Volume 9, Issue 5 (September & October 2018 2018)                   BCN 2018, 9(5): 0-0 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholamzadeh R, Mostafavi H, Bigdeli M R, Eskandari M. Erythropoietin Pretreatment Effect on Blood Glucose and Its Relationship With Interleukin-1α and Interleukin-6 After Brain Ischemic-Reperfusion Injury in Male Wistar Rats. BCN. 2018; 9 (5)
URL: http://bcn.iums.ac.ir/article-1-1015-en.html
1- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
2- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Introduction: Brain Ichemic-Reperfusion Injury (IRI) activates different pathophysiological processes. It also changes physiological parameters such as Blood Glucose (BG) level. An increase in BG after stroke is associated with poor clinical outcomes. Erythropoietin has been shown to be effective on both reducing inflammation and BG level. Therefore, in this study the erythropoietin pretreatment effect on BG and its relationship with inflammatory markers after brain IRI was investigated.
Methods: Thirty adult male Wistar rats were randomly divided into 5 groups: sham, control and 3 pretreatment groups: single dose, double dose, and triple dose that received 1000 U/kg of erythropoietin before stroke induction in different times intraperitoneally. A rat model of IRI was established by Middle Cerebral Artery Occlusion (MCAO) for 60 minutes. Infarct volume, neurological defects, Interleukin-1α (IL-1α) and IL-6 serum levels were evaluated 24 hours after reperfusion. Also BG was measured after 1, 6, and 24 hours.
Results: Single dose of erythropoietin significantly decreased infarct volume and improved neurological defects which was associated with decreased serum level of IL-1α and IL-6 but higher doses of erythropoietin administration had adverse effects on histological, neurological, and inflammatory results. In addition, erythropoietin significantly increased BG in a dose- dependent manner. 
Conclusion: Erythropoietin could reduce brain IRI by reducing inflammation and BG stabilization. The results of the present study demonstrated a relationship between inflammatory factors and hyperglycemia after IRI and suggested that erythropoietin may be useful for preventing brain IRI, but its higher doses should be used with caution due to possible side effects. 
Type of Study: Original | Subject: Behavioral Neuroscience
Received: 2017/08/31 | Accepted: 2018/04/30 | Published: 2018/09/1

Add your comments about this article : Your username or Email:

Send email to the article author

© 2018 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb