Volume 9, Issue 3 (May & June 2018 2018)                   BCN 2018, 9(3): 195-208 | Back to browse issues page

DOI: 10.29252/nirp.bcn.9.3.195

XML Print

1- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria.
2- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Introduction: As stress affects the brain both physiologically and chemically, researchers try to find novel anti-stress compounds with beneficial therapeutic effects. In this regard, the effect of stress and its modulation by Morin hydrate was studied using different acute models in mice.
Methods: The models employed were anoxic tolerance, swimming endurance, and acute restraint test. Morin hydrate or the vehicle was administered 30 minutes prior to each stress exposure while in the acute restraint test; the animals were pretreated for 7 days with Morin hydrate, vehicle, imipramine, or diazepam before stress exposure. The measured parameters were the onset of convulsion and immobility time in the anoxic tolerance and swimming endurance test, respectively, while in the acute restraint test, the animals were assessed for stress-induced anxiety using the elevated plus maze and depression using the forced swim test. Thereafter blood was withdrawn from the retro-orbital plexus and plasma separated, the brain was also isolated, homogenized, centrifuged, and the supernatant was obtained for biochemical estimation. 
Results: Morin hydrate (5, 10, 20 mg/kg) produced a significant reduction in immobility time in the swimming endurance test, while significantly increased the anoxic stress tolerance time. Acute restraint stress caused a significant decrease in reduced glutathione levels (which was reversed by Morin hydrate) and increased the level of malondialdehyde, a thiobarbituric acid reactive substance which is an index of oxidative stress and nitrite. These effects were attenuated by Morin hydrate. Also, pretreatment with Morin hydrate attenuates acute restraint stress-associated anxiety and depression, reversed the hyperglycemia evoked by the stressful exposure and normalized serum cholesterol levels. 
Conclusion: These findings suggest that Morin hydrate exhibits anti-stress effects and may be useful in the relief of stress. 

Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2017/01/4 | Accepted: 2017/09/11 | Published: 2018/05/1

1. Ádám Vizi, V., & Seregi, A. (1982). Receptor independent stimulatory effect of noradrenaline on Na,K-ATPase in rat brain homogenate. Bio-chemical Pharmacology, 31(13), 2231–6. [DOI:10.1016/0006-2952(82)90106-X] [DOI:10.1016/0006-2952(82)90106-X]
2. Anisman, H., Zacharko, R. M. 1991. Multiple neurochemical and behavioural consequences of stressors: Implications for depression. In: S. E. File (Ed.), Psychopharmacology of anxiolytics and antidepressants (pp. 57-82). New York: Pergamon Press. [DOI:10.1016/B978-0-08-040698-5.50008-9] [DOI:10.1016/B978-0-08-040698-5.50008-9]
3. Basile, A., Sorbo, S., Giordano, S., Ricciardi, L., Ferrara, S., Montesano, D., et al., (2000). Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia, 71, S110–6. [DOI:10.1016/S0367-326X(00)00185-4] [DOI:10.1016/S0367-326X(00)00185-4]
4. Bucolo, G., & David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clinical Chemistry, 19(5), 476-82. PMID: 4703655 [PMID] [PMID]
5. Campos Esparza, M. R., Sánchez Gómez, M. V., & Matute, C. (2009). Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium, 45(4), 358–68. [DOI:10.1016/j.ceca.2008.12.007] [DOI:10.1016/j.ceca.2008.12.007]
6. Catarino, M., Alves Silva, J., Pereira, O., & Cardoso, S. (2015). Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Current Topics in Medicinal Chemistry, 15(2), 105–19. [DOI:10.2174/1568026615666141209144506] [DOI:10.2174/1568026615666141209144506]
7. Debnath, J., Prakash, T., Karki, R., Kotresha, D., & Sharma, P. (2011). An experimental evaluation of anti-stress effects of Terminalia chebu-la. Journal of Physiological and Biomedical Sciences, 24(2), 13-19.
8. Deepika, R., Hemamalini, K., & Vasireddy, U. (2013). Adaptogenic activity of methanolic extract of anogeissus latifolia wall and tabebuia rosea (Bertol.) DC on different experimental models. International Journal of Pharmacy and Pharmaceutical Sciences, 5(4), 457-63.
9. Doreddula, S. K., Bonam, S. R., Gaddam, D. P., Desu, B. S. R., Ramarao, N., & Pandy, V. (2014). Phytochemical analysis, antioxidant, an-tistress, and nootropic activities of aqueous and methanolic seed extracts of ladies finger (Abelmoschus esculentus L.) in mice. The Scientific World Journal, 2014, 1–14. [DOI:10.1155/2014/519848] [DOI:10.1155/2014/519848]
10. Fang, S. H., Hou, Y. C., Chang, W. C., Hsiu, S. L., Lee Chao, P. D., & Chiang, B. L. (2003). Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock. Life Sciences, 74(6), 743–56. [DOI:10.1016/j.lfs.2003.07.017] [DOI:10.1016/j.lfs.2003.07.017]
11. Galvez, J., Coelho, G., Crespo, M. E., Cruz, T., Rodriguez-Cabezas, M. E., Concha, A., et al., (2001). Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Alimentary Pharmacology and Therapeutics, 15(12), 2027–39. [DOI:10.1046/j.1365-2036.2001.01133.x] [DOI:10.1046/j.1365-2036.2001.01133.x]
12. Gautam, M., Agrawal, M., Gautam, M., Sharma, P., Gautam, A., & Gautam, S. (2012). Role of antioxidants in generalised anxiety disorder and depression. Indian Journal of Psychiatry, 54(3), 244. [DOI:10.4103/0019-5545.102424] [DOI:10.4103/0019-5545.102424]
13. Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177(2), 751-66. [PMID] [PMID]
14. Gottlieb, M., Leal Campanario, R., Campos Esparza, M. R., Sánchez Gómez, M. V., Alberdi, E., Arranz, A., et al., (2006). Neuropro-tection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiology of Disease, 23(2), 374–86. [DOI:10.1016/j.nbd.2006.03.017] [DOI:10.1016/j.nbd.2006.03.017]
15. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry, 126(1), 131–8. [DOI:10.1016/0003-2697(82)90118-X] [DOI:10.1016/0003-2697(82)90118-X]
16. Heim, C., & Nemeroff, C. B. (1999). The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biological Psychiatry, 46(11), 1509–22. [DOI:10.1016/S0006-3223(99)00224-3] [DOI:10.1016/S0006-3223(99)00224-3]
17. Ibarretxe, G., Sánchez Gómez, M. V., Campos Esparza, M. R., Alberdi, E., & Matute, C. (2005). Differential oxidative stress in oligodendro-cytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia, 53(2), 201–11. [DOI:10.1002/glia.20267] [DOI:10.1002/glia.20267]
18. Joshi, T., Sah, S. P., & Singh, A. (2012). Antistress activity of ethanolic extract of Asparagus racemosus Willd roots in mice. Indian Journal of Experimental Biology, 50(6), 419–24. PMID: 22734253 [PMID] [PMID]
19. Kannur, D. M., Hukkeri, V. I., & Akki, K. S. (2006). Adaptogenic activity of Caesalpinia bonduc seed extracts in rats. Journal of Ethnophar-macology, 108(3), 327–31. doi: 10.1016/j.jep.2006.05.013 [DOI:10.1016/j.jep.2006.05.013] [DOI:10.1016/j.jep.2006.05.013]
20. Kioukia-Fougia, N. (2002). The effects of stress exposure on the hypothalamic–pituitary–adrenal axis, thymus, thyroid hormones and glucose levels. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 26(5), 823–30. [DOI:10.1016/S0278-5846(01)00297-4] [DOI:10.1016/S0278-5846(01)00297-4]
21. Kioukia Fougia, N. (2002). The effects of stress exposure on the hypothalamic–pituitary–adrenal axis, thymus, thyroid hormones and glucose levels. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 26(5), 823–30. [DOI:10.1016/S0278-5846(01)00297-4] [DOI:10.1016/S0278-5846(01)00297-4]
22. Kothiyal, P., & Ratan, P. (2011). Antistress effect of fagopyrum esculentum in rats subjected to forced swimming endurance test. Pharma-Cologyonline, 3, 290-6.
23. Kulkarni, M., & Juvekar, A. (2008). Attenuation of acute and chronic restraint stress-induced perturbations in experimental animals by Ne-lumbo nucifera Gaertn. Indian Journal of Pharmaceutical Sciences, 70(3), 327-32. [DOI:10.4103/0250-474X.42982] [DOI:10.4103/0250-474X.42982]
24. Lakshmi, B. V. S., & Sudhakar, M. (2009). Screening of Psidium guajava leaf extracts for antistress activity in different experimental animal models. Pharmacognosy Research, 1(6), 359-66.
25. Li, N., Liu, J. H., Zhang, J., & Yu, B. Y. (2008). Comparative evaluation of cytotoxicity and antioxidative activity of 20 flavonoids. Journal of Agricultural and Food Chemistry, 56(10), 3876–83. [DOI:10.1021/jf073520n] [DOI:10.1021/jf073520n]
26. Liu, J., Wang, X., & Mori, A. (1994). Immobilization stress-induced antioxidant defense changes in rat plasma: Effect of treatment with re-duced glutathione. International Journal of Biochemistry, 26(4), 511–7. [DOI:10.1016/0020-711X(94)90008-6] [DOI:10.1016/0020-711X(94)90008-6]
27. Liu, J., Wang, X., Shigenaga, M. K., Yeo, H. C., Mori, A., & Ames, B. N. (1996). Immobilization stress causes oxidative damage to lipid, pro-tein, and DNA in the brain of rats. The FASEB Journal, 10(13), 1532–8. [DOI:10.1096/fasebj.10.13.8940299] [DOI:10.1096/fasebj.10.13.8940299]
28. Lotito, S., & Frei, B. (2006). Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, conse-quence, or epiphenomenon. Free Radical Biology and Medicine, 41(12), 1727–46. [DOI:10.1016/j.freeradbiomed.2006.04.033] [DOI:10.1016/j.freeradbiomed.2006.04.033]
29. Manna, S. K., Aggarwal, R. S., Sethi, G., Aggarwal, B. B., & Ramesh, G. T. (2007). Morin (3, 5, 7, 2′, 4′-pentahydroxyflavone) abolishes nuclear factor-κB activation induced by various carcinogens and inflammatory stimuli, leading to suppression of nuclear factor-κB–regulated gene expression and up-regulation of apoptosis. Clinical Cancer Research, 13(7), 2290-7. [DOI:10.1158/1078-0432.CCR-06-2394] [DOI:10.1158/1078-0432.CCR-06-2394]
30. Marin, M. F., Lord, C., Andrews, J., Juster, R. P., Sindi, S., Arsenault Lapierre, G., et al., (2011). Chronic stress, cognitive function-ing and mental health. Neurobiology of Learning and Memory, 96(4), 583–95. [DOI:10.1016/j.nlm.2011.02.016] [DOI:10.1016/j.nlm.2011.02.016]
31. Masood, A., Banerjee, B., Vijayan, V. ., & Ray, A. (2003). Modulation of stress-induced neurobehavioral changes by nitric oxide in rats. European Journal of Pharmacology, 458(1-2), 135–9. [DOI:10.1016/S0014-2999(02)02688-2] [DOI:10.1016/S0014-2999(02)02688-2]
32. Merwid Ląd, A., Trocha, M., Chlebda, E., Sozański, T., Magdalan, J., Ksiądzyna, D., et al., (2012). Effects of morin-5′-sulfonic acid sodium salt (NaMSA) on cyclophosphamide-induced changes in oxido-redox state in rat liver and kidney. Human & Experimental Toxi-cology, 31(8), 812–9. [DOI:10.1177/0960327111431090] [DOI:10.1177/0960327111431090]
33. Metodiewa, D., & Kośka, C. (1999). Reactive oxygen species and reactive nitrogen species: Relevance to cyto(neuro)toxic events and neuro-logic disorders: An overview. Neurotoxicity Research, 1(3), 197–233. [DOI:10.1007/bf03033290] [DOI:10.1007/BF03033290]
34. Morgan, K. N., & Tromborg, C. T. (2007). Sources of stress in captivity. Applied Animal Behaviour Science, 102(3-4), 262–302. [DOI:10.1007/BF03033290] [DOI:10.1007/BF03033290]
35. Moron, M. S., Depierre, J.W., & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA) - General Subjects, 582(1), 67–78. [DOI:10.1016/0304-4165(79)90289-7] [DOI:10.1016/0304-4165(79)90289-7]
36. Nicolson, S. C. (1997). Glucose: Enough versus too much. Journal of Cardiothoracic and Vascular Anesthesia, 11(4), 409–10. [DOI:10.1016/S1053-0770(97)90045-8] [DOI:10.1016/S1053-0770(97)90045-8]
37. Olivenza, R., Moro, M. A., Lizasoain, I., Lorenzo, P., Fernández, A. P., Rodrigo, J., et al., (2001). Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. Journal of Neurochemistry, 74(2), 785–91. [DOI:10.1046/j.1471-4159.2000.740785.x] [DOI:10.1046/j.1471-4159.2000.740785.x]
38. Panossian, A., Wikman, G., & Wagner, H. (1999). Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine, 6(4), 287–300. [DOI:10.1016/S0944-7113(99)80023-3] [DOI:10.1016/S0944-7113(99)80023-3]
39. Prahalathan, P., Kumar, S., & Raja, B. (2012). Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: A biochemical and histopathological evaluation. Metabolism, 61(8), 1087–99. [DOI:10.1016/j.metabol.2011.12.012] [DOI:10.1016/j.metabol.2011.12.012]
40. Rai, D., Bhatia, G., Palit, G., Pal, R., Singh, S., & Singh, H. K. (2003). Adaptogenic effect of Bacopa monniera (Brahmi). Pharmacology Biochemistry and Behavior, 75(4), 823–30. [DOI:10.1016/S0091-3057(03)00156-4] [DOI:10.1016/S0091-3057(03)00156-4]
41. Rattanachaikunsopon, P., & Phumkhachorn, P. (2010). Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava. Journal of Medicinal Plants Research, 4(5), 393-396.
42. Rodgers, R. J., & Cole, J. C. (1993). Anxiety enhancement in the murine elevated plus maze by immediate prior exposure to social stressors. Physiology & Behavior, 53(2), 383–8. [DOI:10.1016/0031-9384(93)90222-2] [DOI:10.1016/0031-9384(93)90222-2]
43. Shimazu, T. (1981). Central nervous system regulation of liver and adipose tissue metabolism. Diabetologia, 20(S1), 343–56. [DOI:10.1007/BF00254502] [DOI:10.1007/BF00254502]
44. Singh, B., Saxena, A. K., Chandan, B. K., Gupta, D. K., Bhutani, K. K., & Anand, K. K. (2001). Adaptogenic activity of a novel, withanolide-free aqueous fraction from the roots ofWithania somnifera Dun. Phytotherapy Research, 15(4), 311–8. [DOI:10.1002/ptr.858] [DOI:10.1002/ptr.858]
45. Singh, S., & Yadav, A. K. (2014). Protection of stress induced behavioural and physiological alteration by marsilea quadrifolia in rodents. Journal of Chemical and Pharmaceutical Research, 6(7), 2207-17.
46. Subarnas, A., Tadano, T., Nakahata, N., Arai, Y., Kinemuchi, H., Oshima, Y., et al., (1993). A possible mechanism of antidepresant activity of beta-amyrin palmitate isolated from lobelia inflata leaves in the forced swimming test. Life Sciences, 52(3), 289–96. [DOI:10.1016/0024-3205(93)90220-W] [DOI:10.1016/0024-3205(93)90220-W]
47. Sugimoto, Y., Yamada, J., & Noma, T. (1998). Effects of anxiolytics, diazepam and tandospirone, on immobilization stress-induced hyper-glycemia in mice. Life Sciences, 63(14), 1221–6. [DOI:10.1016/S0024-3205(98)00384-1] [DOI:10.1016/S0024-3205(98)00384-1]
48. Sutherland, R. J., & Rodriguez, A. J. (1989). The role of the fornix/fimbria and some related subcortical structures in place learning and memory. Behavioural Brain Research, 32(3), 265–77. [DOI:10.1016/S0166-4328(89)80059-2] [DOI:10.1016/S0166-4328(89)80059-2]
49. Tappy, L., Randin, D., Vollenweider, P., Vollenweider, L., Paquot, N., Scherrer, U., et al., (1994). Mechanisms of dexamethasone-induced insulin resistance in healthy humans. The Journal of Clinical Endocrinology & Metabolism, 79(4), 1063–9. [DOI:10.1210/jcem.79.4.7962275] [DOI:10.1210/jcem.79.4.7962275]
50. Tilbrook, A. J., & Clarke, I. J. (2006). Neuroendocrine mechanisms of innate states of attenuated responsiveness of the hypothalamo-pituitary adrenal axis to stress. Frontiers in Neuroendocrinology, 27(3), 285–307. [DOI:10.1016/j.yfrne.2006.06.002] [DOI:10.1016/j.yfrne.2006.06.002]
51. Tiwari, N., Mishra, A., Bhatt, G., & Chaudhary, A. (2015). Anti-stress activity of A bioflavanoid: Quercetin from euphorbia hirta. British Journal of Pharmaceutical Research, 6(2), 68–75. [DOI:10.9734/BJPR/2015/16143] [DOI:10.9734/BJPR/2015/16143]
52. Umukoro, S., & Aladeokin, A. C. (2010). Evaluation of the anti-stress and anticonvulsant activities of leaf extract of Alchornea cordifolia in mice. Journal of Ethnopharmacology, 127(3), 768–70. [DOI:10.1016/j.jep.2009.11.023] [DOI:10.1016/j.jep.2009.11.023]
53. Walf, A. A., & Frye, C. A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protocols, 2(2), 322–8. [DOI:10.1038/nprot.2007.44] [DOI:10.1038/nprot.2007.44]
54. Wass, T. C., Scheithauer, B. W., Bronk, J. T., Wilson, R. M., & Lanier, W. L. (1996). Insulin treatment of corticosteroid-associated hypergly-cemia and its effect on outcome after forebrain ischemia in rats. Anesthesiology, 84(3), 644–51. [DOI:10.1097/00000542-199603000-00020] [DOI:10.1097/00000542-199603000-00020]
55. Watanabe, M., & Ayugase, J. (2008). Anti-stress effects of flavonoids from buckwheat sprouts in mice subjected to restraint Stress. Food Science and Technology Research, 14(3), 253–60. [DOI:10.3136/fstr.14.253] [DOI:10.3136/fstr.14.253]
56. Wijeratne, S. S. K., Abou Zaid, M. M., & Shahidi, F. (2006). Antioxidant polyphenols in almond and its coproducts. Journal of Agricultural and Food Chemistry, 54(2), 312–8. [DOI:10.1021/jf051692j] [DOI:10.1021/jf051692j]
57. Wu, T. W., Fung, K. P., Yang, C. C., & D, R. (1995). Antioxidation of human low density lipoprotein by horin hydrate. Life Sciences, 57(3), PL51–6. [DOI:10.1016/0024-3205(95)00274-A] [DOI:10.1016/0024-3205(95)00274-A]
58. Wu, T. W., Zeng, L. H., Wu, J., & Fung, K. P. (1993). Morin hydrate is a plant-derived and antioxidant-based hepatoprotector. Life Sciences, 53(13), PL213–8. [DOI:10.1016/0024-3205(93)90266-6] [DOI:10.1016/0024-3205(93)90266-6]
59. Young, D. S., & Friedman, R. B. (2001). Effects of disease on clinical laboratory tests. Washington: AACC Press. [DOI:10.1086/321851] [PMID] [DOI:10.1086/321851]
60. Zhang, R., Kang, K. A., Piao, M. J., Maeng, Y. H., Lee, K. H., Chang, W. Y., et al., (2009). Cellular protection of morin against the oxidative stress induced by hydrogen peroxide. Chemico-Biological Interactions, 177(1), 21–7. [DOI:10.1016/j.cbi.2008.08.009] [DOI:10.1016/j.cbi.2008.08.009]
61. Zhang, Z., Cao, X., Xiong, N., Wang, H., Huang, J., Sun, S., & Wang, T. (2010). Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo. Acta Pharmacologica Sinica, 31(8), 900–6. [DOI:10.1038/aps.2010.77] [DOI:10.1038/aps.2010.77]