Volume 10, Issue 1 (January & February 2019)                   BCN 2019, 10(1): 59-72 | Back to browse issues page


XML Print


1- Department of Physical Therapy, School of Rehabilitation Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
2- Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
3- Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
4- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran.
5- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
6- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
Abstract:  
Introduction: Based on the literature, unihemispheric concurrent dual-site anodal transcranial Direct Current Stimulation (a-tDCSUHCDS) of primary Motor cortex (M1) and Dorsolateral Prefrontal Cortex (DLPFC) would be more efficient than conventional a-tDCS of M1 to induce larger and longer-lasting M1 corticospinal excitability. The main objective of the present study was to compare the effects of a-tDCSUHCDS and conventional M1 a-tDCS on the extent and durability of the motor sequence acquisition in healthy individuals.
Methods: In this randomized sham-controlled study, healthy volunteers were randomly divided into three groups: experimental (a-tDCSUHCDS), control (M1 a-tDCS), and sham stimulation groups. The participants practiced serial response time task over three consecutive days when they simultaneously received a-tDCS. Using the skill measure, we assessed motor learning up to 4 weeks after the completion of experimental conditions. 
Results: Data analysis revealed that all groups exhibited the improved trend over the training course (P<0.001). There were no significant differences in skill acquisition among groups at post-intervention (P>0.05), while a significant improvement was observed between experimental and sham group at the retention time (P<0.05). Moreover, there were no significant differences between the control and two other groups with regard to the retention time (P>0.05). 
Conclusion: These results revealed a significant increase in the skill acquisition by a-tDCSUHCDS technique with regard to retention issue, which could be a valuable finding in neuro-rehabilitation field. 
Type of Study: Original | Subject: Clinical Neuroscience
Received: 2017/10/28 | Accepted: 2018/04/30 | Published: 2019/01/1

References
1. Bastani, A., & Jaberzadeh, S. (2013). a-tDCS differential modulation of corticospinal excitability: The effects of electrode size. Brain Stimulation, 6(6), 932-7. [DOI:10.1016/j.brs.2013.04.005] [PMID] [DOI:10.1016/j.brs.2013.04.005]
2. Baudewig, J., Nitsche, M. A., Paulus, W., & Frahm, J. (2001). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magnetic Resonance in Medicine, 45(2), 196-201. [DOI:10.1002/1522-2594(200102)45:23.0.CO;2-1] https://doi.org/10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1 [DOI:10.1002/1522-2594(200102)45:23.0.CO;2-1]
3. Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: role of "return" electrode's position and size. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 121(12), 1976-9. [DOI:10.1016/j.clinph.2010.05.020] [PMCID]
4. Boggio, P. S., Castro, L. O., Savagim, E. A., Braite, R., Cruz, V. C., Rocha, R. R., et al. (2006). Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neuroscience Letters, 404(1), 232-6. [DOI:10.1016/j.neulet.2006.05.051] [PMID] [DOI:10.1016/j.neulet.2006.05.051]
5. Boros, K., Poreisz, C., Münchau, A., Paulus, W., & Nitsche, M. A. (2008). Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. European Journal of Neuroscience, 27(5), 1292-300. [DOI:10.1111/j.1460-9568.2008.06090.x] [PMID] [DOI:10.1111/j.1460-9568.2008.06090.x]
6. Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Neuropsychopharmacology, 14(8), 1133-45. [DOI:10.1017/S1461145710001690] [PMID] [DOI:10.1017/S1461145710001690]
7. Cuypers, K., Leenus, D. J., van den Berg, F. E., Nitsche, M. A., Thijs, H., Wenderoth, N., et al. (2013). Is motor learning mediated by tDCS intensity? PLoS One, 8(6), e67344. [DOI:10.1371/journal.pone.0067344] [PMID] [PMCID] [DOI:10.1371/journal.pone.0067344]
8. Dayan, E., & Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443-54. [DOI:10.1016/j.neuron.2011.10.008] [PMID] [PMCID] [DOI:10.1016/j.neuron.2011.10.008]
9. De Xivry, J. O., & Shadmehr, R. (2014). Electrifying the motor engram: effects of tDCS on motor learning and control. Experimental Brain Research, 232(11), 3379-95. [DOI:10.1007/s00221-014-4087-6] [PMID] [PMCID] [DOI:10.1007/s00221-014-4087-6]
10. Ehsani, F., Bakhtiary, A., Jaberzadeh, S., Talimkhani, A., & Hajihasani, A. (2016). Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: A randomized double-blind sham-controlled study. Neuroscience Research, 112, 10-19. [DOI:10.1016/j.neures.2016.06.003] [PMID] [DOI:10.1016/j.neures.2016.06.003]
11. Floyer-Lea, A., & Matthews, P. M. (2005). Distinguishable brain activation networks for short-and long-term motor skill learning. Journal of Neurophysiology, 94(1), 512-8. [DOI:10.1152/jn.00717.2004] [PMID] [DOI:10.1152/jn.00717.2004]
12. Galea, J. M., Vazquez, A., Pasricha, N., Orban de Xivry, J. J., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex, 21(8), 1761-70. [DOI:10.1093/cercor/bhq246] [PMID] [PMCID] [DOI:10.1093/cercor/bhq246]
13. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC Stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845-50. [DOI:10.1016/j.clinph.2005.12.003] [PMID] [DOI:10.1016/j.clinph.2005.12.003]
14. George, M. S., & Aston-Jones, G. (2010). Noninvasive techniques for probing neurocircuitry and treating illness: Vagus Nerve Stimulation (VNS), Transcranial Magnetic Stimulation (TMS) and transcranial Direct Current Stimulation (tDCS). Neuropsychopharmacology, 35(1), 301-16. [DOI:10.1038/npp.2009.87] [PMID] [PMCID] [DOI:10.1038/npp.2009.87]
15. Gershon, A. A., Dannon, P. N., & Grunhaus, L. (2003). Transcranial magnetic stimulation in the treatment of depression. American Journal of Psychiatry, 160(5), 835-45. [DOI:10.1176/appi.ajp.160.5.835] [PMID] [DOI:10.1176/appi.ajp.160.5.835]
16. Hoshi, E. (2006). Functional specialization within the dorsolateral prefrontal cortex: A review of anatomical and physiological studies of non-human primates. Neuroscience Research, 54(2), 73-84. [DOI:10.1016/j.neures.2005.10.013] [PMID] [DOI:10.1016/j.neures.2005.10.013]
17. Kang, E. K., & Paik, N. J. (2011). Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Experimental & Translational Stroke Medicine, 3(1), 4-11. [DOI:10.1186/2040-7378-3-4] [PMID] [PMCID] [DOI:10.1186/2040-7378-3-4]
18. Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning–evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36(5), 2710-5. [DOI:10.1111/j.1460-9568.2012.08175.x] [PMID] [DOI:10.1111/j.1460-9568.2012.08175.x]
19. Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., et al. (1998). The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences, 95(3), 861-8. [DOI:10.1073/pnas.95.3.861] [DOI:10.1073/pnas.95.3.861]
20. Kolb, B., & Whishaw, I. Q. (2009). Fundamentals of human neuropsychology. Plgrave: Macmillan.
21. Lang, N., Nitsche, M., Paulus, W., Rothwell, J., & Lemon, R. (2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Experimental Brain Research, 156(4), 439-43. [DOI:10.1007/s00221-003-1800-2] [PMID] [DOI:10.1007/s00221-003-1800-2]
22. Lang, N., Siebner, H. R., Ward, N. S., Lee, L., Nitsche, M. A., Paulus, W., et al. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience, 22(2), 495-504. [DOI:10.1111/j.1460-9568.2005.04233.x] [PMID] [PMCID] [DOI:10.1111/j.1460-9568.2005.04233.x]
23. Lévesque, J., Théoret, H., & Champoux, F. (2014). Reduced procedural motor learning in deaf individuals. Frontiers in Human Neuroscience, 8(3), 343-9. [DOI:10.3389/fnhum.2014.00343] [PMID] [PMCID] [DOI:10.3389/fnhum.2014.00343]
24. Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied multivariate research: Design and interpretation. Tousand Oaks: Sage. [DOI:10.1207/s15327906mbr4104_3]
25. Nitsche, M. A., Doemkes, S., Karakoese, T., Antal, A., Liebetanz, D., Lang, N., et al. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97(4), 3109-17. [DOI:10.1152/jn.01312.2006] [PMID] [DOI:10.1152/jn.01312.2006]
26. Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633-9. [DOI:10.1111/j.1469-7793.2000.t01-1-00633.x] [PMID] [PMCID] [DOI:10.1111/j.1469-7793.2000.t01-1-00633.x]
27. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-901. [DOI:10.1212/WNL.57.10.1899] [PMID] [DOI:10.1212/WNL.57.10.1899]
28. Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., et al. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619-26. [DOI:10.1162/089892903321662994] [PMID] [DOI:10.1162/089892903321662994]
29. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113. [DOI:10.1016/0028-3932(71)90067-4] [DOI:10.1016/0028-3932(71)90067-4]
30. Reis, J., Fischer, J. T., Prichard, G., Weiller, C., Cohen, L. G., & Fritsch, B. (2015). Time-but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cerebral Cortex, 25(1), 109-17. [DOI:10.1093/cercor/bht208] [PMID] [PMCID] [DOI:10.1093/cercor/bht208]
31. Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., et al. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106(5), 1590-5. [DOI:10.1073/pnas.0805413106] [PMID] [PMCID] [DOI:10.1073/pnas.0805413106]
32. Robertson, E. M. (2007). The serial reaction time task: implicit motor skill learning? Journal of Neuroscience, 27(38), 10073-5. [DOI:10.1523/JNEUROSCI.2747-07.2007] [PMID] [DOI:10.1523/JNEUROSCI.2747-07.2007]
33. Robertson, E. M., Press, D. Z., & Pascual-Leone, A. (2005). Off-line learning and the primary motor cortex. Journal of Neuroscience, 25(27), 6372-8. [DOI:10.1523/JNEUROSCI.1851-05.2005] [PMID] [DOI:10.1523/JNEUROSCI.1851-05.2005]
34. Rosenkranz, K., Kacar, A., & Rothwell, J. C. (2007). Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. Journal of Neuroscience, 27(44), 12058-66. [DOI:10.1523/JNEUROSCI.2663-07.2007] [PMID] [DOI:10.1523/JNEUROSCI.2663-07.2007]
35. Saucedo Marquez, C. M., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7(2), 333-8. [DOI:10.3389/fnhum.2013.00333] [PMID] [PMCID] [DOI:10.3389/fnhum.2013.00333]
36. Schambra, H. M., Abe, M., Luckenbaugh, D. A., Reis, J., Krakauer, J. W., & Cohen, L. G. (2011). Probing for hemispheric specialization for motor skill learning: A transcranial direct current stimulation study. Journal of Neurophysiology, 106(2), 652-61. [DOI:10.1152/jn.00210.2011] [PMID] [PMCID] [DOI:10.1152/jn.00210.2011]
37. Schreiber, J., Sober, L., Banta, L., Glassbrenner, L., Haman, J., Mistry, N., et al. (2001). Application of motor learning principles with stroke survivors. Occupational Therapy in Health Care, 13(1), 23-44. [DOI:10.1080/J003v13n01_03] [PMID] [DOI:10.1080/J003v13n01_03]
38. Stagg, C., Jayaram, G., Pastor, D., Kincses, Z., Matthews, P., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800-4. [DOI:10.1016/j.neuropsychologia.2011.02.009] [PMID] [PMCID] [DOI:10.1016/j.neuropsychologia.2011.02.009]
39. Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., et al. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. Journal of Neurophysiology, 104(2), 1134-40. [DOI:10.1152/jn.00661.2009] [PMID] [DOI:10.1152/jn.00661.2009]
40. Vaseghi, B., Zoghi, M., & Jaberzadeh, S. (2015a). The effects of anodal-tDCS on corticospinal excitability enhancement and its after-effects: conventional vs. unihemispheric concurrent dual-site stimulation. Frontiers in Human Neuroscience, 9(2), 1-12. [DOI:10.3389/fnhum.2015.00533] [DOI:10.3389/fnhum.2015.00533]
41. Vaseghi, B., Zoghi, M., & Jaberzadeh, S. (2015b). How does anodal transcranial direct current stimulation of the pain neuromatrix affect brain excitability and pain perception? A randomised, double-blind, sham-control study. PLoS One, 10(3), e0118340. [DOI:10.1371/journal.pone.0118340] [PMID] [PMCID] [DOI:10.1371/journal.pone.0118340]
42. Vines, B. W., Cerruti, C., & Schlaug, G. (2008). Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation. BMC Neuroscience, 9, 103-11. [DOI:10.1186/1471-2202-9-103] [PMID] [PMCID] [DOI:10.1186/1471-2202-9-103]
43. Vines, B. W., Nair, D., & Schlaug, G. (2008). Modulating activity in the motor cortex affects performance for the two hands differently depending upon which hemisphere is stimulated. European Journal of Neuroscience, 28(8), 1667-73. [DOI:10.1111/j.1460-9568.2008.06459.x] [PMID] [DOI:10.1111/j.1460-9568.2008.06459.x]
44. Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., et al. (2004). Placebo-induced changes in FMRI in the anticipation and experience of pain. Science, 303(5661), 1162-7. [DOI:10.1126/science.1093065] [PMID] [DOI:10.1126/science.1093065]
45. Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105(3), 558-61. [DOI:10.1037/0033-295X.105.3.558] [PMID] [DOI:10.1037/0033-295X.105.3.558]
46. Ziemann, U., Iliać, T. V., Pauli, C., Meintzschel, F., & Ruge, D. (2004). Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. Journal of Neuroscience, 24(7), 1666-72. [DOI:10.1523/JNEUROSCI.5016-03.2004] [PMID] [DOI:10.1523/JNEUROSCI.5016-03.2004]
47. Zimerman, M., Nitsch, M., Giraux, P., Gerloff, C., Cohen, L. G., & Hummel, F. C. (2013). Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Annals of Neurology, 73(1), 10-15. [DOI:10.1002/ana.23761] [PMID] [PMCID] [DOI:10.1002/ana.23761]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.