Volume 8, Issue 5 (September & October 2017)                   BCN 2017, 8(5): 371-386 | Back to browse issues page


XML Print

1- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
2- Department of Neuro-Imaging and Analysis, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obligatory for graph construction and analysis is consistently underestimated by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a number of studies, Mutual Information (MI) has been employed, as a similarity measure between each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal organization of the brain indicating self-similarity, more information on the brain can be revealed by fMRI Fractal Dimension (FD) analysis.
Methods: In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, the global topological graph properties of the brain networks inclusive of global efficiency, clustering coefficient and characteristic path length in addict subjects were investigated too.
Results: Compared to normal subjects by using statistical tests (P<0.05), topological graph properties were postulated to be disrupted significantly during the resting-state fMRI. 
Conclusion: Based on the results, analyzing the graph topological properties (representing the brain networks) based on BCFD is a more reliable method than LC and MI.
Type of Study: Original | Subject: Computational Neuroscience
Received: 2016/02/28 | Accepted: 2016/05/23 | Published: 2017/09/19