Volume 9, Issue 5 (September & October 2018 2018)                   BCN 2018, 9(5): 317-324 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaffari F, Hajizadeh Moghaddam A, Zare M. Neuroprotective Effect of Quercetin Nanocrystal in a 6-Hydroxydopamine Model of Parkinson Disease: Biochemical and Behavioral Evidence. BCN 2018; 9 (5) :317-324
URL: http://bcn.iums.ac.ir/article-1-824-en.html
1- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
2- Department of Medicinal Plants, School of Science and Herbs, Amol University of Special Modern Technologies, Amol, Iran.
Abstract:  

Introduction: studies have suggested that free radicals-induced neurodegeneration is one of the many studies of Parkinson Disease (PD). Quercetin as a natural polyphenol has been regarded as a significant player in altering the progression of neurodegenerative diseases by protecting from damages caused by free radicals. Owing to its poor water solubility, preparation of its oral formulation is urgently needed. Recently, nanocrystal technique as an effective way has been introduced for oral administration of drugs. 
Methods: This study investigated the neuroprotective effects of quercetin nanocrystals on 6-hydroxydopamine (6-OHDA)-induced Parkinson-like model in male rats. Quercetin nanocrystals were prepared by the Evaporative Precipitation of Nanosuspension (EPN) method. 
Results: Administration of quercetin and its nanocrystals (10 and 25 mg/kg) prevented disruption of memory, increased antioxidant enzyme activities (superoxide dismutase and catalase) and total glutathione and reduced Malondialdehyde (MDA) level in the hippocampal area. 
Conclusion: The present study results demonstrated that quercetin nanocrystals with greater bioavailability is effective than quercetin alone in treatment of Parkinson-like model in rat. 

Type of Study: Original | Subject: Clinical Neuroscience
Received: 2018/02/4 | Accepted: 2018/07/11 | Published: 2018/09/1

References
1. Antunes, M., & Biala, G. (2012). The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cognitive Processing, 13(2), 93-110. [DOI:10.1007/s10339-011-0430-z] [PMID] [PMCID] [DOI:10.1007/s10339-011-0430-z]
2. Bakkialakshmi, S., & Barani, V. (2013). Characterization of the interaction between two anti-viral drugs and Egg albumin . International Journal of Chemistry and Pharmaceutical Sciences, 1(1), 1-5.
3. Cho, S. Y., Park, S. J., Kwon, M. J., Jeong, T. S., Bok, S. H., Choi, W. Y., et al. (2003). Quercetin suppresses proinflammatory cytokines production through MAP kinesis and NF-kappa B pathway in lipopolysaccharide-stimulated macrophage. Molecular and Cellular Biochemistry, 243(1-2), 153-60. [DOI:10.1023/A:1021624520740] [PMID] [DOI:10.1023/A:1021624520740]
4. Choi, H. S., Park, M. S., Kim, S. H., Hwang, B. Y., Lee, C. K., & Lee, M. K. (2010). Neuroprotective effects of herbal ethanol extracts from gynostemma pentaphyllum in the 6-hydroxydopamine-lesioned rat model of parkinson's disease. Molecules, 15(4), 2814-24. [DOI:10.3390/molecules15042814] [PMID] [DOI:10.3390/molecules15042814]
5. Ciobica, A., Hritcu, L., Artenie, V., Stoica, B., & Bild, V. (2009). Effects of 6-OHDA infusion into the hypothalamic paraventricular nucleus in mediating stress-induced behavioural responses and oxidative damage in rats. Acta Endocrinology, 5(4), 425-36. [DOI:10.4183/aeb.2009.425] [DOI:10.4183/aeb.2009.425]
6. Danielson, S. R., & Andersen, J. K. (2008). Oxidative and nitrative protein modifications in Parkinson's disease. Free Radical Biology and Medicine, 44(10), 1787-94. [DOI:10.1016/j.freeradbiomed.2008.03.005] [PMID] [PMCID] [DOI:10.1016/j.freeradbiomed.2008.03.005]
7. de Lima, M. N. M., Presti-Torres, J., Dornelles, A., Scalco, F. S., Roesler, R., Garcia, V. A., t al. (2011). Modulatory influence of dopamine receptors on consolidation of object recognition memory. Neurobiology of Learning and Memory, 95, 305-10. [DOI:10.1016/j.nlm.2010.12.007] [PMID] [DOI:10.1016/j.nlm.2010.12.007]
8. Debeir, T., Ginestet, L., François, C., Laurens, S., Martel, J. C., Chopin, P., et al. (2005). Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Experimental Neurology, 193(2), 444-54. [DOI:10.1016/j.expneurol.2005.01.007] [PMID] [DOI:10.1016/j.expneurol.2005.01.007]
9. Dhawan, S., Kapil, R., & Singh, B. (2011). Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. Journal of Pharmacy and Pharmacology, 63(3), 342-51. [DOI:10.1111/j.2042-7158.2010.01225.x] [PMID] [DOI:10.1111/j.2042-7158.2010.01225.x]
10. Díaz, M., Vaamonde, L., & Dajas, F. (2015). Assessment of the protective capacity of nanosomes of quercetin in an experimental model of parkinson's disease in the Rat. General Medicine, 3(5), 207. [DOI:10.4172/2327-5146.1000207] [DOI:10.4172/2327-5146.1000207]
11. Dong, Y., Wang, J., Feng, D.Y., Qin, H. Z, Wen, H., Yin, Z. M., et al. (2014). Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. International Journal of Medical Sciences, 11(3), 282-90. [DOI:10.7150/ijms.7634] [PMID] [PMCID] [DOI:10.7150/ijms.7634]
12. Fukuzawa K., & Tokumura, A. (1976). Glutathione peroxidase activity in tissues of vitamin E-deficient mice. Journal of Nutritional Science and Vitaminology, 22(5), 405-407. [DOI:10.3177/jnsv.22.405] [PMID] [DOI:10.3177/jnsv.22.405]
13. Ganesan, P., Ko, H. M., Kim, I. S., & Choi, D. K. (2015). Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson's disease models. International Journal of Nanomedicine, 10, 6757-72. [DOI:10.2147/IJN.S93918] [PMID] [PMCID] [DOI:10.2147/IJN.S93918]
14. Genet, S., Kale, R. K., & Baquer, N. Z. (2002). Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: Effect of vanadate and fenugreek (Trigonella foenum graecum). Molecular and Cellular Biochemistry, 236(1-2), 7-12. [DOI:10.1023/A:1016103131408] [PMID] [DOI:10.1023/A:1016103131408]
15. Herman, E., & Kevin, H. C. (1989). Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407-21.
16. Hritcu, L., & Ciobica, A. (2013). Intranigral lipopolysaccharide administration induced behavioral deficits and oxidative stress damage in laboratory rats: Relevance for Parkinson's disease. Behavioural Brain Research, 253, 25-31. [DOI:10.1016/j.bbr.2013.07.006] [PMID] [DOI:10.1016/j.bbr.2013.07.006]
17. Hritcu, L., Ciobica, A., & Artenie, V. (2008). Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: Relevance for Parkinson's disease. Open Life Science, 3(3), 250-7. [DOI:10.2478/s11535-008-0023-8] [DOI:10.2478/s11535-008-0023-8]
18. Hritcu, L., Foyet, H. S., Stefan, M., Mihasan, M., Asongalem, A. E., & Kamtchouing, P. (2011). Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Journal of Ethnopharmacology, 137, 585-91. [DOI:10.1016/j.jep.2011.06.008] [PMID] [DOI:10.1016/j.jep.2011.06.008]
19. Junghanns, J. U. A., & Müller, R. H. (2008). Nanocrystal technology, drug delivery and clinical applications. International Journal of Nanomedicine, 3(3), 295-310. [PMID] [PMCID] [PMID] [PMCID]
20. Kakran, M., Sahoo, N. G., & Li, L. (2011). Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids and Surfaces B: Biointerfaces, 88(1), 121-30. [DOI:10.1016/j.colsurfb.2011.06.020] [PMID] [DOI:10.1016/j.colsurfb.2011.06.020]
21. Kakran, M., Sahoo, N. G., Li, L., & Muller, R. H. (2012a). Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technology, 223, 59-64. [DOI:10.1016/j.powtec.2011.08.021] [DOI:10.1016/j.powtec.2011.08.021]
22. Kakran, M., Sahoo, N. G., Li, L., & Muller, R. H. (2012b). Fabrication of quercetin nanocrystals: Comparison of different methods. European Journal of Pharmaceutics and Biopharmaceutics, 80(1), 113-21. [DOI:10.1016/j.ejpb.2011.08.006] [PMID] [DOI:10.1016/j.ejpb.2011.08.006]
23. Kamada, C., da Silva, E. L., Ohnishi-Kameyama, M., Moon, J. H., & Terao, J. (2005). Attenuation of lipid peroxidation and hyperlipidemia by quercetin glucoside in the aorta of high cholesterol-fed rabbit. Free Radical Research, 39(2), 185-94. [DOI:10.1080/10715760400019638] [PMID] [DOI:10.1080/10715760400019638]
24. Krishnakumar, K., John, A., & Dineshkumar, B. (2015). Quercetin nanocrystal formulation: In vitro anti-tumor activity against dalton lymphoma cells. Journal of Drug Discovery and Therapeutics, 3(25), 9-17.
25. Kuruvilla, K. P., Nandhu, M., Paul, J., & Paulose, C. (2013). Oxidative stress mediated neuronal damage in the corpus striatum of 6-hydroxydopamine lesioned parkinson's rats: Neuroprotection by serotonin, GABA and bone marrow cells supplementation. Journal of the Neurological Sciences, 331(1), 31-7. [DOI:10.1016/j.jns.2013.04.020] [PMID] [DOI:10.1016/j.jns.2013.04.020]
26. Lefter, R., Cojocaru, D., Ciobică, A., Pauleț, I., Șerban, I., & Anton, E. (2014). Aspects of animal models for major neuropsychiatric disorders. Archives of Biological Sciences Belgrade, 66(3), 1105-15. [DOI:10.2298/ABS1403105L] [DOI:10.2298/ABS1403105L]
27. Miller, R. L., James-Kracke, M., Sun, G. Y., & Sun, A. Y. (2009). Oxidative and inflammatory pathways in Parkinson's disease. Neurochemical Research, 34(1), 55-65. [DOI:10.1007/s11064-008-9656-2] [PMID] [DOI:10.1007/s11064-008-9656-2]
28. Paxinos, G., & Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. Cambridge, Massachusetts: Academic Press. [PMCID] [PMCID]
29. Rizelio, V., Szawka, R. E., Xavier, L. L., Achaval, M., Rigon, P., Saur, L., Matheussi, F., et al. (2010). Lesion of the subthalamic nucleus reverses motor deficits but not death of nigrostriatal dopaminergic neurons in a rat 6-hydroxydopamine-lesion model of Parkinson's disease. Brazilian Journal of Medical and Biological Research, 43(1), 85-95. [DOI:10.1590/S0100-879X2009007500020] [DOI:10.1590/S0100-879X2009007500020]
30. Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306. [DOI:10.1080/1040869059096] [PMID] [DOI:10.1080/1040869059096]
31. Shanmugam, R., Gowthamarajan, K., Priyanka, D. L., Madhuri, K., & Karri, N. (2013). Bioanalytical method development and validation for herbal quercetin in nano formulation by RP-UFLC in rabbit plasma. Journal of Bioequivalence Bioavailability, 5, 191-6.
32. Shim, J. S., Kim, H. G., Ju, M. S., Choi, J. G., Jeong, S. Y., & Oh, M. S. (2009). Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease. Journal of Ethnopharmacology, 126(2), 361-5. [DOI:10.1016/j.jep.2009.08.023] [PMID] [DOI:10.1016/j.jep.2009.08.023]
33. Sun, B., & Yeo, Y. (2012). Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Current Opinion in Solid State & Materials Science, 16(6), 295-301. [DOI:10.1016/j.cossms.2012.10.004] [PMID] [PMCID] [DOI:10.1016/j.cossms.2012.10.004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb