Volume 9, Issue 3 (Issue in Progress 2018 2018)                   BCN 2018, 9(3): 157-166 | Back to browse issues page


XML Print


1- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
2- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
3- PhD Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
Abstract:  
Introduction: Methamphetamine (METH) is a neurotoxic psychostimulant with highly addictive potential that leads to compulsive drug use and vulnerability to relapse. Environmental cues, such as drug exposure, peer influence, and social stress, are the powerful triggers of drug relapse. In  this  study,  we  tried  to  find  out  the effect of acute and chronic restraint stress on reinstatement of extinguished METH-induced Conditioned Place  Preference  (CPP)  in  rats. 
Methods: Subcutaneous (SC) administration of METH (0.125, 0.25, 0.5, 1, 2 and 4 mg/kg) could induce CPP and it was found that  METH with the dose of 0.5 mg/kg was more potent than other doses. In  extinction phase,  rats  were  put  in  the  CPP  box  for  30  min  per  day  for  8 consecutive days.  After  extinction,  animals  were  exposed  to restraint stress (3-h period, as an acute stress) 60  min  before  subcutaneous  administration  of  ineffective  dose  of  METH  (0.125  mg/kg)  in  order  to  reinstate  the  extinguished  METH-induced CPP. For induction of the chronic stress during extinction phase, the animals were exposed to the restraint stress for one hour per day.
Results: The results showed that the effective dose of METH to induce CPP was 0.5 mg/kg.  Based on the results, physical  stress  (restraint stress) whether acute and chronic, can  significantly  induce  reinstatement  of METH-induced CPP (P˂0.001) in extinguished animals. 
Conclusion: Additionally, the chronic restraint stress could reduce duration of extinction (maintenance) of METH-induced CPP. It seems that exposure to the stress induces the relapse in abstinent amphetamine, but acute and chronic situation have a different reaction. 
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2017/04/11 | Accepted: 2017/09/15 | Published: 2018/05/1

References
1. Belujon, P., & Grace, A. A. (2011). Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Annals of the New York Academy of Sciences, 1216, 114-121. [DOI:10.1111/j.1749-6632.2010.05896] [DOI:10.1111/j.1749-6632.2010.05896.x] [PMID] [PMCID]
2. Briand, L. A., & Blendy, J. A. (2013). Not all stress is equal: CREB is not necessary for restraint stress reinstatement of cocaine-conditioned reward. Behavioural Brain Research, 246, 63-68. [DOI:10.1016/j.bbr.2013.02.026] [DOI:10.1016/j.bbr.2013.02.026]
3. Conrad, K. L., McCutcheon, J. E., Cotterly, L. M., Ford, K. A., Beales, M., & Marinelli, M. (2010). Persistent increases in cocaine-seeking behavior after acute exposure to cold swim stress. Biological Psychiatry, 68(3), 303-305. [DOI:10.1016/j.biopsych.2010.03.030] [DOI:10.1016/j.biopsych.2010.03.030]
4. Covington, H. E., & Miczek, K. A. (2001). Repeated social-defeat stress, cocaine or morphine. Effects on behavioral sensitization and intravenous cocaine self-administration "binges". Psychopharmacology, 158(4), 388-398. [DOI:10.1007/s002130100858] [DOI:10.1007/s002130100858]
5. Dai, Z., Kang, L., Wang, L., & Ma, L. (2006). Different roles of dopamine receptor subtypes in footshock stress-induced enhancement of morphine conditioned place preference. Neuroscience Letters, 409(1), 52-56. [DOI:10.1016/j.neulet.2006.09.012] [DOI:10.1016/j.neulet.2006.09.012]
6. De Giovanni, L. N., Guzman, A. S., Virgolini, M. B., & Cancela, L. M. (2016). NMDA antagonist MK 801 in nucleus accumbens core but not shell disrupts the restraint stress-induced reinstatement of extinguished cocaine-conditioned place preference in rats. Behavioural Brain Research, 315, 150-159. [DOI:10.1016/j.bbr.2016.08.011] [DOI:10.1016/j.bbr.2016.08.011]
7. Ebrahimian, F., Naghavi, F. S., Yazdi, F., Sadeghzadeh, F., Taslimi, Z., & Haghparast, A. (2016). Differential roles of orexin receptors within the dentate gyrus in stress- and drug priming-induced reinstatement of conditioned place preference in rats. Behavioral Neuroscience, 130(1), 91-102. [DOI:10.1037/bne0000112] [DOI:10.1037/bne0000112]
8. Faravelli, C., Lo Sauro, C., Lelli, L., Pietrini, F., Lazzeretti, L., Godini, L., et al. (2012). The role of life events and HPA axis in anxiety disorders: a review. Current Pharmaceutical Design, 18(35), 5663-5674. [DOI:10.2174/138161212803530907] [PMID] [DOI:10.2174/138161212803530907]
9. Gilbert, J. G., Newman, A. H., Gardner, E. L., Ashby, C. R., Jr., Heidbreder, C. A., Pak, A. C., et al. (2005). Acute administration of SB-277011A, NGB 2904, or BP 897 inhibits cocaine cue-induced reinstatement of drug-seeking behavior in rats: role of dopamine D3 receptors. Synapse, 57(1), 17-28. [DOI:10.1002/syn.20152] [DOI:10.1002/syn.20152]
10. Glynn, R. M., Rosenkranz, J. A., Wolf, M. E., Caccamise, A., Shroff, F., Smith, A. B., et al. (2016). Repeated restraint stress exposure during early withdrawal accelerates incubation of cue-induced cocaine craving. Addiction Biology, 23(1), 80-89. [DOI:10.1111/adb.12475] [DOI:10.1111/adb.12475]
11. Haghparast, A., Omranifard, A., Arezoomandan, R., Ghalandari-Shamami, M., Taslimi, Z., Vafaei, A. A., et al. (2013). Involvement of dopaminergic receptors of the rat nucleus accumbens in decreasing the conditioned place preference induced by lateral hypothalamus stimulation. Neuroscience Letters, 556, 10-14. [DOI:10.1016/j.neulet.2013.09.062] [DOI:10.1016/j.neulet.2013.09.062]
12. Haghparast, A., Taslimi, Z., Ramin, M., Azizi, P., Khodagholi, F., & Hassanpour-Ezatti, M. (2011). Changes in phosphorylation of CREB, ERK, and c-fos induction in rat ventral tegmental area, hippocampus and prefrontal cortex after conditioned place preference induced by chemical stimulation of lateral hypothalamus. Behavioural Brain Research, 220(1), 112-118. [DOI:10.1016/j.bbr.2011.01.045] [DOI:10.1016/j.bbr.2011.01.045]
13. Han, W. Y., Du, P., Fu, S. Y., Wang, F., Song, M., Wu, C. F., et al. (2014). Oxytocin via its receptor affects restraint stress-induced methamphetamine CPP reinstatement in mice: Involvement of the medial prefrontal cortex and dorsal hippocampus glutamatergic system. Pharmacology Biochemistry and Behavior, 119, 80-87. [DOI:10.1016/j.pbb.2013.11.014] [DOI:10.1016/j.pbb.2013.11.014]
14. Karimi, S., Attarzadeh-Yazdi, G., Yazdi-Ravandi, S., Hesam, S., Azizi, P., Razavi, Y., et al. (2014). Forced swim stress but not exogenous corticosterone could induce the reinstatement of extinguished morphine conditioned place preference in rats: involvement of glucocorticoid receptors in the basolateral amygdala. Behavioural Brain Research, 264, 43-50. [DOI:10.1016/j.bbr.2014.01.045] [DOI:10.1016/j.bbr.2014.01.045]
15. Katz, R. J., & Roth, K. (1979). Tail pinch induced stress-arousal facilitates brain stimulation reward. Physiology & Behavior, 22(1), 193-194. [DOI:10.1016/0031-9384(79)90422-0] [DOI:10.1016/0031-9384(79)90422-0]
16. Koob, G. F. (2008). A role for brain stress systems in addiction. Neuron, 59(1), 11-34. [DOI:10.1016/j.neuron.2008.06.012] [DOI:10.1016/j.neuron.2008.06.012]
17. Leao, R. M., Cruz, F. C., & Planeta, C. S. (2009). Exposure to acute restraint stress reinstates nicotine-induced place preference in rats. Behavioural Pharmacology, 20(1), 109-113. [DOI:10.1097/FBP.0b013e3283242f41] [DOI:10.1097/FBP.0b013e3283242f41]
18. Lu, L., Shepard, J. D., Hall, F. S., & Shaham, Y. (2003). Effect of environmental stressors on opiate and psychostimulant reinforcement, reinstatement and discrimination in rats: a review. Neuroscience & Biobehavioral Reviews, 27(5), 457-491. [DOI:10.1016/S0149-7634(03)00073-3] [PMID:14505687] [DOI:10.1016/S0149-7634(03)00073-3]
19. Mahoney, J. J., Thompson-Lake, D. G., Cooper, K., Verrico, C. D., Newton, T. F., & De La Garza, R. (2015). A comparison of impulsivity, depressive symptoms, lifetime stress and sensation seeking in healthy controls versus participants with cocaine or methamphetamine use disorders. Journal of Psychopharmacology, 29(1), 50-56. [DOI:10.1177/0269881114560182] [DOI:10.1177/0269881114560182]
20. Marti, O., Marti, J., & Armario, A. (1994). Effects of chronic stress on food intake in rats: influence of stressor intensity and duration of daily exposure. Physiology & Behavior, 55(4), 747-753. [DOI:10.1016/0031-9384(94)90055-8] [DOI:10.1016/0031-9384(94)90055-8]
21. Mazid, S., Hall, B. S., Odell, S. C., Stafford, K., Dyer, A. D., Van Kempen, T. A., et al. (2016). Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress. Neurobiology of Stress, 5, 37-53. [DOI:10.1016/j.ynstr.2016.11.002] [DOI:10.1016/j.ynstr.2016.11.002]
22. Montagud-Romero, S., Aguilar, M. A., Maldonado, C., Manzanedo, C., Minarro, J., & Rodriguez-Arias, M. (2015). Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice. Pharmacology Biochemistry and Behavior, 135, 1-12. [DOI:10.1016/j.pbb.2015.05.008] [DOI:10.1016/j.pbb.2015.05.008]
23. National Institute on Drug Abuse (NIDA). Drug Facts: Methamphetamine. New York: National Institute on Drug Abuse (NIDA); 2010.
24. Pacchioni, A. M., Gioino, G., Assis, A., & Cancela, L. M. (2002). A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: involvement of NMDA receptors. Annals of the New York Academy of Sciences, 965, 233-246. [DOI:10.1111/j.1749-6632.2002.tb04165.x] [DOI:10.1111/j.1749-6632.2002.tb04165.x]
25. Padival, M., Quinette, D., & Rosenkranz, J. A. (2013). Effects of repeated stress on excitatory drive of basal amygdala neurons in vivo. Neuropsychopharmacology, 38(9), 1748-1762. [DOI:10.1038/npp.2013.74] [DOI:10.1038/npp.2013.74]
26. Parvishan, A., Taslimil, Z., Ebrahimzadeh, M., & Haghparast, A. (2011). Haghparast, Capsazepine, a Transient Receptor Potential Vanilloid Type 1 (TRPV1) Antagonist, Attenuates Antinociceptive Effect of CB1 Receptor Agonist, WIN55,212-2, in the Rat Nucleus Cuneiformis. Basic & Clinical Neuroscience,2(4), 19-26.
27. Quadros, I. M., & Miczek, K. A. (2009). Two modes of intense cocaine bingeing: increased persistence after social defeat stress and increased rate of intake due to extended access conditions in rats. Psychopharmacology (Berl), 206(1), 109-120. [DOI:10.1007/s00213-009-1584-6] [DOI:10.1007/s00213-009-1584-6]
28. Sadeghzadeh, F., Babapour, V., & Haghparast, A. (2016). Food deprivation facilitates reinstatement of morphine-induced conditioned place preference: Role of intra-accumbal dopamine D2-like receptors in associating reinstatement of morphine CPP with stress. Synapse. Synapse, 71(4). [DOI:10.1002/syn.21951] [PMID:27902847] [DOI:10.1002/syn.21951]
29. Santibanez, M., Gysling, K., & Forray, M. I. (2006). Desipramine prevents the sustained increase in corticotropin-releasing hormone-like immunoreactivity induced by repeated immobilization stress in the rat central extended amygdala. Journal of Neuroscience Research, 84(6), 1270-1281. [DOI:10.1002/jnr.21023] [DOI:10.1002/jnr.21023]
30. Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105-130. [DOI:10.1196/annals.1441.030] [DOI:10.1196/annals.1441.030]
31. Sotomayor-Zarate, R., Abarca, J., Araya, K. A., Renard, G. M., Andres, M. E., & Gysling, K. (2015). Exposure to repeated immobilization stress inhibits cocaine-induced increase in dopamine extracellular levels in the rat ventral tegmental area. Pharmacological Research, 101, 116-123. [DOI:10.1016/j.phrs.2015.08.015] [DOI:10.1016/j.phrs.2015.08.015]
32. Sulzer, D., Sonders, M. S., Poulsen, N. W., & Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines: a review. Progress in Neurobiology, 75(6), 406-433. [DOI:10.1016/j.pneurobio.2005.04.003] [DOI:10.1016/j.pneurobio.2005.04.003]
33. Tung, L. W., Lu, G. L., Lee, Y. H., Yu, L., Lee, H. J., Leishman, E., Chiou, L. C. (2016). Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nature Communications, 7, 12199. [DOI:10.1038/ncomms12199] [DOI:10.1038/ncomms12199]
34. Vyas, A., Bernal, S., & Chattarji, S. (2003). Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Research, 965(1-2), 290-294. [DOI:10.1016/S0006-8993(02)04162-8] [DOI:10.1016/S0006-8993(02)04162-8]
35. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons.The Journal of Neuroscience, 22(15), 6810-8. [DOI:10.1523/JNEUROSCI.22-15-06810.2002] [DOI:10.1523/JNEUROSCI.22-15-06810.2002]
36. Wang, B., Luo, F., Ge, X. C., Fu, A. H., & Han, J. S. (2002). Effects of lesions of various brain areas on drug priming or footshock-induced reactivation of extinguished conditioned place preference. Brain Research, 950(1-2), 1-9. [DOI:10.1016/S0006-8993(02)02980-3] [DOI:10.1016/S0006-8993(02)02980-3]