Volume 8, Issue 6 (November & December 2017)                   BCN 2017, 8(6): 453-466 | Back to browse issues page

XML Print

1- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India.
2- Department of Genetics, Faculty of Science, Osmania University, Hyderabad, India.
3- Centre for Cellular and Molecular Biology, Hyderabad, India.
4- PhD Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India.
Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain. 
Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot quantification was performed using Hsp-70 (70 kilodalton heat shock proteins) recombinant protein. Finally, changes in pluripotency and Hsp-70 expression were measured using immunofluorescence staining and RT-qPCR (Quantitative reverse transcription PCR) analysis, respectively. 
Results: Heat stress resulted in abnormal neurospheres development. The apoptosis rate was enhanced during long-term in vitro culture of neurospheres. Neurogenic differentiation reduced and showed aberrent phenotypes during heat stress. After hypothermia treatment significant improvement in neurospheres and neuronal cell morphology was observed. 
Conclusion: Mild-hypothermia treatment induces attenuated heat shock response against heat stress resulting in induced HSP-70 expression that significantly improves structure and function of both undifferentiated human NPCs and differentiated neurons.
Type of Study: Original | Subject: Cellular and molecular Neuroscience
Received: 2016/06/27 | Accepted: 2017/02/7 | Published: 2017/11/1

1. Chen, S., & Brown, I. R. (2007). Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress & Chaperones, 12(1), 51-8. doi: 10.1379/csc-236r.1 [DOI:10.1379/CSC-236R.1]
2. Drury, P. P., Gunn, E. R., Bennet, L., & Gunn, A. J. (2014). Mechanisms of Hypothermic Neuroprotection. Clinics in Perinatology, 41(1), 161–175. doi: 10.1016/j.clp.2013.10.005 [DOI:10.1016/j.clp.2013.10.005]
3. Fan, G. C. (2012). Role of heat shock proteins in stem cell behavior. Genetics of Stem Cells, Part A, 305–322. doi: 10.1016/b978-0-12-398459-3.00014-9 [DOI:10.1016/B978-0-12-398459-3.00014-9]
4. Fijita J (1999). Cold shock response in mammalian cells. Journal of Microbiology and Biotechnology. 1(2), 243-55. PMID: 10943555
5. Gabai, V. L., & Sherman, M. Y. (2002). Invited review: Interplay between molecular chaperones and signaling pathways in survival of heat shock. Journal of Applied Physiology, 92(4), 1743–1748. doi: 10.1152/japplphysiol.01101.2001 [DOI:10.1152/japplphysiol.01101.2001]
6. Gonzalez, M. F., Shiraishi, K., Hisanaga, K., Sagar, S. M., Mandabach, M., & Sharp, F. R. (1989). Heat shock proteins as markers of neural injury. Molecular Brain Research, 6(1), 93–100. doi: 10.1016/0169-328x(89)90033-8 [DOI:10.1016/0169-328X(89)90033-8]
7. Sharma, H. S (2006). Hyperthermia induced brain oedema: Current status & future perspectives. Indian Journal of Medical Research, 123(5), 629-52. PMID: 16873906 [PMID]
8. Hatayama, T., Takahashi, H., & Yamagishi, N. (1997). Reduced induction of Hsp70 in PC12 cells during neuronal differentiation. Journal of Biochemistry, 122(5), 904–910. doi: 10.1093/oxfordjournals.jbchem.a021851 [DOI:10.1093/oxfordjournals.jbchem.a021851]
9. Hatayama, T., Tsujioka, K., Wakatsuki, T., Kitamura, T., & Imahara, H. (1992). Effects of low culture temperature on the induction of hsp70 mRNA and the accumulation of hsp70 and hsp105 in mouse FM3A cells. The Journal of Biochemistry, 111(4), 484–490. doi: 10.1093/oxfordjournals.jbchem.a123784 [DOI:10.1093/oxfordjournals.jbchem.a123784]
10. Hochachka, P. (1986). Defense strategies against hypoxia and hypothermia. Science, 231(4735), 234–241. doi: 10.1126/science.2417316 [DOI:10.1126/science.2417316]
11. Schmitt, K. R. L., Tong, G., & Berger, F. (2014). Mechanisms of hypothermia-induced cell protection in the brain. Molecular and Cellular Pediatrics, 1(1):7. doi: 10.1186/s40348-014-0007-x [DOI:10.1186/s40348-014-0007-x]
12. Kinouchi, H., Sharp, F. R., Hill, M. P., Koistinaho, J., Sagar, S. M., & Chan, P. H. (1993). Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow & Metabolism, 13(1), 105–115. doi: 10.1038/jcbfm.1993.13 [DOI:10.1038/jcbfm.1993.13]
13. Li, P., & Yang, C. (2014). Moderate hypothermia treatment in adult patients with severe traumatic brain injury: A meta-analysis. Brain Injury, 28(8), 1036–1041. doi: 10.3109/02699052.2014.910609 [DOI:10.3109/02699052.2014.910609]
14. Liu AY, Bian H, Huang LE, & Lee YK (1994). Transient cold shock induces the heat shock response upon recovery at 37 degrees C in human cells. The Journal of Biological Chemistry. 269(20), 14768-75. PMID: 8182082 [PMID]
15. Morimoto, R. I. (2006). Stress, aging, and neurodegenerative disease. New England Journal of Medicine, 355(21), 2254–2255. doi: 10.1056/nejmcibr065573 [DOI:10.1056/NEJMcibr065573]
16. Morimoto, R. I, Tissieres, A., & Georgopoulos, C. (1994). The biology of heat shock proteins and molecular chaperones. New York: Cold Spring Harbor Laboratory Press.
17. Mosser, D. D., Caron, A. W., Bourget, L., Meriin, A. B., Sherman, M. Y., Morimoto, R. I., et al. (2000). The chaperone function of Hsp70 is required for protection against stress-induced apoptosis. Molecular and Cellular Biology, 20(19), 7146–59. doi: 10.1128/mcb.20.19.7146-7159.2000 [DOI:10.1128/MCB.20.19.7146-7159.2000]
18. Mrozek, S., Vardon, F., & Geeraerts, T. (2012). Brain temperature. Physiology and pathophysiology after brain injury. Anesthesiology Research and Practice, 2012, 1–13. doi: 10.1155/2012/989487 [DOI:10.1155/2012/989487]
19. Nelson, R. J., Kruuv, J., Koch, C. J., & Frey, H. E. (1971). Effect of sub-optimal temperatures on survival of mammalian cells. Experimental Cell Research, 68(2), 247–252. doi: 10.1016/0014-4827(71)90148-0 [DOI:10.1016/0014-4827(71)90148-0]
20. Oza, J., Yang, J., Chen, K. Y., & Liu, A. (2005). Changes in the regulation of heat shock gene expression in neuronal cell differentiation. Cell Stress & Chaperones, preprint (2008), 13(1), 73-84. doi: 10.1007/s12192-008-0013-9 [DOI:10.1007/s12192-008-0013-9]
21. Paspala, S. A., Vishwakarma, S. K., Murthy, T. V., Rao, T. N., Khan, A. A. (2012). Potential role of stem cells in severe spinal cord injury: current perspectives and clinical data. Stem Cells and Cloning: Advances and Applications, 5, 15-27. doi: 10.2147/sccaa.s28477 [DOI:10.2147/SCCAA.S28477]
22. Polderman, K. H. (2008). Induced hypothermia and fever control for prevention and treatment of neurological injuries. The Lancet, 371(9628), 1955–1969. doi: 10.1016/s0140-6736(08)60837-5 [DOI:10.1016/S0140-6736(08)60837-5]
23. Rumana, C. S., Gopinath, S. P., Uzura, M., Valadka, A. B., & Robertson, C. S. (1998). Brain temperature exceeds systemic temperature in head-injured patients. Critical Care Medicine, 26(3), 562–567. doi: 10.1097/00003246-199803000-00032 [DOI:10.1097/00003246-199803000-00032]
24. Sharma, H. S., & Hoopes, P. J. (2003). Hyperthermia induced pathophysiology of the central nervous system. International Journal of Hyperthermia, 19(3), 325–354. doi:10.1080/0265673021000054621 [DOI:10.1080/0265673021000054621]
25. Sharp, F. R., & Sagar, S. M. (1994). Alterations in gene expression as an index of neuronal injury: Heat shock and the immediate early gene response. Neurotoxicology. 15(1), 51-9. PMID: 8090362 [PMID]
26. Sherman, M. Y., & Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron, 29(1), 15–32. doi: 10.1016/s0896-6273(01)00177-5 [DOI:10.1016/S0896-6273(01)00177-5]
27. Soloff, B. L., Nagle, W. A., Moss, A. J., Henle, K. J., & Crawford, J. T. (1987). Apoptosis induced by cold shock in vitro is dependent on cell growth phase. Biochemical and Biophysical Research Communications, 145(2), 876–883. doi: 10.1016/0006-291x(87)91046-1 [DOI:10.1016/0006-291X(87)91046-1]
28. Rajdev, S., & Sharp, F. R. (2000). Stress proteins as Molecular Markers of Neurotoxicity. Toxicologic Pathology, 28(1), 105–112. doi: 10.1177/019262330002800113 [DOI:10.1177/019262330002800113]
29. Tanaka, T., Wakamatsu, T., Daijo, H., Oda, S., Kai, S., Adachi, T., et al. (2009). Persisting mild hypothermia suppresses hypoxia-inducible factor-1 protein synthesis and hypoxia-inducible factor-1-mediated gene expression. AJP: Regulatory, Integrative and Comparative Physiology, 298(3), R661–R671. doi: 10.1152/ajpregu.00732.2009 [DOI:10.1152/ajpregu.00732.2009]
30. Van Rijn, J., van den Berg, J., Kipp, J. B. A., Schamhart, D. H. J., & van Wijk, R. (1985). Effect of hypothermia on cell kinetics and response to hyperthermia and X rays. Radiation Research, 101(2), 292. doi:10.2307/3576395 [DOI:10.2307/3576395]
31. Vania, R. K., & Ian, R. B. (2002). The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress & Chaperones. 7(1), 73-90. doi: 10.1379/1466-1268(2002)007<0073:teohot>2.0.co;2 https://doi.org/10.1379/1466-1268(2002)007<0073:TEOHOT>2.0.CO;2 [DOI:10.1379/1466-1268(2002)0072.0.CO;2]
32. Vishwakarma, S. K., Bardia, A., Tiwari, S. K., Paspala, S. A. B., & Khan, A. A. (2014). Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. Journal of Advanced Research, 5(3), 277–294. doi: 10.1016/j.jare.2013.04.005 [DOI:10.1016/j.jare.2013.04.005]
33. Vishwakarma, S. K., Paspala, S. A. B., Bardia, A., Tiwari, S.K., Srinivas, G., Raj, A., et al. (2013). Isolation and characterization of neural precursor cells from different regions of human fetal brain: Assessment of in vitro proliferation and differentiation. International Journal of Advanced Research, 1(9), 782-793.
34. Vishwakarma, S. K., Paspala, S. A. B., Tiwari, S. K., & Khan, A. A. (2014). ATP-binding cassette (ABC) transporters as emerging targets in modulation of neural stem cell behavior in neurodegenerative diseases and cell therapy benefits. Journal of Cell and Molecular Research, 6(1), 44-49. doi: 10.22067/jcmr.v6i1.30375
35. Wang, F., Luo, Y., Ling, F., Wu, H., Chen, J., Yan, F.,et al. (2010). Comparison of neuroprotective effects in ischemic rats with different hypothermia procedures. Neurological Research, 32(4), 378–383. doi: 10.1179/016164110x12670144526183 [DOI:10.1179/016164110X12670144526183]
36. Watanabe, I. & Okada, S. (1967). Effects of temperature on growth rate of cultured mammalian cells (L5178Y). The Journal of Cell Biology, 32(2), 309–323. doi: 10.1083/jcb.32.2.309 [DOI:10.1083/jcb.32.2.309]
37. Welch, W. J., & Gambetti, P. (1998). Neurodegeneration: Chaperoning brain diseases. Nature, 392(6671), 23–24. doi: 10.1038/32049 [DOI:10.1038/32049]
38. Westerheide, S. D., & Morimoto, R. I. (2005). Heat shock response modulators as therapeutic tools for diseases of protein conformation. Journal of Biological Chemistry, 280(39), 33097–33100. doi: 10.1074/jbc.r500010200 [DOI:10.1074/jbc.R500010200]
39. Yao, S., Gutierrez, D. L., He, H., Dai, Y., Liu, D., & Wise, G. E. (2011). Proliferation of dental follicle-derived cell populations in heat-stress conditions. Cell Proliferation, 44(5), 486–493. doi: 10.1111/j.1365-2184.2011.00778.x [DOI:10.1111/j.1365-2184.2011.00778.x]
40. Yenari, M. A., Giffard, R. G., Sapolsky, R. M., & Steinberg, G. K. (1999). The neuroprotective potential of heat shock protein 70 (HSP70). Molecular Medicine Today, 5(12), 525–531. doi: 10.1016/s1357-4310(99)01599-3 [DOI:10.1016/S1357-4310(99)01599-3]
41. Zeng, Y., Kulkarni, P., Inoue, T., & Getzenberg, R. H. (2009). Down-regulating cold shock protein genes impairs cancer cell survival and enhances chemosensitivity. Journal of Cellular Biochemistry, 107(1), 179–188. doi: 10.1002/jcb.22114 [DOI:10.1002/jcb.22114]