Volume 9, Issue 1 (January & February 2018 2018)                   BCN 2018, 9(1): 51-58 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeilpour K, Sheibani V, Shabani M, Mirnajafi-Zadeh J, Akbarnejad Z. Low Frequency Stimulation Reverses the Kindling-Induced Impairment of Learning and Memory in the Rat Passive-avoidance Test. BCN. 2018; 9 (1) :51-58
URL: http://bcn.iums.ac.ir/article-1-903-en.html
1- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
2- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Introduction: The life quality of patients with epileptic seizures is highly affected by cognitive deficits. Low Frequency Stimulation (LFS) is a novel approach for the treatment of pharmacoresistant epilepsy. The main goal of this research is investigating the possible effect of LFS on seizure-induced cognitive dysfunction. 
Methods: To this end, the kindled animal were prepared via CA1 electrical stimulation in a semi-rapid way (12 stimulations/day). A group of animals were stimulated with LFS, 4 times at 30 s, 6 h, 24 h, and 30 h after the last kindling stimulation. Applied LFS was administered in 4 packages every 5 minutes.  The packages were designed with 200 monophasic 200 monophasic square wave pulses of 0.1 ms duration at 1 Hz. The passive-avoidance test was conducted on all animals in order to measure the learning and memory behavior.
Results: Hippocampal kindled rats showed deficits in learning and memory when passive avoidance test was performed. Application of LFS reversed the impairment in learning and memory behavior in kindled rats. At the same time, LFS markedly diminished kindling-induced neuronal loss and atrophy in the hippocampus.
Conclusion: LFS may have some protection against seizure-induced cognitive damage in kindled rats.

Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2017/02/1 | Accepted: 2017/07/5 | Published: 2018/01/1

1. Beldhuis, H. J. A., Everts, H. G. J., Van der Zee, E. A., Luiten, P. G. M., & Bohus, B. (1992). Amygdala kindling-induced seizures selectively impair spatial memory. 1. Behavioral characteristics and effects on hippocampal neuronal protein kinase C isoforms. Hippocampus, 2(4), 397–409. doi: 10.1002/hipo.450020407 [DOI:10.1002/hipo.450020407]
2. Cahill, L., & McGaugh, J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends in Neurosciences, 21(7), 294–99. doi: 10.1016/s0166-2236(97)01214-9 [DOI:10.1016/S0166-2236(97)01214-9]
3. Cain, D. P. (1989). Long-term potentiation and kindling: How similar are the mechanisms? Trends in Neurosciences, 12(1), 6–10. doi: 10.1016/0166-2236(89)90146-x [DOI:10.1016/0166-2236(89)90146-X]
4. Cain, D. P., Boon, F., & Hargreaves, E. L. (1992). Evidence for different neurochemical contributions to long-term potentiation and to kindling and kindling-induced potentiation: Role of NMDA and urethane-sensitive mechanisms. Experimental Neurology, 116(3), 330–38. doi: 10.1016/0014-4886(92)90011-e [DOI:10.1016/0014-4886(92)90011-E]
5. Cammisuli, S., Murphy, M. P., Ikeda-Douglas, C. J., Vidya Balkissoon, Damian Holsinger, R., Head, E., et al. (1997). Effects of extended electrical kindling on exploratory behavior and spatial learning. Behavioural Brain Research, 89(1-2), 179–90. doi: 10.1016/s0166-4328(97)00059-4 [DOI:10.1016/S0166-4328(97)00059-4]
6. Cendes, F., Andermann, F., Gloor, P., Gambardella, A., Lopes-Cendes, I., Watson, C., et al. (1994). Relationship between atrophy of the amygdala and ictal fear in temporal lobe epilepsy. Brain, 117(4), 739–46. doi: 10.1093/brain/117.4.739 [DOI:10.1093/brain/117.4.739]
7. Cristinzio Perrin, C., & Vuilleumier, P. (2007). The role of amygdala in emotional and social functions: Implications for temporal lobe epilepsy. Epileptologie, 24, 78-89.
8. Cukiert, A., Cukiert, C. M., Burattini, J. A., & Lima, A. M. (2014). Seizure outcome after hippocampal deep brain stimulation in a prospective cohort of patients with refractory temporal lobe epilepsy. Seizure, 23(1), 6–9. doi: 10.1016/j.seizure.2013.08.005 [DOI:10.1016/j.seizure.2013.08.005]
9. Durand, D. M., & Bikson, M. (2001). Suppression and control of epileptiform activity by electrical stimulation: a review. Proceedings of the IEEE, 89(7), 1065–1082. doi: 10.1109/5.939821 [DOI:10.1109/5.939821]
10. Elger, C. E., Helmstaedter, C., & Kurthen, M. (2004). Chronic epilepsy and cognition. The Lancet Neurology, 3(11), 663–672. doi: 10.1016/s1474-4422(04)00906-8 [DOI:10.1016/S1474-4422(04)00906-8]
11. Esmaeilpour, K., Sheibani, V., Shabani, M., & Mirnajafi-Zadeh, J. (2017). Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats. Physiology & Behavior, 168, 112–21. doi: 10.1016/j.physbeh.2016.11.001 [DOI:10.1016/j.physbeh.2016.11.001]
12. Fisher, R., Salanova, V., Witt, T., Worth, R., Henry, T., Gross, R., et al. (2010). Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5), 899-908. [DOI:10.1111/j.1528-1167.2010.02536.x] [PMID]
13. Fujii, S., Kuroda, Y., Ito, K.I., Yoshioka, M., Kaneko, K., Yamazaki, Y., et al. (2000). Endogenous adenosine regulates the effects of low-frequency stimulation on the induction of long-term potentiation in CA1 neurons of guinea pig hippocampal slices. Neuroscience Letters, 279(2), 121–24. doi: 10.1016/s0304-3940(99)00980-5 [DOI:10.1016/S0304-3940(99)00980-5]
14. Genkova-Papazova, M. (1995). Pentylenetetrazole kindling impairs long-term memory in rats. European Neuropsychopharmacology, 5(1), 53–6. doi: 10.1016/0924-977x(94)00134-w [DOI:10.1016/0924-977X(94)00134-W]
15. Ghafouri, S., Fathollahi, Y., Javan, M., Shojaei, A., Asgari, A., & Mirnajafi-Zadeh, J. (2016). Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Research, 126, 37–44. doi: 10.1016/j.eplepsyres.2016.06.010 [DOI:10.1016/j.eplepsyres.2016.06.010]
16. Gilbert, T. H., McNamara, R. K., & Corcoran, M. E. (1996). Kindling of hippocampal field CA1 impairs spatial learning and retention in the Morris water maze. Behavioural Brain Research, 82(1), 57–66. doi: 10.1016/s0166-4328(97)81108-4 [DOI:10.1016/S0166-4328(97)81108-4]
17. Goodman, J. H., Berger, R. E., & Tcheng, T. K. (2005). Preemptive Low-frequency Stimulation Decreases the Incidence of Amygdala-kindled Seizures. Epilepsia, 46(1), 1–7. doi: 10.1111/j.0013-9580.2005.03804.x [DOI:10.1111/j.0013-9580.2005.03804.x]
18. Grecksch, G., Becker, A., Gadau, C., & Matthies, H. (1991). Gangliosides improve a memory deficit in pentylenetetrazol-kindled rats. Pharmacology Biochemistry and Behavior, 39(3), 825–28. doi: 10.1016/0091-3057(91)90174-z [DOI:10.1016/0091-3057(91)90174-Z]
19. Hannesson, D. K., Howland, J., Pollock, M., Wallace, A. E., & Corcoran, M. E. (2001). Dorsal hippocampal kindling produces a selective and enduring disruption of hippocampally mediated behavior. Journal of Neuroscience, 21(12), 4443-50. [PMID]
20. Holmes, G. L. (1991). The long-term effects of seizures on the developing brain: Clinical and laboratory issues. Brain and Development, 13(6), 393–409. doi: 10.1016/s0387-7604(12)80037-4 [DOI:10.1016/S0387-7604(12)80037-4]
21. Jahanshahi, A., Mirnajafi-Zadeh, J., Javan, M., Mohammad-Zadeh, M., & Rohani, R. (2009). The antiepileptogenic effect of electrical stimulation at different low frequencies is accompanied with change in adenosine receptors gene expression in rats. Epilepsia, 50(7), 1768–1779. doi: 10.1111/j.1528-1167.2009.02088.x [DOI:10.1111/j.1528-1167.2009.02088.x]
22. Klausnitzer, J., Kulla, A., & Manahan-Vaughan, D. (2004). Role of the group III metabotropic glutamate receptor in LTP, depotentiation and LTD in the dentate gyrus of freely moving rats. Neuropharmacology, 46(2), 160–170. doi: 10.1016/j.neuropharm.2003.09.019 [DOI:10.1016/j.neuropharm.2003.09.019]
23. Lanteaume, L., Khalfa, S., Regis, J., Marquis, P., Chauvel, P., & Bartolomei, F. (2006). Emotion induction after direct intracerebral stimulations of human amygdala. Cerebral Cortex, 17(6), 1307–13. doi: 10.1093/cercor/bhl041 [DOI:10.1093/cercor/bhl041]
24. Leung, L. S., Boon, K. A., Kaibara, T., & Innis, N. K. (1990). Radial maze performance following hippocampal kindling. Behavioural Brain Research, 40(2), 119–29. doi: 10.1016/0166-4328(90)90004-x [DOI:10.1016/0166-4328(90)90004-X]
25. Stan Leung, L., & Shen, B. (1991). Hippocampal CA1 evoked response and radial 8-arm maze performance after hippocampal kindling. Brain Research, 555(2), 353–357. doi: 10.1016/0006-8993(91)90365-3 [DOI:10.1016/0006-8993(91)90365-3]
26. Li, Y., & Mogul, D. J. (2007). Electrical control of epileptic seizures. Journal of Clinical Neurophysiology, 24(2), 197–204. doi: 10.1097/wnp.0b013e31803991c3 [DOI:10.1097/WNP.0b013e31803991c3]
27. Manahan-Vaughan, D. (2003). Regulation of depotentiation and long-term potentiation in the dentate gyrus of freely moving rats by dopamine D2-like receptors. Cerebral Cortex, 13(2), 123–35. doi: 10.1093/cercor/13.2.123 [DOI:10.1093/cercor/13.2.123]
28. Mazarati, A. (2007). Epilepsy and forgetfulness: One impairment, multiple mechanisms. Epilepsy Currents, 8(1), 25–26. doi: 10.1111/j.1535-7511.2007.00224.x [DOI:10.1111/j.1535-7511.2007.00224.x]
29. Mohammad-Zadeh, M., Mirnajafi-Zadeh, J., Fathollahi, Y., Javan, M., Ghorbani, P., Sadegh, M., et al. (2007). Effect of low frequency stimulation of perforant path on kindling rate and synaptic transmission in the dentate gyrus during kindling acquisition in rats. Epilepsy Research, 75(2-3), 154–61. doi: 10.1016/j.eplepsyres.2007.05.003 [DOI:10.1016/j.eplepsyres.2007.05.003]
30. Mula, M., & Trimble, M. R. (2009). Antiepileptic drug-induced cognitive adverse wffects. CNS Drugs, 23(2), 121–37. doi: 10.2165/00023210-200923020-00003 [DOI:10.2165/00023210-200923020-00003]
31. Pauli, E., Hildebrandt, M., Romstock, J., Stefan, H., & Blumcke, I. (2006). Deficient memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule cell loss. Neurology, 67(8), 1383–89. doi: 10.1212/01.wnl.0000239828.36651.73 [DOI:10.1212/01.wnl.0000239828.36651.73]
32. Paxinos, G., & Watson, C. (1982). The Rat Brain in Stereotaxic Coordinates. Cambridge, Massachusetts: Academic Press. https://doi.org/10.1016/B978-0-12-547620-1.50003-5 https://doi.org/10.1016/B978-0-12-547620-1.50005-9 https://doi.org/10.1016/B978-0-12-547620-1.50006-0 https://doi.org/10.1016/B978-0-12-547620-1.50002-3 https://doi.org/10.1016/B978-0-12-547620-1.50009-6 https://doi.org/10.1016/B978-0-12-547620-1.50007-2 https://doi.org/10.1016/B978-0-12-547620-1.50004-7 https://doi.org/10.1016/B978-0-12-547620-1.50008-4 https://doi.org/10.1016/B978-0-12-547620-1.50001-1 [DOI:10.1016/B978-0-12-547620-1.50010-2]
33. Pohle, W., Becker, A., Grecksch, G., Juhre, A., & Willenberg, A. (1997). Piracetam prevents pentylenetetrazol kindling-induced neuronal loss and learning deficits. Seizure, 6(6), 467–74. doi: 10.1016/s1059-1311(97)80022-2 [DOI:10.1016/S1059-1311(97)80022-2]
34. Racine, R., Rose, P. A., & Burnham, W. M. (1977). Afterdischarge Thresholds and Kindling Rates in Dorsal and Ventral Hippocampus and Dentate Gyrus. Canadian Journal of Neurological Sciences, 4(4), 273–78. doi: 10.1017/s0317167100025117 [DOI:10.1017/S0317167100025117]
35. Schubert, M., Siegmund, H., Pape, H. C., & Albrecht, D. (2005). Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learning & Memory, 12(5), 520–26. doi: 10.1101/lm.4205 [DOI:10.1101/lm.4205]
36. Sutherland, R. J., Leung, L. S., Weisend, M. P., Schlife, J., & McDonald, R. J. (1997). An evaluation of the effect of partial hippocampal kindling on place navigation by rats in the Morris water task. Psychobiology 25(2), 126-132. doi: 10.3758/BF03331917
37. Szyndler, J., Rok, P., Maciejak, P., Walkowiak, J., Członkowska, A. I., Sienkiewicz-Jarosz, H., et al. (2002). Effects of pentylenetetrazol-induced kindling of seizures on rat emotional behavior and brain monoaminergic systems. Pharmacology Biochemistry and Behavior, 73(4), 851–861. doi: 10.1016/s0091-3057(02)00912-7 [DOI:10.1016/S0091-3057(02)00912-7]
38. Yamamoto, J., Ikeda, A., Satow, T., Takeshita, K., Takayama, M., Matsuhashi, M., et al. (2002). Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy. Epilepsia, 43(5), 491–495. doi: 10.1046/j.1528-1157.2002.29001.x [DOI:10.1046/j.1528-1157.2002.29001.x]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb