life for one to several weeks. Several studies have shown that iron nanoparticles have neuroprotective and anti-inflammatory effects. This study aimed to evaluate anti-depressive effect of iron nanoparticles in male rats. 
Methods: Depression was induced by Lipopolysaccharide (LPS) adminstration. Rats were randomly assigned into six groups (10 in each group): 1) control (sterile saline solution; 200 µL, IP); 2) LPS (LPS;100 μg/kg, IP); 3) Low dose Iron Nanoparticle (LINP) (1 mg/kg, IP); 4) High dose Iron Nanoparticle (HINP), 5 mg/kg IP); 5) LPS/LINP (LPS; 100μg/kg IP+INP 1 mg/kg IP); and 6) LPS/HINP (LPS; 100 μg/kg IP+INP 5 mg/kg IP). All injections were performed every other day. To assess the effect of iron nanoparticles on depression symptoms, rats were subjected to two behavioral tests: Forced Swim Test (FST) and Open Field Test (OFT).
Results: Iron nanoparticles treatment in 1 mg/kg and 5 mg/kg doses groups significantly improved depression symptoms when assessed by OFT and FST. In OFT, the number of line crossings, entrance to central square, rearing and duration of attending in central square increased after iron nanoparticles adminstration in depressed rats. Iron nanoparticles adminstration reduced immobility time confirmed by FST and OFT. Also, iron nanoparticles adminstration significantly increased duration of swimming in FST depressed rats.
Conclusion: Our results for the first time showed potential advantageous effect of iron nanoparticles administration in attenuating depression symptoms, which was possibly mediated by modulation of neurotransmitters and anti-inflammatory effects of iron nanoparticles.

Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2017/02/28 | Accepted: 2017/11/19 | Published: 2018/05/1

References
1. Archakov, A. I. (2010). Nanobiotechnologies in medicine: Nanodiagnostics and nanodrugs. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 4(1), 2–14. [DOI:10.1134/S1990750810010026] [DOI:10.1134/S1990750810010026]
2. Berry, C. C., & Curtis, A. S. G. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D: Applied Physics, 36(13), R198–R206. [DOI:10.1088/0022-3727/36/13/203] [DOI:10.1088/0022-3727/36/13/203]
3. Beard, J. L., Hendricks, M. K., Perez, E. M., Murray-Kolb, L. E., Berg, A., Vernon-Feagans, L., et al. (2005). Maternal iron deficiency anemia affects postpartum emotions and cognition. The Journal of Nutrition, 135(2), 267–272. [DOI:10.1093/jn/135.2.267] [DOI:10.1093/jn/135.2.267]
4. Beard, J. L., Erikson, K. M., & Jones, B. C. (2002). Neurobehavioral analysis of developmental iron deficiency in rats. Behavioural Brain Research, 134(1-2), 517–524. [DOI:10.1016/S0166-4328(02)00092-X] [DOI:10.1016/S0166-4328(02)00092-X]
5. Delima, M., Laranja, D., Caldana, F., Grazziotin, M., Garcia, V., Dalpizzol, F., et al. (2005). Selegiline protects against recognition memory impairment induced by neonatal iron treatment. Experimental Neurology, 196(1), 177–183. [DOI:10.1016/j.expneurol.2005.07.017] [DOI:10.1016/j.expneurol.2005.07.017]
6. Beard, J. L. (2001). Iron biology in immune function, muscle metabolism and neuronal functioning. The Journal of Nutrition, 131(2), 568S–580S. [DOI:10.1093/jn/131.2.568S] [DOI:10.1093/jn/131.2.568S]
7. Elseweidy, M. M., Abd El-Baky, A. E. (2008). Effect of dietary iron overload in rat brain: oxidative stress, neurotransmitter level and serum metal ion in relation to neurodegenerative disorders. Indian Journal of Experimental Biology, 46(12), 855-8. [PMID] [PMID]
8. Cryan, J. F., & Mombereau, C. (2004). In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Molecular Psychiatry, 9(4), 326–357. [DOI:10.1038/sj.mp.4001457] [DOI:10.1038/sj.mp.4001457]
9. Kuo, D. C., Tran, M., Shah, A. A., & Matorin, A. (2015). Depression and the suicidal patient. Emergency Medicine Clinics of North America, 33(4), 765–778. [DOI:10.1016/j.emc.2015.07.005] [DOI:10.1016/j.emc.2015.07.005]
10. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Virginia: American Psychiatric Association. [DOI:10.1176/appi.books.9780890425596] [DOI:10.1176/appi.books.9780890425596]
11. Raison, C. L., Capuron, L., & Miller, A. H. (2006). Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends in Immunology, 27(1), 24–31. [DOI:10.1016/j.it.2005.11.006] [DOI:10.1016/j.it.2005.11.006]
12. Mössner, R., Mikova, O., Koutsilieri, E., Saoud, M., Ehlis, A.-C., Müller, N., et al. (2007). Consensus paper of the WFSBP task force on biological markers: biological markers in depression. The World Journal of Biological Psychiatry, 8(3), 141–174. [DOI:10.1080/15622970701263303] [DOI:10.1080/15622970701263303]
13. Schiepers, O. J. G., Wichers, M. C., & Maes, M. (2005). Cytokines and major depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(2), 201–217. [DOI:10.1016/j.pnpbp.2004.11.003] [DOI:10.1016/j.pnpbp.2004.11.003]
14. Celano, C. M., & Huffman, J. C. (2011). Depression and cardiac disease. Cardiology in Review, 19(3), 130–142. [DOI:10.1097/CRD.0b013e31820e8106] [DOI:10.1097/CRD.0b013e31820e8106]
15. Lee, J. M., Shin, J. S., Lee, K. J., & An, J. H. (2014). Anti-inflammatory and photoprotective effects of magnetic nanoparticles against ultraviolet-induced photoaging in human skin cells. Science of Advanced Materials, 6(11), 2501–4. [DOI:10.1166/sam.2014.2192] [DOI:10.1166/sam.2014.2192]
16. Belviranlı, M., & Okudan, N. (2015). The effects of Ginkgo biloba extract on cognitive functions in aged female rats: The role of oxidative stress and brain-derived neurotrophic factor. Behavioural Brain Research, 278, 453–461. [DOI:10.1016/j.bbr.2014.10.032] [DOI:10.1016/j.bbr.2014.10.032]
17. Młyniec, K., Davies, C. L., de Agüero Sánchez, I. G., Pytka, K., Budziszewska, B., & Nowak, G. (2014). Essential elements in depression and anxiety. Part I. Pharmacological Reports, 66(4), 534–44. [DOI:10.1016/j.pharep.2014.03.001] [DOI:10.1016/j.pharep.2014.03.001]
18. Dusek, P., Jankovic, J., & Le, W. (2012). Iron dysregulation in movement disorders. Neurobiology of Disease, 46(1), 1–18. [DOI:10.1016/j.nbd.2011.12.054] [DOI:10.1016/j.nbd.2011.12.054]
19. Kim, J., & Wessling-Resnick, M. (2014). Iron and mechanisms of emotional behavior. The Journal of Nutritional Biochemistry, 25(11), 1101–7. [DOI:10.1016/j.jnutbio.2014.07.003] [DOI:10.1016/j.jnutbio.2014.07.003]
20. Murray, C. J., & Lopez, A. D. (1997). Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. The Lancet, 349(9064), 1498–1504. [DOI:10.1016/S0140-6736(96)07492-2] [DOI:10.1016/S0140-6736(96)07492-2]
21. Xie, Y., Wang, Y., Zhang, T., Ren, G., & Yang, Z. (2012). Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. Journal of Biomedical Science, 19(1), 14. [DOI:10.1186/1423-0127-19-14] [DOI:10.1186/1423-0127-19-14]
22. Etebary, S., Nikseresht, S., Sadeghipour, H. R., Zarrindast, M. R. (2010). Postpartum depression and role of serum trace elements. Iranian Journal of Psychiatry, 5(2), 40-6. [PMID] [PMCID] [PMID] [PMCID]
23. O'Connor, J. C., Lawson, M. A., André, C., Moreau, M., Lestage, J., Castanon, N.,et al. (2008). Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Molecular Psychiatry, 14(5), 511–522. [DOI:10.1038/sj.mp.4002148] [DOI:10.1038/sj.mp.4002148]
24. Bouwknecht, J. A., Spiga, F., Staub, D. R., Hale, M. W., Shekhar, A., & Lowry, C. A. (2007). Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: Relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Research Bulletin, 72(1), 32–43. [DOI:10.1016/j.brainresbull.2006.12.009] [DOI:10.1016/j.brainresbull.2006.12.009]